Structured Annotations for 2D-to-3D Modeling

Yotam Gingold*
New York University / JST ERATO

Abstract

We present a system for 3D modeling of free-form surfaces from
2D sketches. Our system frees users to create 2D sketches from ar-
bitrary angles using their preferred tool, which may include pencil
and paper. A 3D model is created by placing primitives and anno-
tations on the 2D image. Our primitives are based on commonly
used sketching conventions and allow users to maintain a single
view of the model. This eliminates the frequent view changes in-
herent to existing 3D modeling tools, both traditional and sketch-
based, and enables users to match input to the 2D guide image. Our
annotations—same-lengths and angles, alignment, mirror symme-
try, and connection curves—allow the user to communicate higher-
level semantic information; through them our system builds a con-
sistent model even in cases where the original image is inconsistent.
We present the results of a user study comparing our approach to a
conventional “sketch-rotate-sketch” workflow.

CR Categories: 1.3.6 [Methodology and Techniques]:Interaction
techniques 1.3.5 [Computational Geometry and Object Modeling]:
Geometric algorithms, languages, and systems

Keywords: user interfaces, sketch-based modeling, annotations,
interactive modeling, image-based modeling

1 Introduction

Traditional 3D modeling tools (e.g. [Autodesk 2009]) require users
to learn an interface wholly different from drawing or sculpting in
the real world. 2D drawing remains much easier than 3D model-
ing, for professionals and amateurs alike. Professionals continue
to create 2D drawings before 3D modeling and desire to use them
to facilitate the modeling process ([Thorméhlen and Seidel 2008;
Tsang et al. 2004; Eggli et al. 1997; Kallio 2005; Dorsey et al. 2007;
Bae et al. 2008]). Sketch-based modeling systems, such as Teddy
[Igarashi et al. 1999] and its descendants, approach the 3D model-
ing problem by asking users to sketch from many views, leveraging
users’ 2D drawing skills. In these systems, choosing 3D viewpoints
remains an essential part of the workflow: most shapes can only be
created by sketching from a large number of different views. The
workflow of these systems can be summarized as “sketch-rotate-
sketch.” Because of the view changes, users cannot match their
input strokes to a guide image. Moreover, finding a good view for
a stroke is often difficult and time-consuming: In [Schmidt et al.
2008], a 3D manipulation experiment involving users with a range
of 3D modeling experience found that novice users were unable to
complete their task and became frustrated. These novice users “po-
sitioned the chair parts as if they were 2D objects.” The change of
views is a major bottleneck in these systems.

*e-mail: gingold@cs.nyu.edu

Takeo Igarashi
University of Tokyo / JST ERATO

Denis Zorin
New York University

N

generalized r0ss

cylinders .
S

primitives annotations
Figure 1: Our modeling process: the user places primitives and
annotations on an image ([Kako 1973]), resulting in a 3D model.

Sketching is also used in the context of traditional modeling sys-
tems: a workflow often employed by professional 3D modelers is
placing axis-aligned sketches or photographs in the 3D scene for
reference. This workflow could potentially allow amateurs who
cannot draw well in 2D to create 3D models from sketches pro-
duced by others. Yet, paradoxically, this approach requires a higher
level of skill despite relying on easier-to-produce 2D sketches as
a modeling aid. This is because of the difficulty of using conven-
tional tools, which require constant changes to the camera position,
whereas a single view is needed to match an existing image.

The goal of our work is to design a user interface that simplifies
modeling from 2D drawings and is accessible to casual users. Ide-
ally, an algorithm could automatically convert a 2D drawing into a
3D model, allowing a conventional sketch (or several sketches) to
serve as the sole input to the system. This would eliminate the need
for view point selection and specialized 3D UI tools. However,
many (if not most) drawings are ambiguous and contain inconsis-
tencies, and cannot be interpreted as precise depictions of any 3D
model (Section 3). This limits the applicability of techniques such
as Shape-from-Shading ([Prados 2004]) and reconstruction from
line drawings ([Varley and Company 2007]). Humans apparently
resolve many of the ambiguities and inconsistencies of drawings
with semantic knowledge. Our work provides an interface for users
to convert their interpretation of a drawing into a 3D shape. In-
stead of asking the user to provide many sketches or sketch strokes
from multiple points-of-view, we ask the user to provide all infor-
mation in 2D from a single view, where she can match her input
to the underlying sketch. In our tool, user input takes the form of
(1) primitives (generalized cylinders and ellipsoids) with dynamic
handles, designed to provide complete flexibility in shape, place-
ment, and orientation, while requiring a single view only, and (2)
annotations marking similar angles, equal-length lines, connections
between primitives, and symmetries, to provide additional seman-
tic information. Our system generates 3D models entirely from this
user input and does not use the 2D image, which may be inaccurate,
inconsistent, sparse, or noisy. We do not expect that users have a
consistent 3D mental model of the shape and are specifying prim-
itives precisely; we aim to create plausible, reasonable quality 3D
models even if a user’s input is inconsistent.

Contributions. We have designed a system of user interface ele-
ments implementing an intuitive and powerful paradigm for inter-
active free-form modeling from existing 2D drawings, based on the
idea of “describing” an existing drawing by placing primitives and
annotations.

We present the results of a small user study showing that our inter-
face is usable by artists and non-artists after minimal training and
demonstrating that the results are consistently better compared to
tools using the “sketch-rotate-sketch” workflow. We demonstrate

that our system makes it possible to create consistent 3D models
qualitatively matching inconsistent illustrations.

Our resulting 3D models are collections of primitives containing
structural information useful in applications such as animation, de-
formation, and further processing in traditional modeling tools. We
do not argue that one should perform all 3D modeling operations
in a 2D view. Our goal is to demonstrate that it is possible to
accelerate the creation of initial, un-detailed 3D models from 2D
sketches, which can be further refined and improved using other
types of modeling tools.

