
Adaptive Recognition of Implicit Structures in

Human-Organized Layouts

Takeo Igarashi Satoshi Matsuoka

Dept. of Information Engineering, Univ. of Tokyo

takeo,matsu@ipl.t.u-tokyo.ac.jp

Toshiyuki Masui

SHARP Corporation

masui@bird.shpcsl.sharp.co.jp

Abstract

Card-handling using hypertext editor can be a powerful
methodology for generation of ideas or understanding
of complex problems. To support such activity, recog-
nizing implicit structure in the arrangement of cards
would be useful. But, because the structures to be rec-
ognized are by nature ambiguous and highly dependent
on user-speci�c perception, it is di�cult for conven-
tional rule-based spatial parsing algorithm to achieve
this task. We propose techniques for building spatial
parser suitable for �nding such ambiguous structures
based on the mechanics of human perception. More-
over, our parser is adaptively customized to re
ect
a particular user's preferences through an interactive
suggestion process, supported by application of a ge-
netic algorithm.

1 Introduction
Card handling editors[17][9][4] help the users to ar-

range small cards on a display to support intelligent
information management tasks. The cards themselves
contain textual or graphical information, and their
spatial relationships represent the semantic relation-
ships among individual information. Applications in-
clude idea generation, personal information manage-
ment, and virtual blackboard for group discussions.
Layouts that users author in these editors are implic-
itly structured to re
ect their corresponding organiza-
tion of information: for example, in Figure 1a and in
Figure 1b, users perceive three groups in the card dis-
tribution, implicating the division of the given infor-
mation into three categories. In addition, in Figure 1a,
users also see that the upper two groups are interre-
lated more closely than the one at the bottom. These
structures are `implicit' in that there are no explicit
visual cue nor rigid layout constraints that explicitly
determine their structures. Rather, they are deter-
mined by user's notions pertaining to `loose' layout
rules, such as geometric clustering etc., whose crite-
ria di�er among the di�erent users. Thus, it would
be highly bene�cial if the card-handling editor had a
parser that understood such user notions of implicit
structures, recognizing them interactively during the
editing process; for example, users will be saved from
repetitive manipulations of the components of an im-
plicit group. Moreover, the parser might discover the
structure that the user might have missed.

a) Cluster oriented layout
b) List oriented layout

c) A sample of ambiguity

Figure 1: Samples of spatial layouts

However, there are several di�culties in the recog-
nition of such implicit structures. First, these struc-
tures are ambiguous and idiosyncratic. For example,
in Figure 1c, the membership of the gray card cannot
be clearly decided to be the cluster on the left or the
vertical list on the right. To �nd the optimal answer
for such ambiguous cases, the parser must consider
the surrounding context and evaluate the viability of
multiple candidate structures.

Second, user's interpretation of spatial structure
vary widely among the users[11]. One may prefer
dense list-oriented layouts while another may prefer
sparse cluster-oriented layouts, or even their mixture
in hierarchically arranged diagrams. Thus, the parser
must be able to adapt to the preferences of each user.
Finally, the parser should be self-adaptive, since it
would be di�cult for the end-users to directly `tweak'
the recognizer in an intuitive way.

In this paper, we propose a visual parsing strategy
for �nding implicit structures in spatial layouts and
describe our prototype system based on the strategy.
We believe that our system can considerably increase
the usability of card handling editors as well as other
applications.

Our proposal consists of two parts: 1) the Link
Model is a parsing strategy based on the observa-
tions of the human visual system. It recognizes im-
plicit structures by calculating the strength of con-
nections between objects. 2) Automated parameter
tuning mechanism based on Genetic Algorithm facili-
tates the parser to learn from user's editing examples
to adapt to his individual preferences. The prototype
card-handling editor is shown to successfully recog-
nize implicit structures in various layouts, and adapt
to users via background processing.

