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Abstract
We developed an interactive system to design a customized cover for a given three-dimensional (3D) object such
as a camera, teapot, or car. The system first computes the convex hull of the input geometry. The user segments it
into several cloth patches by drawing on the 3D surface. This paper provides two technical contributions. First,
it introduces a specialized flattening algorithm for cover patches. It makes each two-dimensional edge in the
flattened pattern equal to or longer than the original 3D edge; a smaller patch would fail to cover the object, and
a larger patch would result in extra wrinkles. Second, it introduces a mechanism to verify that the user-specified
opening would be large enough for the object to be removed. Starting with the initial configuration, the system
virtually "pulls" the object out of the cover while avoiding excessive stretching of cloth patches. We used the system
to design real covers and confirmed that it functions as intended.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.6]: Methodology
and Techniques—Interaction Techniques; Computer Graphics [I.3.5]: Computational Geometry and Object
Modeling—Geometric Algorithms

1. Introduction

It is often desirable to have a cover for personal belongings
such as cameras, teapots, or cars to protect these items from
dust and damage. Covers can also be useful for maintaining
the temperature of the contents. However, off-the-shelf cover
products are not always available for every object, so it is
necessary to develop technology to create customized cov-
ers. However, various physical constraints make this kind of
technology very difficult for non-experts to use. The design
process involves finding two-dimensional (2D) patches suf-
ficiently large to cover the entire surface. The opening must
also be large enough to allow the object to be removed eas-
ily. A computer program could be of great help in solving
these kinds of problems.

This paper presents an interactive system to design a cover
for any given three-dimensional (3D) object. Figure1 shows
the overall process of the cover design. The modeling pro-
cess starts with a 3D model of the target object. The acqui-
sition of this 3D model is in itself a difficult problem, but it
is beyond the scope of this paper. The system first computes
the convex hull of the target model. The user segments it
into several cloth patches by drawing and erasing segmenta-
tion boundaries on the 3D surface. The system also provides

automatic segmentation. The system then automatically flat-
tens the cloth patches and visualizes the shape of the result-
ing 3D cover. The user then specifies the cover opening by
marking a part of the segmentation boundaries as the open-
ing. The system examines the opening and alerts the user if
the opening will be too small to allow for the removal of the
object.

This paper makes two technical contributions. First, it in-
troduces a specialized flattening algorithm for cover patches.
The system makes every 2D edge in the flattened mesh
longer than the original 3D edge, because cloth patches
smaller than the original 3D surface will fail to cover the
area. A larger patch is less problematic because it will simply
result in extra wrinkles. The system begins with a standard
flattening result and iteratively refines the result by identi-
fying shortened edges. It runs the optimization again using
the increased weights for the shortened edges. As a result,
all shortened 2D edges have almost equal in length to the
original 3D edges; differences are negligible.

Second, the paper introduces a mechanism to verify that
the object can actually be removed through the given open-
ing. Beginning with the initial configuration, the system vir-
tually “pulls” the object out of the cover while avoiding ex-
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a) b) c) d) e)

Figure 1: Overview of our system: (a) input three-dimensional model; (b) segmentation of the convex hull and shrink-free
flattening of the patches; (c) specifying an opening; (d) uncovering test; (e) cover created according to the pattern.

cessive stretching of cloth patches. This is again an iterative
process. The system gradually expands the opening to allow
the object to pass and pushes the cover along the surface of
the object away from the opening. The system also applies a
relaxation process [IH02] to prevent excessive stretching of
the cloth material. This process terminates when the object
is sufficiently uncovered or if the object becomes stuck.

2. Related Work

Researchers have recently proposed some interesting sys-
tems to support the computer design of real-world objects.
Some systems use a given 3D model as input and generate
a physical model as output, e.g., a wet suit [Wan08], a pa-
per craft [MS04], a stuffed animal [JKS05], and a knitted
animal [IIS08a]. Some systems allow for the interactive de-
sign of a physical model by allowing the user to sketch the
object, e.g., a garment [DJW∗06], a plush toy [MI07], and
a knitted animal [IIS08b]. These systems differ from tradi-
tional industrial computer-aided design systems in that they
make the design process accessible to non-experts by incor-
porating the properties of physical materials, such as paper
or cloth, into the modeling process. We built on these previ-
ous attempts and explored the possibility of using a design
process to verify the capability of physical objects.

