
Interactive Beauti�cation:

A Technique for Rapid Geometric Design

yTakeo Igarashi, ySatoshi Matsuoka, zSachiko Kawachiya, yHidehiko Tanaka
yDept. of Information Engineering, zDept. of Information Science

The University of Tokyo
7-3-1 Hongo, Bunkyoku, Tokyo, Japan

+81-3-3812-2111 ext. 7413
ftakeo, tanakag@mtl.t.u-tokyo.ac.jp, fmatsu, sachikog@is.s.u-tokyo.ac.jp

ABSTRACT

We propose interactive beauti�cation, a technique for
rapid geometric design, and introduce the technique and
its algorithm with a prototype system Pegasus. The mo-
tivation is to solve the problems with current drawing
systems: too many complex commands and unintuitive
procedures to satisfy geometric constraints. Interactive
beauti�cation system receives the user's freestroke and
beauti�es it by considering geometric constraints among
segments. A single stroke is beauti�ed one after another,
preventing accumulation of recognition errors or catas-
trophic deformation. Supported geometric constraints
includes perpendicularity, congruence, symmetry, etc.,
which were not seen in existing freestroke recognition
systems. In addition, the system generatesmultiple can-
didates as a result of beauti�cation to solve the problem
of ambiguity. Using the technique, the user can draw
precise diagrams rapidly satisfying geometric relations
without using any editing commands.

Interactive beauti�cation is achieved by three sequen-
tial processes; 1) inferring underlining geometric con-
straints based on the spatial relationships among the
input stroke and the existing segments, 2) generating
multiple candidates combining inferred constraints ap-
propriately, and 3) evaluating the candidates to �nd the
most plausible candidate and to remove the inappropri-
ate candidates. An user study was performed using the
prototype system, a commercial CAD, and an OO-based
drawing system. The result showed that the users can
draw required diagrams more rapidly and more precisely
using the prototype system.

KEYWORDS: Drawing programs, sketching, pen-based
computing, constraints, beauti�cation.

INTRODUCTION

Commercial Object-Oriented(OO) drawing editors such
as MacDraw and CAD systems have various editing

Figure 1: A diagram drawn on the prototype system
Pegasus: this diagram is drawn without any editing
commands such as rotation, copy, or gridding.

commands and special interaction modes. An user can
construct a diagram with geometric constraints by com-
bining these commands appropriately. For example,
symmetry can be achieved by the combination of du-
plication, 
ipping, and location adjustment, while per-
pendicularity can be achieved by duplication and 90 de-
gree rotation. In addition, CAD systems often have spe-
cial interaction modes such as a mode for drawing per-
pendicular lines. However, invoking these commands
or switching to the special editing modes requires addi-
tional overhead, and selection of appropriate commands
or interaction modes is di�cult, especially for novice
users[12].

To solve these problems, we propose a new interaction
technique for drawing, interactive beauti�cation. Inter-
active beauti�cation is a technique for rapid construc-
tion of geometric diagrams (an example is shown in Fig-
ure 1) without using any editing commands or special in-
teraction modes. Interactive beauti�cation can be seen
as an extension of free stroke vectorization [7] and dia-
gram beauti�cation [18]. It receives a user's free stroke
and beauti�es the stroke considering various geometric
constraints among segments. The intuitiveness of the
technique allows novice users to draw such precise dia-
grams rapidly without any training.

Interactive beauti�cation is characterized by the follow-

1



ing three features; 1) stroke by stroke beauti�cation, 2)
automatic inference and satisfaction of higher level ge-
ometric constraints, and 3) generation and selection of
multiple candidates as a result of beauti�cation. These
three features work together to achieve rapid and intu-
itive drawing, avoiding the problem of ambiguity.

Interactive beauti�cation is currently implemented on
a prototype system Pegasus (an acronym for \Percep-
tually Enhanced Geometric Assistance Satis�es US!"),
and user evaluations using it showed promising results.
This paper introduces interactive beauti�cation, and de-
scribes the implementation of prototype the system Pe-
gasus in detail.

The remainder of this paper is organized as follows: the
next section describes related work in diagram drawing
on computers. Then, we describe the technique as seen
by the user using several examples. We describe the
algorithm of the technique in detail, and introduce the
prototype system Pegasus. An user study performed to
con�rm the e�ectiveness of the technique is described.
Finally, we consider the limitation of our current imple-
mentation and conclude the paper.