2 Related Work

Interactive, single-view modeling. Our approach is most simi-
lar in spirit to [Zhang et al. 2001] and [Wu et al. 2007], in which
users annotate a single photograph or drawing with silhouette lines
and normal and positional constraints; the systems solve for height
fields that match these constraints. In our system, the primitives and
annotations added by a user are structured and semantic, and we are
able to generate 3D models from globally inconsistent drawings.
Our system rectifies the shape primitives placed by a user in order
to satisfy the user’s annotations (symmetries and congruencies).

[Andre et al. 2007] presented a single-view modeling system in-
tended to mimic the process of sketching on a blank canvas. We are
similarly motivated; our system allow users to preserve intact the
process of sketching on a blank canvas.

Interactive, multiple-view modeling. In [Debevec et al. 1996] and
[Sinha et al. 2008] and [van den Hengel et al. 2007], users mark
edges or polygons in multiple photographs (or frames of video).
The systems extract 3D positions for the annotations, and, in fact,
textured 3D models, by aligning the multiple photographs. (In [De-
bevec et al. 1996], users align them to edges of a 3D model created
in a traditional way). In our system, users have only a single, poten-
tially inconsistent drawing; these computer vision-based techniques
assume accurate, consistent input and hence cannot be applied to
our problem.

Automatic, single-view sketch recognition. Sketch recognition
techniques convert a 2D line drawing into a 3D solid model. These
approaches also typically assume a simple projection into the image
plane. Furthermore, a variety of restrictions are placed on the line
drawings, such as the maximum number of lines meeting at single
point, and the implied 3D models are assumed to be, for example,
polyhedral surfaces. For a recent survey of line-drawing interpre-
tation algorithms, see [Varley and Company 2007]. One notable
recent work in this direction is [Chen et al. 2008], which allows for
imprecise, sketched input by matching input to a domain-specific
database of architectural geometry. More relevant to free-form
modeling, the recent works of [Karpenko and Hughes 2006] and
[Cordier and Seo 2007] generate 3D models from a single view’s
free-form visible silhouette contours. These works are primarily
concerned with generating surfaces ([Karpenko and Hughes 2006])
or skeletons ([Cordier and Seo 2007]) correctly embedded in R3
with visible contours matching the user’s input. They do not rep-
resent modeling systems per se, but rather a necessary component
for any system taking silhouette contours as input. Our approach
can be viewed as a form of user-assisted 2D-to-3D interpretation.
Because a human uses our tool to annotate the 2D image, we are
able to receive user input that eliminates ambiguity and rectifies
inconsistencies in the image.

Interactive 3D modeling. There are a variety of sketch-based mod-
eling tools based on the concept of sketching curves from various
angles (sketch-rotate-sketch). The earliest of these is [Igarashi et al.
1999], and this direction has been explored in a variety of later
works. A good overview can be found in the recent survey of [Olsen
et al. 2008]. These works assume users are capable of sketching a
model from multiple points-of-view, and that users can find good

views for sketching and manipulating the model. As such, users
cannot trace a guide image. We do not assume such skill, and be-
lieve that that rotation and sketching from novel views is the most
difficult aspect of these systems.

The work of [Cherlin et al. 2005] deserves further mention. The
goal of this work is minimizing the number of strokes a user must
draw to create a surface. They introduce “rotational blending sur-
faces,” which are similar to our generalized cylinders. However,
these surfaces’ “spines” are planar xy curves unless over-sketched
from a rotated view.

Generalized cylinders have been used extensively in the blobby
modeling literature ([Bloomenthal 1997]). The MetaReyes 3D
modeling system ([Infografica 2009]) makes extensive use of a
generalized cylinder primitive with non-circular cross sections and
is based on implicit surfaces; our generalized cylinder primitive
could be implemented similarly. MetaReyes is not designed to be a
single-view modeler; as a result, users cannot easily match a guide
image.

Two early sketch-based modeling systems relevant to our work are
[Zeleznik et al. 1996] and [Eggli et al. 1997]. [Zeleznik et al.
1996] introduced SKETCH, a gestural interface for 3D modeling.
In SKETCH, users are capable of performing most modeling oper-
ations from a single view. For this reason, SKETCH could almost
be re-purposed as a tool for annotating existing 2D drawings. How-
ever, inconsistencies commonly present in 2D drawings preclude
this application of SKETCH. In addition, SKETCH only supports a
subset of CAD primitives and cannot be used for free-form model-
ing. [Eggli et al. 1997] introduced constraints for beautifying users’
imprecise, sketched input. [Cabral et al. 2009] presented an in-
teractive system for deforming and reshaping existing architectural
models with length and angle constraints. We, too, use constraints,
although our constraints are also designed to reconcile globally in-
consistent user input.

The systems presented in [Kallio 2005; Dorsey et al. 2007; Bae
et al. 2008] allow users to sketch freely with 2D input devices,
projecting users’ strokes onto various planes in space. These sys-
tems are designed to support the early conceptual design phase of a
project; as such, they do not create surfaces, but rather a collection
of strokes in space. Our interface can be used to create a 3D sur-
face from a sketch drawn during a traditional 2D conceptual design
phase.

3 Motivation

3D shapes in 2D sketches. 2D sketches are remarkably efficient at
conveying the information sufficient to perceive a 3D object from
a single point of view. Many 2D drawing approaches are based
on composing (or decomposing, if drawing reality) a model out of
primitive shapes (Figure 2, bottom row). The 3D shape of each
primitive is relatively simple; primitives are primarily depicted with
outlines and additional “scaffolding” ([Schmidt et al. 2007]), typi-
cally lines indicating the shape of several cross-sections. In [Vilppu
1997], these primitives are sphere-, cylinder-, and cube-like shapes.
Similarly, our interface is based on the idea of users placing prim-
itives over a 2D drawing and modifying primitives’ cross-sections
to control their shape and match their appearance to the drawing.