Within the field of computer graphics, considerable at-
tention has been paid to surface flattening, also called
mesh parameterization. Most researchers have focused
on texture mapping, with an emphasis on conformality
[LSNJ02,SLMB05]. They have also investigated size preser-
vation, e.g., low-stretch parameterization [YBS08], shape-
preserving parameterization [LZX∗08], and length preser-
vation of feature curves [Wan08]. McCartney et al. pre-
sented a method for flattening the candidate triangle sets it-
eratively while evaluating the local distortion energy of par-
ticle movements [MHS99]. Zhong and Xu introduced a flat-
tening method to retain the size and area of the original 3D
surface [ZX06]. However, these methods treat shrinkage and
stretch equally, and to the best of our knowledge no methods
have been developed for shrink-free flattening.

Recent computer-aided process engineering systems such
as DELMIA [das] and Tecnomatrix Robcad [rob] have pro-

duced various dynamic and static collision check methods.
For example, they can simulate robot movement within a
car seat; they use 3D models to test all possible trajectories
and assess the possibility of collision. Most existing methods
focus on collisions between rigid objects [KL00,ZHKM08,
ZKVM06]. Our system can handle the complex interactions
between rigid and deformable objects, providing an approx-
imate solution sufficient for guiding non-expert users in ca-
sual design tasks.

Various methods have been proposed for cloth simulation.
Vollino et al. presented techniques for simulating the motion
and the deformation of cloth [VCT95]. Bridson et al. pre-
sented an efficient and robust collision handling algorithm
for the interaction between cloth and rigid objects [BFA02].
Our contribution is orthogonal to these methods in that they
simulate the physical behavior of cloth responding to exter-
nal forces while we discuss how to move the cloth actively
to uncover the object. We use relatively simple cloth simu-
lation, but it is possible to combine our system with these
more realistic simulation methods.

3. Overview

This section describes the overall process of cover design,
mainly from the user’s perspective. The details of the main
algorithms are described.

3.1. Model Acquisition

The user first needs to obtain a 3D modelM of the target ob-
ject. The model can be created from scratch using a standard
modeling software [may,3ds], or the object can be scanned
using a 3D scanner. It might be possible to use a vision-based
technique to reconstruct a 3D model. In some cases, 3D
models of specific commercial products are already avail-
able on the Internet. We have used various combinations of
these methods here, but the details of model acquisition are
outside the scope of this paper. Our system requires only a
polygon soup or point cloud model, because the following
computations apply a convex hull.
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Figure 2: Examples of real covers.

(a) convex hull cover (b) draping cover

Figure 3: Computation of cover geometry.

3.2. Specifying the Cover Geometry

After a 3D model of the target object has been obtained, the
next step is to specify the cover geometry. Currently our sys-
tem supports two kinds of covers: wrapping and draping cov-
ers. A wrapping cover completely encloses the target object,
e.g., a bottle cover or a protective carrying case for digital
equipment (see Figure2, left). A draping cover only cov-
ers the top and sides of the target object, leaving the bottom
open, e.g., a piano cover or a tea cozy (see Figure2, middle
and right).

A cover does not need to conform to every detail of the
target model. Based on observations of real covers (Figure
2), we decided to use the convex hull of the target model as
the cover geometry, as shown in Figure3a. In the case of a
draping cover, the system projects all of the vertices to the
ground plane and includes them in the computation of the
convex hull. The system then removes all of the faces on the
ground plane, as shown in Figure3b. It is possible to use a
more tightly fitted geometry such as an alpha hull [EM94],
but we decided to use the simplest method because many
real covers apply a convex hull. Convexity also simplifies
the design of flattening and uncovering algorithms. Another
advantage of convex hull cover is that it uses less cloth ma-
terial than tighter fitting covers, which makes the physical
construction easier.

The system resamples the convex hull meshCH(M) so
that it consists of near-equilateral, uniformly sized trian-
gles [Tur92]. This ensures that the relaxation process will
accurately mimic cloth behavior, as shown in Figure4b. The
system uses this resampled convex hullG as the guiding ge-
ometry in the relaxation process (see Section 5.1). The sys-
tem then generates the target cover geometryC0 by slightly
enlarging the resampled convex hull mesh to give it enough
play, as shown in Figure4c. Specifically, the system dupli-
cates the resampled convex hull meshG and moves each ver-
tex slightly to its normal direction.