2 Related Work
We owe much to Shipman et al.'s seminal works on

recognition of structures in spatial hypertexts[16][10].
They investigated spatial layouts that appear in com-
putational and non-computational environments, and
developed a visual parser of implicit structures found
in such spatial layouts. Our target diagrams are of
similar class, and share much of their motivations.
There are some key di�erences, however, and we dis-
cuss them in detail in Section 8.2

Research on visual parsing of visual languages[6],
also deal with spatial layouts of objects, where many
rule based parsing algorithms have been proposed in-
cluding [3], [5], and [7]. Our work is di�erent in that
our intention is to extract emerging structure from free
card layouts, whereas they intend to recover the struc-
ture of visual languages that was constructed based on
a given grammar, which usually embody little ambi-
guity, and do not di�er greatly among di�erent users.
Saund's perceptually supported sketch editor[15] is
closer to our work|to allow users to access to the visu-
ally apparent structures in diagrams|although their
target is pen-based sketches.

In addition, our work is relevant to cluster
analysis[1]. But we can not directly use existing
clustering algorithms, because they only consider dis-
tances between objects and ignore the relationships
to their surrounding contexts. Ad-hoc extension of
current clustering theories, such as mere extension
of de�nition of `distance', would not be su�cient to
describe complex interactions between the links (de-
scribed later).

3 How Do Humans Perceive Object
Structures?

We �rst emphasize that we want the parser to rec-
ognize \what the human visual system perceives" from
diagrams[15]. The majority of existing visual pro-
cessing algorithms discover hidden but concrete struc-
tures that exist in the real world, such as construct-
ing 3D models in 3D-vision recognition. There are
little concrete structures in human organized layouts;
instead, the structures emerge and exist only in the
user's mind. Therefore, our approach is to recognize
structures \as the humans do", considering the visual
and perceptual models of human understanding of ge-
ometrical layouts.

According to Gestalt psychologists, what makes the
human visual systems to perceive objects as collections
are characteristics (called Pragnanz) such as proxim-
ity, similarity, regularity, and so forth[14]. For exam-
ple, in �gure 2a, a human sees three groups of boxes
because the boxes in a group are located in mutual
proximity and are distant from the members of other
groups. This can be said to be the e�ect of proxim-
ity. On the other hand, in �gure 2b, a group of four
boxes aligned in a column may be recognized in which
the deciding factor is regularity that are distinct from
other objects. In the following discussions, we call the
collections derived from proximity clusters and ones
from regularity lists.

We next focus on the bottom-up nature of human

a) Proximity b) Regularity

Figure 2: Characteristics of human perception

A) B)

Identical arrangements exist in both A) and B). One
can see that it is impossible to decide the structure
without considering the surrounding environment.

Figure 3: The need for \Looking Around"

perception. There, objects exist �rst and structures
emerge from the arrangement of objects, not vice-
versa. For example, in Figure 2b, one does not initially
assume the existence of lists and search the layout for
list structures (in a sense this is the rule-based parsers'
scheme). Instead, one �rst perceives regularity in a
local region of a layout and then the list structure is
conceived from the characteristics of the regularity.

An inevitable problem in any recognition is ambi-
guity among multiple possibilities of interpretations.
For instance, in Figure 1c, one may interpret the gray
object to be a member of the vertical list to the right
or that of the cluster to the left. We regard the pro-
cess of selecting the most appropriate interpretation
as the result of interactions among interpretations. In
Figure 1c, the two interpretations con
ict, and the
stronger one survives. As to which is stronger depends
on the surrounding context (see below) and user pref-
erence. For this purpose, wemust allow fuzzy interpre-
tations such as \these objects seem to constitute lists
rather than clusters," rather than distinct true/false
assertion in traditional visual parsing algorithms.

Finally, human beings perceive objects depending
not only on the local arrangements of objects but also
on surrounding context of the objects. For instance,
the four middle boxes are arranged identically in both
Figure 3a and Figure 3b, but humans usually perceive
them to be independent lists in Figure 3a while per-
ceive only a single cluster of objects in Figure 3b. This
observation indicates that parser must look around
the surrounding contexts to recognize the appropriate
structures.

4 Link Model|a visual parsing strat-
egy

Based on these observations, we propose an alter-
native framework for the recognition of implicit struc-
tures called the Link Model. The general formula-
tion of the Link Model is as follows. First, links
are created between the adjacent objects. Second, the
strengths of links are calculated through interactions
among links. The strengths express how clearly the
link's node objects appear to be connected to the user.
Finally, the stronger links are selected and the objects
connected by the selected links are grouped together.