Global inconsistency and ambiguity. Many 2D drawings are
globally inconsistent and contain various ambiguities. It is well
known that drawings and paintings, from quick sketches to classi-
cal works of art, contain elements drawn from different perspectives
([Agrawala et al. 2000]); in many cases, one cannot unambiguously
infer the 3D view used for the 2D image.

Due to inconsistencies and inaccuracies, intended or unintended,
one cannot in general take a drawing to be a precise projection of a
3D model (e.g. Figure 2, top row). For this reason, we cannot hope
to reconstruct a good-quality 3D model without additional informa-

Figure 2: Top row: Cezanne’s Still Life with a Fruit Basket (dia-
gram from [Loran 1943], reproduced from [Agrawala et al. 2000]).
Bottom row: Drawing using primitive shapes from [Vilppu 1997]
(left) and [Blair 1994] (right).

tion. Nevertheless, even poor quality drawings are understandable
by humans; they are able to convey local shape information and
are usually sufficient to recognize the object. Our system provides
several types of annotations for users to input essential semantic
information. We combine the primitives’ local shape information
with the annotations’ semantic information to create a plausible,
globally consistent 3D model.

4 User Interface

Users begin a modeling session by choosing an arbitrary image file
containing their drawing (or other source material). Our interface
presents users with a window displaying the image and a palette
of primitive and annotation tools (Figure 3). Primitives (general-
ized cylinders and ellipsoids) are used to create simple object parts;
they are manipulated with several types of handles for single-view
shape editing. Annotations describe geometric relationships be-
tween these shapes, such as equality of lengths and angles. Users
proceed to place primitives and annotations over the image, which
is visible as an underlay; only primitives’ silhouettes and cross-
sections are visible in the interaction view. (In case the 2D view
becomes cluttered, the user can “lock” shapes. Locked shapes can-
not be selected and are drawn with a hairline outline. This is similar
to the approach taken in Illustrator ([Adobe 2007]).)

Primitives (e.g., a character’s body) are initially created with their
spines flat in the image plane. The main tools allowing implicit out-
of-image-plane shape deformation and 3D positioning are cross-
section tilt handles and connection curves attaching two primitives
together. By tilting cross-sections, the user “lifts” a shape out of
the plane, while preserving its outline. This process is similar to
the way artists suggest the 3D shape and orientation of an object
by sketching cross-sections, even if these are erased in the final
image. Primitives are positioned with respect to each other (e.g.,
legs with respect to the body) using connection curves. Connection
curve annotations connect two primitives where they overlap, and
determine the depth ordering. Tilting cross sections and attaching
primitives together make it possible to define a 3D shape matching
a sketch using single-view interactions.

Additional relationships between primitives can be specified by
other annotations: alignment, same-length and angle, and mirror-
ing. Alignment and mirror annotations place primitives with re-
spect to the symmetry sheet of another primitive. Symmetry sheets
are controlled by the user and generalize symmetry planes; unlike

Figure 3: A screenshot of our interface (guide image from [Kako
1973]).

symmetry handle

out-of-view-plane tilt

Figure 4: Primitives: A generalized cylinder (left) and an ellipsoid
(right).

a mathematically defined symmetry plane or axis, symmetry sheets
do not necessarily capture a precise geometric property of a shape;
rather, it provides a means to communicate to the system the se-
mantics of the object. For example, consider a cylinder deformed
to a snake-like shape. Before the deformation, the cylinder had
well-defined symmetry planes which became non-planar sheets; the
sheets retain the semantics of symmetry planes.

A 3D preview window is visible at all times, allowing the user to
view and rotate the 3D model. This window is only used for veri-
fying the model, not for editing. For inconsistent sketches, the 3D
model cannot match the 2D sketch and user input exactly, and the
ability to evaluate the 3D model directly is essential.

4.1 Primitives

In the interaction view, primitives are depicted as 2D outlines with
handles for manipulating their degrees of freedom. The primitives
resemble Autoshapes ([Microsoft 2003]), with an important differ-
ence that the number of handles is not predefined and can be altered
by the user. Following our observations in Section 3, we provide
two kinds of primitives, generalized cylinders and ellipsoids (Fig-
ure 4). While an ellipsoid can be treated as a special case of a gener-
alized cylinder, we have found it important to consider it a separate
primitive type, as the set of suitable handles is different. The guid-
ing design principle for all controls is direct manipulation of the
appearance of 2D projections of curves associated with a primitive,
for example, a cross-section or a silhouette. In standard 3D mod-
eling systems, the user controls parameters such as 3D rotations,
translations, and spatial dimensions. In our system, those parame-
ters are affected indirectly when users match a primitives’ curves to
curves in a 2D sketch. This indirect manipulation of 3D parameters
by direct manipulation in 2D enables the single-view manipulation
necessary for easy construction of 3D models from sketches.

Generalized Cylinders. The first primitive is the generalized cylin-
der (Figure 4, left). It is defined by a 2D spine curve and attributes
associated with cylinder cross-sections: cross-section shape (a
closed curve), out-of-image-plane cross-section tilt, cross-section
scale, and the symmetry director used as a reference for orienting
cross-sections and to define the symmetry sheet as explained below.
Most of these attributes are directly controlled by handles, exclud-

ing the cross-section shape, for which a separate 2D sketching mode
is used. These attributes are smoothly interpolated along the spine.
At either end, the user can choose the end-cap protrusion as well.
The 3D shape is defined as the union of scaled cross-sections (with
tangent-continuous end-caps); the exact definition is presented in
Section 5.1. To create a generalized cylinder, the user draws a free-
form spine in 2D (Figure 5). A newly created generalized cylin-
der has a circular cross-section, a symmetry director parallel to the
image plane, no out-of-image-plane tilt, a scale 5% of the screen
width, and hemispherical end-caps. The newly created primitive
has scale handles and tilt handles at both ends of the spine. The
user can add and remove handles freely along the spine, provided
that there is at least one handle of each type.