(c) enlarged 

resampled mesh C0

(d) segmentation 

result

(a) convex 

hull CH(M)

(b) resampled

hull G

Figure 4: Resampling and segmentation.

Figure 5: Preview of the resulting cover shape C.

3.3. Segmentation

After the target cover geometryC0 has been obtained, the
next task is to segment it into almost planar surface patches.
The user segments it into several cloth patches manually.
The system also provides an automatic segmentation; if the
user can not design.

Various automated segmentation methods have been pro-
posed [JKS05,LA06, LCWK07]. However automatic seg-
mentation does not always return ideal results, partly be-
cause the system cannot understand the semantics of the tar-
get model. Differing segmentation results in very different
final appearances (see Figure5), so it is important that the
user is able to edit the segmentation manually. Our system
provides a simple interface for designing segmentation, al-
lowing the user to draw and erase segmentation boundaries
manually. Our current implementation places segmentation
boundaries only on the mesh edges.

However, the system also provides an automatic segmen-
tation method for novice user. We use a region-growing
method [Llo57, CSAD04] for mesh segmentation (Figure
6). The system first randomly distributes a fixed number of
proxies on the surface. We use six proxies for a wrapping
cover and five for a draping cover. The user can change the
number of proxies. The system then partitions the surface via
region growing around the proxies and updates the proxies
so that they minimize the distortion error. The system repeats
partitioning and fitting alternatively until convergence. Since
this algorithm starts with random seeds, it generates different
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(a) (b) (c) (d)

Figure 6: Example of mesh segmentation: (a, b) convex hull
covers; (c, d) draping covers.

Figure 7: Uncovering test: success (top); failure (bottom).

results each time. So the user is encouraged to request seg-
mentation again if the result is not satisfactory. We tested a
hierarchical mesh segmentation methods [GWH01,AFS06]
on EfPiSoft [efp]. However, the quality of results is simi-
lar to the region-growing method [Llo57,CSAD04] because
we use a coarse mesh ( around 500-2000 vertices). There is
an extension to use proxies that represent developable sur-
faces [JKS05], but we found that simple planar proxies are
more suitable for cover design because planar proxies gen-
erate more straight boundaries than flexible proxies.

3.4. Flattening

The system flattens the patches of the target cover geometry
C0 after segmentation. Flattening is an automatic process,
and the result is shown in a 2D view as a 2D cloth pattern
in Figures1b and c. Section 4 describes the details of the
flattening algorithm. The user can manually modify the flat-
tening results by deforming and smoothing patch boundaries
in the 2D view. This manual editing is useful for removing
undesirable zigzags along the boundary while preserving im-
portant features.

The system provides a preview of the resulting cover
shapeC by applying a relaxation process (Figure5). It is
a simplified cloth simulation [IH02]. It moves the vertices to
prevent excessive elongation and shrinkage of edges. It also
tries to make the dihedral angles between neighboring faces
180 degrees except around segmentation boundaries. If the
results are unsatisfactory, the user can easily change the seg-
mentation by erasing and redrawing the seam lines.

3.5. Specifying the opening of the Cover

The user specifies the cover opening by cutting some of the
segmentation boundaries. The system then verifies that the

Figure 8: Examples of the real cover using our system. A
convex hull cover of shiisa (upper) and a draping cover of
squirrel (bottom).

object can be removed from the cover by running an uncov-
ering test. If the given opening is too small, the inner ob-
ject cannot be removed (Figure7, bottom). In this case, the
system alerts the user to design a larger opening (Figure7,
top). Section 5 describes the details of the uncovering test.
A draping cover will not require specification of an open-
ing or an uncovering test because the opening has already
been defined and it is always possible to remove the cover.
Uncovering a draping cover is always possible because the
opening is obtained by projecting all vertices of the object
and the cover is convex hull of the object.