By using the links, we simulate the bottom up
parsing in the human visual system. Each structure
emerges as the result of interactions among the links,
allowing the parser to �nd structures even in some-
what disordered layouts. Then, we simulate the e�ect
of regularity and proximity by strengthening links if
the node objects are lined regularly or located near
each other.

The problems of ambiguity and surrounding con-
text are solved by the interactions among the links.
Links represent interpretations such as \these objects
should be included in a collection," and interactions
among the links correspond to the interactions among
the interpretations. Fuzziness is introduced by using
a very simple fuzzy logic for the parameters of links.
Looking around the surrounding context is achieved
by the interactions and by selecting stronger links in
comparison to the surrounding links.

4.1 Link Creation Process
To realize \to connect adjacent objects by links",

we adopted the following strategy:

(1) Sort the objects by upper-left x-coords.

(2) List the candidate proximity objects for each ob-
ject comparing x-coords of objects.

(3) For each object (which we call the parent object),
the parser checks the objects in the list created in
(2) and creates a link between the parent object
and nearest object in each region. Eight regions
(up, up-right, right, right-down...) cover the all
the surrounding directions around the parent.

With this strategy, we can avoid wasteful calcula-
tions of checking all the combinations of objects. Ex-
periments have shown that this strategy creates per-
ceptually acceptable links(Figure 13). The resulting
diagram is similar to Delaunay diagram (dual trans-
formation of Voronoi diagram[13]), but our strategy
is di�erent in that our algorithm is based on the dis-
tances between rectangles whereas Delaunay diagram
is based on the angles.

In our current implementation, this link creation
process is invoked after every movement of objects in
the editor, whereas the following recognition processes
are called only when the implicit structure needs to be
parsed by invoking click selection(see Section 6). By
adopting this two-phased strategy, system can utilize
the spare time between user's manipulations for adap-
tation, and the parsing delay after the click selection
is signi�cantly reduced(Figure 4).

Mouse cursor is moving.

System creats links.

Links are already
created when user
tries next manupilation.

User has moved
the object.

System utilizes the mouse moving time to create
links.

Figure 4: Mouse moving and Link creation.

Strength

distance0

function1

0distance

1 function2

0

1

1

gap/width

function3

Strength = function1 (distance)
List level = function2 (distance) X function3 (gap / width)

Figure 5: Calculations of strength and list level.

4.2 Strength Calculation Process
Initially, primary calculations are done for each

link: they are strength value that indicates how close
its node objects are and list-level value that refers to
what extent the link can be considered as a list. The
strength value is calculated as a function of the dis-
tance between the node objects and the list-level value
is calculated as a function of the distance and the x-/y-
gaps. These functions are initially de�ned as shown in
Figure 5, but will be `tuned' by the adaptation pro-
cess in Section 5. In addition to these two values, we
assign a link type to each link. Link type is de�ned as
vertical list or horizontal list if the list-level value
is not zero, and de�ned as cluster otherwise. We call
the links with list type list-links and those with clus-
ter type cluster-links. Lists are also categorized to be
horizontal or vertical.

After the primary strength calculation, interactions
between the links occur. The basic policy in designing
the interaction algorithm is as follows.

� To strengthen the list-links to detect lists in the
layouts as in Figure 2b.

� However, links should not be overemphasized as
being list-links if the list is not distinct in a clus-
ter, in order to avoid erroneous recognition as
shown in Figure 6.

The interaction process proceeds as follows:

(1) In the �rst interaction process, each link's list-
level value is reduced if it is inadequate to con-
sider the link to be the a list-link, in order to
prevent erroneous grouping as shown in Figure 6.
Figure 7 shows the inadequate cases: in both
cases, the thick links are initially considered to
be list-links due to the spatial relation of their

All these objects are expected to
belong to a single cluster.
But....... Such inadequate collections emerge

if parser make too much of lists
.

.

Figure 6: Example of an inadequate parse.

a) impossible links.
We must destroy one
or both of them.

Conflicting
links

Conflicting
links

b) list is not distinct
 because of the existence of
 another object.

Figure 7: Example of inadequate list-links

node objects, but should not be perceived as list-
links because of the interference of surrounding
objects. As a result, the algorithm reduces the
list-level value of these links by a parameterized
factor.