=2 @

Figure 5: Creating a generalized cylinder from a stroke.

O:] Out-of-image-plane tilt handle. This is one of the most impor-
tant shape manipulation tools we provide. Out-of-image-plane tilt
handles make it possible to bend a primitive out of the image plane
while preserving its silhouette, which typically matches a silhouette
in the 2D guide image. With no tilt, the cross-section plane is per-
pendicular to the image plane and so appears as a straight line. By
dragging the handle, the user tilts the cross-section, rotating it about
the axis perpendicular to the spine and parallel to the image plane;
the cross-section’s 2D projection changes to a closed curve (Fig-
ure 6). The 3D preview window is often important for cross-section
tilt manipulation. While specifying a tilt in the 2D view allows the
user to maintain consistency with the sketch, small changes in the
cross-section tilt can sometimes result in large changes in the 3D
shape; the ability to evaluate the result from an additional view-
point allows for more reliable control of orientation.

Figure 6: Tilting a circular cross-section out of the image plane.
(Editing the generalized cylinder from Figure 5.)

y

é) Cross-section scale handle. A scale handle is used to change a
cross-section’s size. A scale handle is added anytime a user clicks
and drags on the primitive’s silhouette. As the user drags, the op-
posite point on the silhouette remains fixed, while the silhouette
point under the mouse follows (Figure 7, top); the corresponding
point on the spine is adjusted to remain in the center of the cross-
section. Optionally, the user can scale the cross-section symmetri-
cally, keeping the spine fixed (Figure 7, bottom).

1 D

Figure 7: Top row: Changing the scale of a cross-section, the han-
dle opposite remains fixed. Bottom row: Changing the scale of
a cross-section; the handle opposite moves synchronously. (Both
rows edit the generalized cylinder from Figure 6.)

O) Symmetry sheet handle. The symmetry sheet is defined by
the 3D spine and the interpolated directors. The sheet is the ruled
surface obtained as a union of the director lines at all points along
the spine. We provide a handle to the user to select the director in
any cross-section. The intersection of the sheet with the surface of
the generalized cylinder is displayed in purple (Figure 8).

Figure 8: Adjusting the symmetry sheet of a generalized cylinder.

Cross-section shape adjustment mode. Arbitrary cross-section
shapes can be drawn at any point along the spine, via a separate
2D mode accessible in a contextual menu (Figure 9). In this mode,
a canvas is displayed and the user may draw the arbitrary cross-
section curve or choose from a palette of common cross-sections.
Cross-section curves are oriented so that the x direction of the 2D
cross-section curve is aligned with the symmetry director and nor-
malized to fit inside a unit circle. They are then scaled by the cor-
responding scale along the spine.

Figure 9: Editing a generalized cylinder’s cross-section curve. The
edited cross-section is drawn in green. (Editing the generalized
cylinder from Figure 6.)

Spine manipulation. Finally, the user can click and drag any point
on the spine to initiate a curve deformation with a peeling inter-
face, as in [Igarashi et al. 2005]. Alternatively, the user can also
over-sketch the spine, replacing all or a portion of it, depending
on whether the over-sketching curve begins or ends near the spine.
These operations are shown in Figure 10.

A

Figure 10: From left to right: A generalized cylinder; deforming
its spine by peeling; over-sketching its spine; the result of over-
sketching.

G~ End-cap handles. End-cap handles determine the protrusion
of the end-caps at either end of the generalized cylinder. These
handles lie on the shape outline at the points obtained by continuing
the spine to the silhouette tangentially (Figure 11).

— > ¢

Figure 11: Adjusting the end-cap protrusion. (Editing the general-
ized cylinder from Figure 5.)

(D

Ellipsoids. The second primitive is the ellipsoid (Figure 4, right).
With this primitive, the user draws a free-form curve, to which a
2D ellipse is fit (in a least-squares sense). Handles are provided to
change its out-of-image-plane tilt and the length and orientation of
the axes of its 2D projection (Figure 12). The out-of-image-plane
tilt handle appears and operates identically to that of a generalized
cylinder. Ellipsoids’ two smaller axes are constrained to have the
same length, so all cross-sections perpendicular to its longest axis
are circular. An ellipsoid’s symmetry plane passes through its cen-
ter and is perpendicular to its long axis; as a result, it is tied to and

controlled by the the same handle as the cross-section tilt.

O 8 LOX OJ
Figure 12: Ellipsoids. Top row: Creating an ellipse from a stroke.
Bottom row: Tilting a circular cross-section out of the image plane.

<

4.2 Annotations

Annotations are the key to establishing a consistent 3D model that
reconciles primitives placed on an inconsistent 2D image with geo-
metric properties the user knows to be true. For example, the arms
of a character should be the same length, even if there is no 3D
model with arms of the same length that would project to the pro-
vided 2D sketch precisely. In addition, a character’s arms should be
attached to its body symmetrically opposite each other.

Connection curve annotations attach two primitives together
and establish the (relative) depth between them. Users connect
two overlapping primitives to each other—which places them in
depth—by clicking and dragging in their 2D overlapping region.
The primitives are translated in depth so that their 3D surfaces meet
under the mouse; the entire curve where the two surfaces meet is
drawn in green (Figure 13). Alternatively, users may draw the free-
form intersection curve he or she wishes the 3D surfaces would
make with each other. This stroke must begin on the overlap of ex-
actly two primitives, which determines which two primitives are to
be connected. By default, the connection curve is taken to be the in-
tersection curve between the front faces of the 3D surfaces; this can
be changed to the back faces via a menu. The interface refuses to
add a connection curve annotation if doing so would create circular

constraints.
y q P
T_>x

Figure 13: Artaching two primitives with a connection curve anno-
tation.

aib]

00

Mirror annotations create a copy of a primitive (and its attached
primitives) reflected across another primitive’s symmetry sheet
(Figure 14). Mirror annotations can be used to create characters’
occluded, symmetric arms or legs.