3.6. Printing and Sewing

At this point, the user can create a real cover by cutting
and stitching the fabric using the 2D pattern (Figure8). The
system displays how patches are connected by connectors
or paired numbers [MI07]; information about connectors is
useful to clarify the relationships shown on the screen, and
numbers are useful as a printed reference on each patch for
sewing. The system provides an automatic layout and man-
ual arrangement interface for preparing the final pattern to
be printed.

4. Shrink-free Flattening

This section describes the algorithm for flattening each cloth
patch under the constraint that each edge of the flattened 2D
mesh is always longer than that of the original 3D mesh. This
constraint was based on our observation that a patch smaller
than the target surface fails to cover the entire area, whereas
a larger patch successfully covers the target area but with
extra wrinkles.

4.1. Algorithm

The system first flattens the surface using a standard flatten-
ing algorithm and then iteratively refines the result so that
it satisfies the shrink-free constraint. Initial flattening can
apply any free boundary flattening method, such as LSCM
[LSNJ02] or ABF++ [SLMB05]. Currently our system uses

c© 2009 The Author(s)
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the as-rigid-as-possible flattening method [II09]. Basically,
it applies the algorithm introduced in as-rigid-as-possible
shape manipulation [IMH05] to surface flattening. It mini-
mizes shape differences between each triangle of the original
3D mesh and the corresponding triangle on the flattened 2D
mesh using least-squares methodology while preserving the
mesh topology. The system first computes a mapping that
allows free scaling and then adjusts the scale in the second
step, which corresponds to an iteration step described in Liu
et al. [LZX∗08].

During the refinement, the system repeatedly applies the
second step with varying edge weights to ensure that all
edges of the flattened 2D mesh are equal to or longer than
the corresponding edges of the 3D mesh. At each step, the
system examines the 2D edge lengths in the previous itera-
tion and updates the weight based on a function that gives
more weight to shortened edges (Figure9). This function
gives a weight of 1 to elongated edges and 1000 to shortened
edges, with a smooth transition between the two. It also up-
dates each edge’s estimated rotation, as discussed by Liu et
al. [LZX∗08]. The system terminates the iteration when all
edges satisfy the constraints or all problematic edges have
been weighted. Figure10shows the iterative refinement pro-
cess.

A few details remain to be discussed. First, it is necessary
to constrain at least two points to apply least-squares op-
timization. Currently our system constrains the edge at the
graph center of the patch mesh. The two end points are fixed
in the 2D space at a distance equal to that in the original 3D
space. This is based on the observation that the center of the
mesh is generally compressed and the periphery of the mesh
is generally stretched. Our future research will focus on a
way to avoid constraining specific vertices [MtAD08].

Second, assigning a high edge weight does not make the
resulting 2D edge length exactly equal to the original 3D
edge length; it only approaches the target length in terms
of least squares. When an assigned weight is larger, the re-
sult is nearer the target. Small shrinkage is not a problem
in practice, and the system judges the constraint to be sat-
isfied when the amount of shrinkage is sufficiently small
(2D_edge_length> 3D_edge_length× 0.94 in our current
prototype).

Third, there is no guarantee that the algorithm described
above will satisfy all constraints; it is possible that an edge
will need to be shortened even with high weights after many
iterations. However, our experiments did not reveal any fail-
ures of this type; all edges satisfied the constraint within sev-
eral iterations (Figure11). The key to success appears to be
the design of the weight function (Figure9). We tested var-
ious types of functions with different parameter values, and
our empirical results indicate that this particular function is
effective.
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Figure 9: Edge weight function.

Figure 10: Iteration process: shortened edges (red edges)
gradually disappear; black dots indicate constrained ver-
tices. See Figure9 for color coding.
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Figure 11: Number of shortened edges after each iteration.

4.2. Results

Figure 12 compares results using angle-based flattening
[SLMB05], one of the most popular flattening methods,
and our shrink-free flattening. We first segmentation con-
vex patches manually and apply our flattening method to
the patches. The results show that our method successfully
made all 2D edges be equal to or longer than the original 3D
edges with small tolerance levels. In contrast, angle-based
flattening caused about half of the edges to be shortened. It
is possible to enlarge this result to enforce the constraint, but
this would also cause excessive stretching of already long
edges. Table1 summarizes the distortion measures defined
in Sander et al. [SSGH01]. The results of our method are
comparable to a state-of-the-art method and still satisfied
non-shrinking constraints. Our method is slower because it
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Figure 12: Comparison of our flattening method and
ABF++. See Figure 8 for color coding.