(2) In the second interaction process, each link's
strength value is re-calculated through repression
and reinforcement. The primary purpose of this
process is to detect the regularity in the arrange-
ment as shown in Figure 2b. Actual de�nitions
are as follows:

� The de�nition of �nal strength value for a
cluster-link:
strength
� (1 + (cluster-repression-rate

� interference))

� The de�nition of �nal strength value for a
list-link:
strength
� (1 + list-reinforce-rate

� list-level
� (1 + interference-rate

� interference))

Where interference is obtained in the process of
the primary checking of adjacent links. The de�-
nition of interference is somewhat complicated
to go over in detail, but the main scheme is shown
in Figure 8: interference is given minus values
by repressions by adjacent links of di�erent types
and is given positive values by reinforcements by
adjacent links of the same type.

...Currently processed links.

List-links with different
types repress each other.

Cluster-link
repress the list link.

List-links of the
same type
reinforce each other.

List-link represses
the cluster-link.

List-link represses
the cluster-link.

(Those checks are performed for all the links, and then
 the strength values of the links are calculated based on this primary check.)

Figure 8: Interactions between links

Horizontal link.

Vertical link.(7)

(6)

Figure 9: The supplemental procedure: enumerate the
horizontal and vertical links and decides which is a
substructure of the other.

4.3 Link Selection Process
After all the strength values are calculated, the

stronger links are selected and the objects connected
to these selected links are grouped together. The judg-
ment whether the link is selected or not is done by
comparing strength of links connected to each object.
If certain links are considerably weaker than the other
links connected to the object, the weaker links are
eliminated. If there is no distinct di�erence of strength
values among the links connected to an object, the de-
cision is delayed. Such links will be eliminated if one of
them is marked as weak at some other node. Here, the
cuto� value is parameterized subject to adaptation.

In addition, there is a supplementary procedure at
the end of the parsing process. This procedure decides
which lists are primal in combined list collections, hor-
izontal or vertical. In an arrangement like Figure 9,
the algorithm cannot recognize that the diagram is a
horizontal list consisting of vertical lists. Currently, we
simply count the numbers of links belonging to each
list type, and the type that has more links is selected
as primal. For example, in Figure 9, there are 7 ver-
tical list links vs 6 horizontal list links, so the system
selects vertical list links as primal and the horizontal
links as secondary.

Throughout these procedures, there are numerous
fuzzy parameters that in
uences the outcome of the
algorithms, such as the functions shown in Figure 5,
control functions in the interactions, and cuto� value
of the weak links in the selection, etc. These param-

eters are optimized for each user by the automatic
tuning mechanism described in the next section.

5 Parameter Tuning with Interactive

Genetic Algorithms
5.1 The Need for Adaptation

Adaptation in user interface is helpful in interacting
e�ciently with multiple users with wide-range of pref-
erences. In card handling editors, a user may prefer
list oriented layout whereas another may prefer stack
oriented layout, etc. Moreover, the di�culty in the
parsing of layouts is that di�erent users can perceive
di�erent structure in an identical layout. Therefore
adaptation is not only helpful but essential in �nding
desirable structures for each user.

Another requirement is self-adaptation. It is almost
impossible to adapt parsing algorithms to each user by
`tweaking' the parameters by hand, because the algo-
rithm is too complicated, embodying numerous inter-
dependent parameters. Therefore, the parser should
learn from user's manipulations and adapt itself auto-
matically. Such automatic learning will free develop-
ers from the annoying burden of repetitive tuning (In
fact, it is already very di�cult for us to tune param-
eters by hand) and enables the on-line customization
according to `implicit' preferences of each user.

5.2 Interactive Adaptation and GA
As mentioned earlier, our parsing algorithm em-

bodies numerous (currently thirty) parameters that
decide the behavior of the algorithm, and adaptation
is achieved by tuning these parameters. Adaptation
is performed interactively. We constructed the tuning
process as a background process that works indepen-
dently from the main editor process and constantly re-
ceives the record of user's manipulations and returns
the re�ned parameter set.

We used genetic algorithm(GA)[2] to achieve au-
tomatic parameter tuning instead of other numerical
search algorithms for the following reasons: �rst, the
search space of our problem contains many local so-
lutions and it is di�cult for heuristic algorithms like
hill-climbing to �nd the best solution. Second, genetic
algorithms are suitable for constant modi�cations of
evaluation functions. In our system, the evaluation
function changes constantly at every user's manipu-
lation. Other search algorithms maintain only one
solution and cannot respond well to such frequent
changes of evaluation functions. Genetic algorithms
can �nd the modi�ed solution relatively fast because
they maintain many chromosomes that cover the so-
lution space.