%

symmetry sheet— L4—T

Figure 14: Mirroring one primitive about another. (Annotating the
primitives from Figure 13.)

Alignment annotations align one or two primitives with respect to
a connected primitive’s symmetry sheet. If only one primitive is
chosen to be aligned, it is translated so that its attachment origin
(defined in Section 5) lies on the symmetry plane (Figure 15, top
row). If two primitives are chosen to be aligned, they are translated
so that their attachment origins are a reflection of each other with
respect to the symmetry sheet (Figure 15, bottom row).

align one
y
symmetry sheet
@Ilgn IWOS ! g

Figure 15: Top row: Aligning one primitive on another’s symmetry
plane. Bottom row: Aligning two primitives with respect to an-
other’s symmetry plane. (The dark connection curve connects back

faces.)

Several annotations mark equal geometric measurements. Same-
length annotations mark two or more primitives as having the same
long axis length, for an ellipsoid, or 3D spine length, for a gen-
eralized cylinder. Users mark primitives, and same length mark-
ings, familiar from geometry textbooks, appear along the primi-
tives’ lengths (Figure 16). Note that the primitives in the interac-
tion view do not change; in general, primitives are placed to match

a guide image.
D O 5 @ O
()¢ E—DC)

Figure 16: A same-length annotation.

Same-tilt annotations mark two or more cross-sections as having
planes whose tilt angles with respect to the image plane are the
same. As users mark circular cross-sections, angle markings, fa-
miliar from geometry textbooks, appear near the center of the titled
cross-sections (Figure 17).

OAVRQUANY

Figure 17: A same-tilt annotation.

Same-scale annotations mark two or more cross-sections as hav-
ing the same scale. The arrows spanning the diameter of the chosen
cross-sections are marked with familiar same length markings (Fig-
ure 18).

DO+ O

Figure 18: A same-scale annotation.

5 Implementation

In this section, we describe how we build a 3D model from user
input. Because we assume that images are globally inconsistent,
some primitives’ parameters may contradict annotations: for exam-
ple, the user may indicate that two legs have equal length, yet the

o

a(u y(1)
d‘ S)

Figure 19: Notation introduced in Section 5.1.

primitives defining the legs do not. Because annotations provide
semantic information the user knows to be true, annotations take
precedence over primitive parameters set using handles.

Annotations are applied in the following order: (1) same-scale (2)
same-tilt (3) connection curves (4) same-length (5) alignment (6)
mirror. Same-scale and same-tilt annotations modify the shape of
primitives; connection curves position primitives; same-length and
alignment annotations adjust the shape and position of primitives;
and mirror annotations create additional, aligned instances of prim-
itives.

The annotations marking equal geometric measurements com-
mute with respect to each other, but must be applied before the
symmetry-related annotations (alignment and mirror). Connection
curve annotations are drawn on primitives’ original 2D shapes; they
should be applied as early as possible, once primitives’ 3D shapes
are known. Same-scale and same-tilt annotations cause complex
changes to primitives’ 3D shapes which would invalidate a pre-
viously applied connection curve. Same-length annotations cause
comparatively larger changes to primitives’ 2D shapes and simpler
changes to primitives’ 3D shapes. These simpler changes straight-
forwardly also apply to the depth placement induced by previously
applied connection curves.

5.1 Primitives

Generalized cylinders. A generalized cylinder is defined by a 3D
spine curve ¥(t) (t € [0, 1]), a cross-section scale function s(z), sym-
metry directors d(z), and closed, 2D cross-section curves 04 (u) =
(o} (u), 0 () (u € [0,1]). The simplest definition of a generalized
cylinder’s surface is ¢(u,t) = y(¢) +s(z) ((xll (w)d(t) + Oclz(u)dL (I)),
where d(t) is the vector perpendicular to both the spine’s tangent
and the symmetry director (Figure 19). Unfortunately, if the curva-
ture of y(z) is high compared to the cross-section scale, this defini-
tion will cause the surface to pinch and self-intersect. To eliminate
this problem, we use integral curves along a smoothed distance field
[Peng et al. 2004] to offset the cross-sections, instead of straight
lines perpendicular to ¥(¢). To obtain the 3D position for a cross-
section point o;(«), we move along the (curved) integral line of
the smoothed distance function starting at point ¥(¢), with an initial
direction along o (u)'d(t) + oy (u)d™* (t), by distance |04 (u)|. (This
computation is described in more detail in [Peng et al. 2004].) Con-
ceptually, this process corresponds to bending and compressing the
planes of cross-sections to avoid self-intersections.

The user’s out-of-view-plane-tilted cross-sections imply sparse tan-
gent constraints on y(¢). Given these constraints and the user-
specified 2D spine curve, we find smoothly varying z coordinates
for y, minimizing [(Ay(r))>dt with respect to the z coordinate of 7.
Similarly, we find a smoothly varying scale function s(¢) given the
user’s sparse scale constraints, as well as smoothly varying symme-
try directors d(¢) and cross-section curves o (u).

Finally, we attach end-caps in a tangent continuous manner. Let eg
be the end-cap protrusion at y(0). We extend the surface by sweep-
ing the cross-section at the end in the direction tangent to (with-
out loss of generality) y(0); we scale these cross-sections by the y
value of a cubic Bézier curve whose tangent at its start is parallel to
(1,5'(0)) and whose y value falls to O at x = ey. The four control

pOthS are (O7S(O)), (6707.9(0) + S’(g)eo)7 (eo7 S(0>+;’(0)€0)’ (6070).