(a) quarter 
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(c) ABF++(b) our flattening 

method

Figure 13: Comparison using real fabric: (b) our method;
(c) ABF++ results.

solves a sparse linear system multiple times, but it still ter-
minates within a few seconds for small meshes.

We also compared these two methods using real fabric
(Figure13). We created a 3D geometry corresponding to an
object shaped like a quarter-sphere, flattened it, cut the fabric
according to the results, and pasted it to the object surface.
The cloth patch computed by our method successfully cov-
ered the surface using the correct amount of fabric. In con-
trast, the cloth patch computed by ABF++ was too short on
the side and too long at the top and bottom. Simply scaling
the result of ABF++ certainly covers the missing side area
but even more surplus appears at the top and the bottom.

5. Uncovering

This section describes the algorithm for checking whether
the object can be removed from the cover through the given
opening. This is a difficult problem because it involves not
only the opening but also the entire cover geometry. We can
obtain an approximate answer by mimicking the uncover-
ing process and examining its physical plausibility. The sys-
tem virtually “pushes” vertices on the opening along the ob-
ject’s surface away from the opening while avoiding exces-

Table 1: Comparison of distortion measures.
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sive stretching of cloth. The system continuously monitors
the uncovering progress and terminates the process if all the
cover material is on one side of the object’s surface (success)
or if it detects that the object is stuck (failure).

The uncovering test uses the resampled convex hullG of
the target modelM (see Figure4b) as the object to be re-
moved from the cover. This makes the uncovering process
much easier and more stable than directly examining a com-
plicated target modelM with many bumps and concavities.
Because the convex hullG always encloses the target model
M, this uncovering test always gives a conservative answer.
If the virtual uncovering is successful, the actual uncovering
will also be successful.

5.1. Algorithm

This test uses an iterative process. In each iteration cycle, the
system first expands the opening by moving its vertices in
the direction perpendicular to the boundary curve along the
convex hull surfaceG. The system then applies relaxation to
the coverC to prevent excessive stretch; we applied the re-
laxation algorithm described in Igarashi and Hughes [IH02].
The system examines each cover triangle and moves the ver-
tices of the triangle to recover its resting shape. The system
also tracks the nearest point on the convex hull surfaceG to
the cover vertex to prevent penetration. If the cover vertex is
inside the convex hullG, the system pushes the cover vertex
out of it.

Simply advancing the opening boundary and relying on
relaxation cause local wrinkles and folds around the open-
ing (Figure14a). Therefore, the system explicitly moves all
of the cover vertices together with the nearest vertex on the
opening boundary (Figure14b). Igarashi and Hughes used a
similar technique to propagate the user’s dragging operation
to the entire cloth [IH02]. They adjusted the movement vec-
tors so that they were always tangent to the object surface
(Figure 14c). In contrast, we simply use an unconstrained
3D vector (Figure14d) because our final goal is to remove
the cover from the surface rather than slide the cover around
on the object surface.
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 (a) (b) (c) (d)

Figure 14: (a) Moving a single vertex; (b) moving the entire
vertices; (c) moving along the surface; (d) moving in one
direction.

 

Figure 15: Detecting the completion of uncovering: not
completed (left); completed (right).

To detect the completion of the uncovering process,
the system continuously monitors its progress by checking
whether each vertex of the resampled convex hull surface
G is still covered. The system emits a lay from the surface
vertex in its normal direction and detects an intersection be-
tween the lay and the coverC. If the system detects an inter-
section, it identifies whether the vertex is still covered. The
uncovering terminates when all vertices of the covered sur-
face vertices are on one side of the convex hullG (Figure15).
Specifically, the system computes the average of the covered
vertices’ normal and the angle difference between the aver-
age and each normal. The system judges that convex hull
G has been successfully uncovered when the differences are
all smaller than 90 degrees. This simple method works well
because the system uses a convex hull.

The detection of a stuck is more complex. Currently the
system monitors the uncovering progress and identifies the
object as being stuck when the number of covered vertices
does not decrease over a specified number of iterations (10
in this prototype).