5.3 Implementation of GA-based Param-
eter Tuning Mechanism

5.3.1 General Architecture

Before we describe the actual tuning process, we
present the general architecture of the system as il-
lustrated in Figure 10. If a user �nds the recognized
structure to be inadequate, he enters the modi�ca-
tion mode. There, links are visually displayed and
he can connect or disconnect the objects by clicking

on the links (Figure 13). Upon leaving the modi�ca-
tion mode, the result is passed to the tuning process
as a new training sample. The tuning process then
tries to �nd a temporary solution for the sample. It
is `temporal' in that it only satis�es the new sample
and doesn't necessarily satisfy the entire set of train-
ing samples; nevertheless it is necessary to facilitate
quick interactive response. The truly optimal solution
for the entire sample set will be searched for later in
general search routine. When a temporary solution
is found, or a better solution is found in the general
search, the new parameter set is passed to the editor
and the editor immediately adopts the new parameter
set.

5.3.2 Details of Tuning Algorithm

During the tuning process, the parameter sets are rep-
resented as chromosomes. The system maintains sixty
chromosomes, each of which has a score that indicates
how well the parser recognizes desired structures in
the samples with the given parameter set of the chro-
mosomes. The de�nition of the evaluation function is
as follows.

1 - 0.5
� (number-of-missed-links

+ number-of-wrongly-selected-links)
/ number-of-desired-links

The system searches for the optimal chromosomes
by creating new chromosomes through mutation and
crossover as is with standard genetic algorithms. The
di�erence is that our tuning process continues on re-
peatedly as user interaction proceeds.

The tuning process has three stages that executes
in turn during user interactions. The general search
routine searches for the optimal solution for the en-
tire set of training samples. If an optimal solution is
found, the maintenance routine starts, and the system
prepares for the next sample by increasing the variety
of chromosomes. If the system receives a new sam-
ple, the general search and maintenance routines stop,
and the sub-search routine starts, which searches for
the temporary solution as we have described. General
search routine starts again after a temporary solution
is found.

In practice, various deliberate strategies based on
close observations of the problem domain are required
to make these search algorithms work e�ciently. Due
to space limitations, we intend to describe the salient
details of our search algorithms in another paper.

6 Prototype system
Our prototype system is written entirely in Scheme-

Tk. Currently, the user can only manipulate the ar-
rangement of cards on the display and is not allowed to
write informations on the cards, but it is su�cient for
testing the capabilities of our parser. The recognized
structure is used to move, rearrange, and delete cards
as a collection. Recognition process is called at user's
request of performing these activities, and shows the
recognized structure to user. If the result is not what
the user intended, he can modify the recognition visu-
ally, and the modi�cation is used to re�ne its param-

Initialization

Static Search

Neighbor Search

Sub Genetic Algorithm Routine

Reproduction & Evaluate

Main Search Routine

Reproduction & Evaluate

Maintenance Routine

Initialization

Editor Pocess

New sample

Refined parameter set Temporary parameter set.

Temporary solution is obtained.

Optimal solution is
obtained.

Accept a new sample.

When chromome
 is improved.

Sub-Optimization Routine

Figure 10: Overview of the automated parameter tun-
ing mechanism.

...grabbed object

Click!Click!

Figure 11: Description of hierarchical click selection.

eters of the parser. Parameter tuning process runs as
background task and searches for the best parameter
set while the user continues to use the editor.

In order to navigate through a hierarchy of recog-
nized implicit structures, we employed multiple click
selections as seen in text editors, where a single click
selects a single object pointed by the mouse cursor,
and double click selects the primary `collection' that
contains the object. Each successive click selection se-
lects the next level of collection in the hierarchy. Fig-
ure 11 shows the example of such hierarchical click
selections. Currently clicks are made on button 1
for selection and dragging, while button 2 invokes a
menu bar, where the user can select several commands
that work on collections: rearrangement, deletion, and
modi�cation(See Section 5.3.1).