Spine deformation is implemented using Laplacian curve editing
[Sorkine et al. 2004]. The spine is either deformed directly or, more
commonly, during cross-section scale manipulation, when it is con-
strained to pass through the center of the cross-section. (During
cross-section scale manipulation, one of the cross section’s silhou-
ette points remains fixed while the other follows the mouse.)

Ellipsoids are implied by the 2D ellipse and the out-of-view-plane
tilt of the circular cross-section. (The ellipsoid’s two shorter axes
have the same length as the ellipse’s short axis and span the tilted
cross-section’s plane; the long axis is perpendicular to the tilted
cross-section with length such that the ellipsoid’s silhouette projects
to the 2D ellipse.)

5.2 Annotations

Connection curves are user-drawn 2D curves f(¢) (r € [0,1])
whose projection onto the surfaces of two shapes we wish to be
identical; in other words, we wish for the shapes to intersect each
other along the projection of 8. Let Py and Q be functions which
project a point in the image plane to a point on the front of the first
and second shapes, respectively. Allowing for translation of the
surfaces in z (our depth coordinate), we minimize

/01 [Py (B(1)), — 0y (B(r), +¢c]ar

with respect to ¢, the relative offset between the two shapes. We
assume that Q has already been fixed in z and translate P by ¢
in the z direction. When dragging the intersection curve, ¢ =
Qf(a); — Pr(a),, where a is the image-plane point under the mouse.
A depth-first search is used to ensure that we only translate each
shape in depth once. We do not support multiply-connected graphs
of primitives.

Mirror annotations. To implement mirror annotations, we dupli-
cate and then reflect the 3D shape of a primitive n (and those of its
attached primitives) across the symmetry plane of another primi-
tive m. In case of a symmetry sheet, we find the closest point on the
sheet to n’s attachment origin and use the tangent plane there as the
symmetry plane. A primitive’s attachment origin is either its center
or, in the case of a generalized cylinder, one of the 3D endpoints
of its spine, whichever is closest (in 2D) to the connection curve
attaching the primitive to m.

Alignment annotations. To implement alignment annotations, de-
scribed in Section 4.1, we find the smallest satisfying translations
in a least squares sense. In case the alignment is with respect to
a symmetry sheet, we simply average the tangent planes for each
to-be-aligned primitive’s attachment origin, just as with mirror an-
notations.

Same scale, tilt, and length annotations. The congruency annota-
tions are all implemented similarly. A same-scale annotation marks
a set of cross-sections as having the same scale. To satisfy this con-
straint, every cross-section in the set is simply assigned the average
scale of the entire set. Same tilt angle annotations are implemented
similarly, averaging angles. Same length annotations are also im-
plemented similarly; changing the length of a 3D spine curve or el-
lipsoid axis simply scales the 2D spine curve or corresponding 2D
ellipse axis. However, when scaling a primitive, attached primitives
are also translated so as to remain connected.

6 Results

We have used our interface to generate models from a variety of
found 2D images. These are shown in Figures 20 and 21 and in
the accompanying video. A typical modeling session lasted less
than ten minutes (longer for the more complex models shown in
Figure 21). Results created by user testers are presented in Sec-

tion 7. Source material included drawings from a children’s book,
user-created 2D drawings, concept artwork, and cartoons.

Models creating with our system contain structural information use-
ful in a variety of applications. This information includes spines,
the location of joints, and a mesh whose parts are segmented into
distinct connected components. Furthermore, annotations encode
symmetries in the model and lengths which should remain equal
when, e.g. deforming the model. One use for symmetry informa-
tion is automatic propagation of mesh refinement performed in a
surface editing tool such as a 3D sculpting tool. The spines and
joints can be used for animation.

7 Evaluation

We have found it easy to create a variety of models consisting of
rotund and tubular areas, and, through the use of non-circular cross
sections, flat shapes such as ears. When tilting cross section, we
find it necessary to verify the results in the 3D view. This is consis-
tent with [Koenderink et al. 1992], in which humans are shown to
make (consistent) errors when estimating the magnitude of surface
slopes. (It is perhaps worth noting that tilting circular cross sec-
tions is reminiscent of the gauge figures adjusted by subjects in the
experiment described in [Koenderink et al. 1992].)

We performed a small, informal user study, consisting of seven peo-
ple, three of whom had 2D artistic experience. None of the subjects
had significant 3D modeling experience, but five were familiar with
3D manipulation concepts. After a 15 minute training session, users
were able to create their own models, several of which are shown
in Figure 22. (One user struggled with a drawing whose point-of-
view aligned with primitives’ spines; this limitation is discussed in
Section 8, and the drawing can be found in the auxiliary materials.)
Users unfamiliar with 3D manipulation concepts were significantly
slower, however, but reported feeling more comfortable over time.

We also performed a comparison study, consisting of seven people,
between our system and FiberMesh [Nealen et al. 2007]. Fiber-
Mesh was modified to display an underlying guide image and to
have a second side-by-side view; both views had a button to re-
set the view parameters. Subjects were asked to create a 3D model
from a 2D illustration in each system and to work until satisfied. All
subjects received the same image. Half were randomly assigned to
use our system first. Before using each system, subjects were given
15 minutes of training, which consisted of a brief video and hands-
on, guided experimentation. Throughout the study, subjects were
encouraged to “think out loud.” The example illustration and data
collected from the comparison study can be found in the auxiliary
materials.