5.2. Results

The algorithm involves various simplifications and very ap-
proximate in nature. It assumes relatively simple opening
and can behave unexpectedly when a complicated opening
is given. For example, when the opening forms an almost-
closed loop (e.g. “C” shape), the behavior of the cover sur-
face inside of the loop becomes unstable because the vertices
gather at the center (Figure16d). The system still produces
a reasonable result because the problematic area gradually
shrinks and is considered as uncovered. We plan to explic-
itly identify an almost-closed loop in an opening and treat it
as a loop in the future.

As we have already discussed, our algorithm is conserva-
tive in nature; success in the virtual uncovering test means
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Figure 16: Virtual and actual uncovering tests. We used 1.5
GHz Intel Core2 PC (RAM 1.5MB).

that uncovering will be successful in the real world, because
the test applies the convex hullG instead of the model’s ac-
tual geometryM. On the other hand, even if the virtual un-
covering is unsuccessful, uncovering may be successful in
the real world.

Figure16 shows the results of virtual and actual uncover-
ing. Despite the limitations discussed above, our algorithm
generally yielded correct results. We did observe a slight
mismatch between predicted and actual results, as shown in
Figure 16f. However, pulling this object from its cover in
the real world required a lot of work-pushing and pulling the
object inside the cover. Therefore, the results generally indi-
cate that the current uncovering test is sufficiently accurate
for use as a guiding tool for non-professional users.

6. User Experiences

We provided the system to two test users and asked them to
design their own covers. The user 1 is not familiar with com-
puters but good at sewing. In contrast, the user 2 has a lot of
experience with computer graphics but has little sewing ex-
perience. Figure17shows some of the results. The test users
understood how to use the system within 5 to 10 min and
had generally completed their designs within 5 to 20 min.
It took them 1 to 2 hours to sew a cover. They generally
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Figure 17: Real covers designed by the test users using our system.

found the system easy to use and enjoyed the experience;
they particularly appreciated the ability to check whether
the opening was large enough to remove the object before
sewing a real fabric cover. They also appreciated the default
automatic cover segmentation and said that it was a good
way to demonstrate how to design an original segmenta-
tion. They provided feedback about improvements, includ-
ing the inclusion of auxiliary functions such as the ability
to design symmetric parts, e.g., having a segmentation de-
signed on one side of the cover to appear on the other side.
They also expressed a desire to design an original cover ge-
ometry, possibly using a simple sketching program such as
Plushie [MI07].

7. Limitations and Future Work

The technical problems discussed in this paper are not
clearly defined, and the validation of the proposed methods
was rather qualitative. We believe that our findings are ac-
ceptable as an initial experiment, because our goal is to pro-
vide a practical solution to a complicated real-world prob-
lem rather than provide an analytic solution to a theoretical
problem. Still, it should be possible to conduct a more rig-
orous analysis of some aspects of the system. For example,
our shrink-free flattening algorithm is not guaranteed to con-
verge and it is only quasi shrink-free. We only empirically
validated its convergence in most examples, but more theo-
retical analysis is desired. Similarly, the uncovering test is
very limited because we only focus on the vertices and do
not check face-face collision. This actually can cause fail in
some cases and better solutions need to be developed in the
future.

The uncovering test is too slow. The current implementa-
tion is not yet optimized for speed and we can easily obtain
reasonable speed-up by tweaking details such as to adjust
parameters. However, we ideally want to provide interactive
feedback, that is, to continuously run the test in the back-
ground and show the result while the user is painting the
opening. We need to have a significantly different strategy to
achieve this such as to apply a sophisticated structure analy-
sis to the model and the cover before running the test.

Our current system is designed for rigid objects. Future
work will focus on the design of covers for soft objects such
as stuffed animals and articulated objects with joints, such as
robot toys. We also plan to work on tight fitting, non-convex
covers for objects such as globes and violins. Other flat-
tening methods such as authalic parameterization [DMA02]
might be worth testing. It would also be interesting to extend
our system to design covers (clothing) for living things such
as babies and pets.

This research shows that incorporating physical con-
straints into a computer model used for interactive editing
can be very helpful for non-professional users who are de-
signing functioning real-world objects. We plan to apply this
approach to various other problems, e.g., analyzing liquid
flow to help design a better teapot, or predicting possible
wear to leather to help design a sturdy briefcase.
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