We show brief examples using our system. Fig-
ure 12 shows a diagram created in our editor and the
recognition that occurs with a triple click selection of
button 1, plus a menu bar. Figure 13 shows the drag-

ging of the recognized collection, and the modi�cation
mode, which appears when the user selects the mod-
i�cation command. All the links created in the link
creation process are shown, and the thick links are the
selected links. Users can toggle the selected links by
clicking on them.

7 Experimental Results
Figures 14-16 show some examples of interactive

recognition by our prototype. These layouts are rec-
ognized by the initial parameter set before adaptation.
This shows that the perceptually desirable structures
are parsed correctly by our Link Model for these
simple examples with less ambiguity. Parsing time is
a few seconds on a SparcStation 20, which allows the
interactive use of the recognition mechanism.

In Figure 17 we illustrate the e�ect of parameter
tuning. In this example, the parser fails to recognize
the list structure, which is correctly recognized after
proper adaptation. The temporary solution of adap-
tation is found in about thirty seconds and the global
solution is found in about forty minutes. In this case,
the training samples consist of 7 example layouts like
the ones in Figure 12. Generally, temporary solutions
are found in about several tens of seconds, but it cur-
rently takes orders of an hour to �nd global solutions
for several training samples in our current implemen-
tation, which is based on the Scheme-Tk interpreter.

8 Discussions
8.1 Improving Adaptation Speed

As we have described, our parameter tuning pro-
cess can �nd an optimal solution for a small number
of samples within practical time with a combination
of local and global GA-based optimization and back-
ground processing during user interaction. However,
it is not fast enough to �nd a more general solution
for a signi�cant number of samples (hundreds or thou-
sands), which may be required to represent users' pref-
erences properly in all conceivable situations. There-
fore, we must substantially improve the speed perfor-
mance of our tuning mechanism. Employing compilers
instead of Scheme-Tk will dramatically improve per-
formance, but algorithmic improvement is also deemed
essential.

8.2 Comparison with Related Work
Our link model is advantageous over conventional

rule-based algorithms for recognizing implicit struc-
tures in that our parser can deal with ambiguous lay-
outs more e�ectively. For example, �nding lists in
layouts like Figure 3a but not �nding them in Fig-
ure 3b, would either be impossible or very di�cult. It
is also subject to easier adaptation, because one need
not discretely add new rules, but rather can resort to
parameter tuning which is a better-known optimiza-
tion technique.

Compared to Shimpan et.al.'s work, the main dif-
ferences stem from the slight di�erences in the target
application. Shipman's algorithm facilitates more dis-
tinct specialists, each of which specializes in recogniz-
ing a certain class of structures, and parses the entire
layout in batch, �rst by stochastically analyzing the

Figure 12: Examples of our prototype: diagram before parsing and the result of recognition.

Figure 13: Examples of our prototype: dragging of a collection and modi�cation mode.

Figure 14: Examples: recognition of lists and clusters.

Figure 15: Examples: the e�ect of surrounding context

Figure 16: Examples: distinction between lists and a variety of layouts

Figure 17: Examples: modi�cation and adaptation.

entire diagram so as to decide the ordering of the ap-
plication of specialists, and then applying each one
in turn. As a result, Shipman's algorithm (1) recog-
nizes more types of structures compared to ours, such
as stacks and composites using prede�ned specialists,
and (2) and is more suitable for diagrams that have al-
ready been systematically constructed to structurally
represent user's knowledge.

By contrast, our algorithm targets more ambiguous
layouts, aiding the users in real-time construction and
manipulation of implicit structures. Aside from lists,
we handle clusters which are not available in Ship-
man's system. Clusters can represent rougher cate-
gorization compared to more speci�c structures such
as stacks, allowing the
exible use of layouts[8]. Also,
because we have a bottom-up algorithm with high lo-
cality, we believe that our algorithm runs su�ciently
faster compared to theirs, although no implications on
speed have been given in their description. Such speed
is necessary for direct application to interactive edit-
ing, which is rather a side-issue for Shipman's system,
where the entire diagram is parsed in batch.

As a future work, it would be interesting to investi-
gate the possibility of combining the bene�ts of both
algorithms. Instead of simple list and cluster links,
we could de�ne the relationships between the parses
of locally-applied specialists in Shipman's algorithm.
The specialists will be parameterized and will mutu-
ally a�ect each other by repression or reinforcement.
It is not clear whether such extension would be viable,
but if successful, we would have the additional bene-
�t of being able to e�ectively apply the specialists in
di�erent orders in di�erent locations within the same
diagram depending on their local layout context.