Most subjects had casual 2D drawing experience, were familiar
with 3D manipulation concepts, and had no 3D modeling experi-
ence. On average, subjects spent 29 minutes in our system and 31
minutes in FiberMesh until task completion. When asked to state
an overall preference, five subjects preferred our system, one pre-
ferred FiberMesh, and one reported no overall preference. Several
subjects noted their satisfaction at being able to directly trace sil-
houettes in FiberMesh, but found the depth placement and orienta-
tion difficult to control for all but the initial shape. Multiple subjects
remarked that the symmetry-related annotations were a great bene-
fit and that they would have liked to have had them in FiberMesh.

Our informal and comparison studies found that, overall, users
reported satisfaction at creating 3D models from their sketches
or illustrations, and comfort with our primitives which resembled
shapes in 2D drawing programs. Users reported understanding and
liking tilting cross sections, but noted that they verified their ma-
nipulations in the 3D results window. (In the comparison study,
some users did not tilt any cross sections outside of training.) Con-
nection curves were similarly received, but many users would have
benefited from a more simply mapped depth control (e.g. mapping

Figure 20: Models created using our interface. These models took
an average of 15 minutes to create. Primitives and annotations
are shown on the left, and the resulting model from the same an-
gle and a different angle is shown in the middle and on the right.
The first six source images are [Vilppu 1997], (© Alex Rosmarin,
[Kako 1973], [Kako 1973], (© Alex Rosmarin, and (©) Alex Ros-
marin. The last source image is (©) Chris Onstad.

Figure 21: More complex models created using our interface.
These models took on the order of 30 minutes to create. Gener-
alized cylinders were used everywhere except the characters’ noses
in rows 1 and 3, where ellipsoids were used. In each row: the
guide image; the primitives and annotations, the resulting model
from the same and a different angle. The guide images in each row
are (© Alex Rosmarin; (©) Kei Acedera, Imaginism Studios 2008;
[Blair 1994]; and (© Bjorn Hurri, www.bjornhurri.com.

the mouse’s y position to depth). All annotations were used during
testing, but not uniformly. Some users preferred to adjust primi-
tives manually until they achieved the desired result. Most users
appreciated the symmetry-related annotations (mirroring and align-
ment) for their efficiency (relative to duplicating effort and manual
tweaking).

8 Conclusion, Limitations, and Future Work

We have presented an interface for 3D modeling based on the idea
of annotating an existing 2D sketch. Although many 2D drawings
have no consistent 3D representation (Section 3), with a small de-
gree of training, even novices are able to create 3D models from 2D
drawings. Our interface eliminates the need for constant rotation
inherent to many previous sketch-based modeling tools, which pre-
cludes users from matching their input to a guide image. Our prim-
itives and annotations are structured and persistent, and provide se-
mantic information about the output models useful in a variety of
applications. An additional benefit of our approach is that the en-
tire modeling process is visible in a single, static 2D image, which
makes it easy to explain and learn how to create a given model.

While we are able to create a variety of models using our existing
primitives and annotations, our approach is not without its limita-
tions. First, our existing primitives are limited to free-form sur-
faces. We cannot model surfaces with edges or relatively flat sur-

Figure 22: Models created by first-time users. The primitives and
annotations are shown on the left, and the resulting model from the
same angle and a different angle is shown in the middle and on the
right. From top to bottom: a cartoon character (20 minutes); a
monster (10 minutes); a vampire (10 minutes); a cartoon charac-
ter from [Nealen et al. 2007] (20 minutes); a figure from [Vilppu
1997] (30 minutes). The monster and vampire images were drawn
by users.

faces. Second, our interface cannot be used when a drawing’s point-
of-view aligns with primitives’ spines or long axes, projecting them
to (or nearly to) a single point. Third, our interface is not appro-
priate for adding fine-scale details. For this task, models created in
our system can be refined with a displacement editor. Fourth, it is
not possible to do away with a 3D view altogether. The 3D view is
necessary for verification; it is consulted interactively when manip-
ulating out-of-image-plane tilt handles and connection curve anno-
tations. Fifth, our interface has operations which feel like modeling
rather than sketching, and it takes some training to learn the 2D-
to-3D mapping. Sixth, we provide no way to color or texture 3D
models, even though drawings may have been colored. Seventh,
we do not allow cycles of connection curves, which are useful in
some cases (for example, Figures 20, second row, and 21, top row).

We see our current interface as an initial step in the direction of
structured, two-dimensional 3D modeling. In the future, we plan
to create primitives and annotations for precise CAD modeling,
for other commonly used free-hand drawing primitives, for rela-
tively flat shapes, and for additional geometric relationships. We
also foresee annotations for specific applications, such as annotat-
ing primitives’ motions for animation and rigidity for deformation.
We would like to assist users matching curves in an image, as in
[Tsang et al. 2004]. We would also like to color or texture primi-
tives based on the underlying image. Our system could be extended
to add geometry to an existing 3D model, by sketching over the
model on a 2D overlay plane and then placing primitives and anno-
tations on the overlaid sketch. In some cases, support for oblique
projections would allow for alternative, possibly less surprising 3D

interpretations of user input. Finally, a comprehensive user study
comparing our system to many other systems, with a large number
of users at multiple skill levels, remains to be performed.

References

ADOBE, 2007. Illustrator. http://www.adobe.com/products/illustrator/.

AGRAWALA, M., ZORIN, D., AND MUNZNER, T. 2000. Artistic
multiprojection rendering. In Proceedings of the Eurographics
Workshop on Rendering Techniques, 125-136.

ANDRE, A., SAITO, S., AND NAKAJIMA, M. 2007. CrossSketch:
Freeform surface modeling with details. In Eurographics Work-
shop on Sketch-Based Interfaces and Modeling (SBM), 45-52.

AUTODESK, 2009. Maya. http://www.autodesk.com/maya.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2008. ILoveS-
ketch: As-natural-as-possible sketching system for creating 3D
curve models. In Proceedings of the ACM symposium on User
interface software and technology (UIST), 151-160.