9 Conclusions
To enhance graphical human computer interac-

tions, it is necessary for computer to understand the
implicit user-created structures embodied in visual in-
formation. We have developed a parsing algorithm
that recognizes the implicit structure in human orga-
nized spatial layouts, and applied it to a prototype
card handling editor. The main idea is to construct a
visual parser based on the observations on human per-
ception mechanism, and furthermore have the parser
be self-adapting to user preferences using genetic al-
gorithm. We found that our Link Model is e�ective
in recognizing ambiguous structures, and the parame-
ter tuning mechanism achieved adaptation for a small
number of samples.

There are many possibilities that lie ahead. In the
parsing algorithm, we must extend the algorithms to
handle other graphical cues such as the attributes of
the objects. In the tuning algorithm, improvement in
speed is necessary to realize practical adaptation. Be-
sides these extensions and improvements, urgent work
is to validate the utility and the e�ectiveness of our
system with proper user-testing.

References
[1] Anderberg, M.R., \Cluster Analysis for applica-

tions", Academic Press, New York, 1973.

[2] Davis,L. \Handbook of Genetic Algorithms", Van
Nostrand Reinhold, New York, 1991.

[3] Golin,E.J., \Parsing Visual Languages with Pic-
ture Layout Grammars", Journal of Visual Lan-
guages and Computing, no. 2, 1991, pp. 371-393.

[4] Kawai,K. et al., \Preliminary Experiments with
a Distributed and Networking Card-handling Tool
Named KJ-Editor"(In Japanese), Journal of Japan
Society for Arti�cial Intelligence, vol.8, no.5, 1993,
pp. 583-592.

[5] Helm,R., Marriott,K., Odersky,M., \Building Vi-
sual Language Parsers", Proc. of CHI'91, 1991, pp.
105-112.

[6] Lakin,F., \Spatial Parsing for Visual Languages",
In Visual Languages," Plenum, 1986, pp. 35-85.

[7] Maeda,T., "Grammar Customization for Adaptive
Spatial Parsing"(in Japanese), WISS'93, Osaka,
Japan, 1993, Kindai-Kagakusha, pp. 257-264.

[8] Mander,R., Salomon,G., Wong,Y.Y. \A `Pile'
Metaphor for supporting Organization of Informa-
tion." Proc. of CHI '92, 1992, pp. 627-634.

[9] Marshall, C.C., Halasz, F.G., Rogers, R.A.,
Janssen, W.C., Jr. "Aquanet: a hypertext tool to
hold your knowledge in place", Proc. of Hypertext
'91, 1991.

[10] Marshall, C.C, Shipman, F.M. "Searching for the
Missing Link: Discovering Implicit Structure in
Spatial Hypertext", Proc. of Hypertext '93, 1993.

[11] Masui,T., \Graph Object Layout with Interac-
tive Genetic Algorithms", Proc. of the 1992 IEEE
Workshop on Visual Language, IEEE Computer
Society Press, 1992, pp. 74-80.

[12] Montana,D., \Automated Parameter Tuning for
Interpretation of Synthetic Images",
Davis.L. \Handbook of Genetic Algorithms", Van
Norstrand Reinhold, New York, 1991.

[13] Okabe,A., Boots,B., Sugihara,K.,
Spatial Tessellations|Concepts and Applications
of Voronoi Diagrams, John Wiley, London, 1992.

[14] Roth,I., Frisby,J.P., \Perception and Representa-
tion : A Cognitive Approach", The Open Univer-
sity, 1986.

[15] Saund,E., Moran,T.P, \A Perceptually Sup-
ported Sketch Editor", Proc.of UIST'94, 1994, pp.
175-184.

[16] Shipman,F.M., Marshall,C.C., Moran,T.P.,
\Finding and Using Implicit Structure in Hu-
man Organized Spatial Layouts of Information",
Proc.of CHI'95, 1995, pp. 346-353.

[17] Shipman,F.M., Marshall,C.C.,
Coombs,J.H, \VIKI: Spatial Hypertext Support-
ing Emergent Structure", Proc.of ECHT'94, 1994.