BLAIR, P. 1994. Cartoon Animation. Walter Foster, Laguna Hills,
California.

BLOOMENTHAL, J., Ed. 1997. Introduction to Implicit Surfaces.
Morgan Kaufmann, San Francisco, California.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRET-
TAKIS, G. 2009. Structure preserving reshape for textured ar-
chitectural scenes. Computer Graphics Forum 28, 2, 469—480.

CHEN, X., KANG, S. B., XU, Y.-Q., DORSEY, J., AND SHUM,
H.-Y. 2008. Sketching reality: Realistic interpretation of archi-
tectural designs. ACM Transactions on Graphics 27,2, 11.

CHERLIN, J. J., SAMAVATL F., SOUsA, M. C., AND JORGE, J. A.
2005. Sketch-based modeling with few strokes. In Proceedings
of the Spring Conference on Computer Graphics, 137-145.

CORDIER, F., AND SEO, H. 2007. Free-form sketching of self-

occluding objects. IEEE Computer Graphics and Applications
27,1, 50-59.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Mod-
eling and rendering architecture from photographs: A hybrid
geometry- and image-based approach. In Proceedings of ACM
SIGGRAPH, 11-20.

DORSEY, J., XU, S., SMEDRESMAN, G., RUSHMEIER, H., AND
MCMILLAN, L. 2007. The mental canvas: A tool for concep-
tual architectural design and analysis. In Proceedings of Pacific
Graphics, 201-210.

EGGLI, L., Hsu, C.-Y., BRUDERLIN, B. D., AND ELBER, G.

1997. Inferring 3D models from freehand sketches and con-
straints. Computer-Aided Design 29, 2 (February), 101-112.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3D freeform design. In Proceedings of
ACM SIGGRAPH, 409-416.

IGARASHI, T., MoscovicH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation. ACM Transactions on
Graphics 24,3, 1134-1141.

INFOGRAFICA, R., 2009. MetaReyes.
infografica.com/plugins/meta.php.

http://www.reyes-

KAKoO, S. 1973. Karasu no Panya-san. Kaiseisha, Tokyo, Japan.
Pages 18-19.

KALLIO, K. 2005. 3D6B editor: Projective 3D sketching with line-
based rendering. In Eurographics Workshop on Sketch-Based
Interfaces and Modeling (SBM), 73-80.

KARPENKO, O. A., AND HUGHES, J. F. 2006. SmoothSketch:
3D free-form shapes from complex sketches. ACM Transactions

on Graphics 25, 3, 589-598.

KOENDERINK, J. J., VAN DOORN, A. J., AND KAPPERS, A.
M. L. 1992. Surface perception in pictures. Perception & Psy-
chophysics 52, 5, 487-496.

LORAN, E. 1943. Cezanne’s Composition. University of California
Press.

MICROSOFT, 2003. Office. http://office.microsoft.com.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. FiberMesh: Designing freeform surfaces with 3D curves.
ACM Transactions on Graphics 26, 3, 41.

OLSEN, L., SAMAVATI, F. F., COSTA SOUSA, M., AND JORGE,
J. 2008. A taxonomy of modeling techniques using sketch-based
interfaces. In Eurographics State of the Art Reports.

PENG, J., KRISTJIANSSON, D., AND ZORIN, D. 2004. Interac-
tive modeling of topologically complex geometric detail. ACM
Transactions on Graphics 23, 3, 635-643.

PrADOS, E. 2004. Application of the theory of the viscosity solu-
tions to the Shape From Shading problem. PhD thesis, University
of Nice-Sophia Antipolis.

ScHMIDT, R., ISENBERG, T., JEPP, P., SINGH, K., AND
WyVILL, B. 2007. Sketching, scaffolding, and inking: A visual
history for interactive 3D modeling. In Proceedings of NPAR,
23-32.

SCHMIDT, R., SINGH, K., AND BALAKRISHNAN, R. 2008.
Sketching and composing widgets for 3D manipulation. Com-
puter Graphics Forum 27, 2, 301-310.

SINHA, S. N., STEEDLY, D., SZELISKI, R., AGRAWALA, M.,
AND POLLEFEYS, M. 2008. Interactive 3D architectural mod-
eling from unordered photo collections. ACM Transactions on
Graphics 27, 5, 159.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
ROssL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of Eurographics/ACM SGP, 175-184.

THORMAHLEN, T., AND SEIDEL, H.-P. 2008. 3D-modeling by
ortho-image generation from image sequences. ACM Transac-
tions on Graphics 27, 3, 86.

TSANG, S., BALAKRISHNAN, R., SINGH, K., AND RANJAN, A.
2004. A suggestive interface for image guided 3D sketching. In
Proceedings of ACM SIGCHI, 591-598.

VAN DEN HENGEL, A., DICK, A., THORMAHLEN, T., WARD, B.,
AND TORR, P. H. S. 2007. VideoTrace: Rapid interactive scene
modelling from video. ACM Transactions on Graphics 26, 3, 86.

VARLEY, P., AND COMPANY, P. 2007. Sketch input of 3D models:
Current directions. In VISAPP 2007: 2nd International Confer-
ence on Computer Vision Theory and Applications, 85-91.

VILPPU, G. 1997. Vilppu Drawing Manual. Vilppu Studio, Acton,
California.

Wu, T.-P., TANG, C.-K., BROWN, M. S., AND SHUM, H.-Y.
2007. ShapePalettes: Interactive normal transfer via sketching.
ACM Transactions on Graphics 26, 3, 44.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
SKETCH: An interface for sketching 3D scenes. In Proceedings
of ACM SIGGRAPH, 163-170.

ZHANG, L., DUGAS-PHOCION, G., SAMSON, J.-S., AND SEITZ,
S. M. 2001. Single view modeling of free-form scenes. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 990-997.