RELATED WORK

Much work has been done to facilitate the diagram
drawing on computers for these 35 years. We will
overview several important techniques that have been
developed, which a�ected the design of interactive beau-
ti�acation.

At a glance, the system may seem similar to existing
sketch-based interfaces including commercial products
such as Apple's Newton, GO's Penpoint, and freestroke
drawing mode in typical drawing editors (SmartSketch,
Corel Draw, etc.). These systems convert freestrokes
into vector segments, and satisfy primitive geometric
constraints such as connection. The di�erence is that
interactive beauti�cation considers complex, global con-
straints such as parallelism, symmetry, or congruence,
which enhances the range of geometric models. In addi-
tion, the generation and selection of multiple candidates
is unseen in the existing systems.

Gesture based systems [1][23][19][16] also employ free-
stroke input, but they convert input strokes into inde-
pendent primitives, while interactive beauti�cation con-
verts them into simple line segments satisfying geomet-
ric relations. Gross pointed out the importance of con-
text in solving the problem of ambiguity[9], which has
in
uenced our idea.

Beauti�cation systems [18][22][14] are basically batch-
based, which can lead to unwanted results because of
ambiguity in users input. Interactive beauti�cation pre-
vents such results by interactively presenting multiple
candidates and requesting user's con�rmation.

While interactive beauti�cation systems control the place-
ment of two vertices (start and end) simultaneously,
many existing drawing systems assist the placement of
a vertex by controlling the movement of the mouse cur-

Perpendicularity

Connection

y-coordinate alignment

Freestroke input

Inferred constraints

Beautified segment

Multiple candidates

a)

b)

c)

d)

Figure 2: Basic operation of interactive beauti�cation

sor. Grid restricts cursor placement to some speci�c
geometry and gravity function snaps the cursor to some
meaningful places [3]. For example, the Adobe Intel-
lidraw editor[17] automatically aligns the cursor to ex-
isting edges. In comparison, the advantages of interac-
tive beauti�cation are as follows: 1) Freestroke drawing
is more intuitive and less cumbersome than careful ma-
nipulation of the cursor, especially for pen-based inter-
face. 2) The system can attain more information from
freestroke trace than cursor placement. For example,
equality of interval between parallel lines cannot be de-
tected from the placement of a single vertex.

Bier's Snap Dragging[2], an extension of gravity-active
grids, has the same motivation as ours; to make con-
struction of geometric design easier. However, interac-
tive beauti�cation requires much simpler and fewer op-
erations to construct precise diagrams. Moran et al.'s
work [20] shares our aims, but does not support the con-
struction of precise diagrams.

Constraint based systems [10][5][21][6] facilitate the con-
struction of complex diagrams with many constraints,
but require considerable amount of e�ort to specify the
constraints. Interactive beauti�cation aims at an oppo-
site goal: to reduce the e�ort by focusing on relatively
simple diagrams.

INTERACTIVE BEAUTIFICATION

Basically, interactive beauti�cation is a freestroke vec-
torization system; it receives a freestroke and converts it
into a vector segment, inferring and satisfying geometric
constraints.

First, the user draws an approximate shape of his de-
sired segment with a freestroke using a pen or a mouse
(Figure 2a). Then, the system infers geometric con-
straints the input stroke should satisfy by checking the
geometric relationship among the input stroke and exist-
ing segments(Figure 2b). Finally, the system calculates

2



Input Stroke Beautified Segment

a)

b)

c)

d)

Connection
(to a vertex)

Connection
(to a segment)

Parallelism

Perpendicularity

f)

g)

Congruence

Symmetry
(Horizontal)

e)

Alignment

h)

Interval
Equality

Figure 3: Supported geometric relations

the placement of the beauti�ed segment by solving the
simultaneous equations of inferred constraints, and dis-
play the result to the user(Figure 2c). In addition, the
system generates multiple candidates to deal with the
ambiguity of the freestroke (Figure 2d).

The characteristics of interactive beauti�cation are 1)
stroke by stroke beauti�cation, satisfying higher level
constraints such as congruence, perpendicularity, or sym-
metry, and 2) generation and selection of multiple can-
didates. We describe the detail of the interaction in the
following subsections.

Stroke by Stroke Beauti�cation Satisfying Geomet-

ric Constraints

This subsection describes how diagrams are constructed
using stroke by stroke free stroke beauti�cation, satisfy-
ing various geometric constraints. To make it simple, we
assume that the system generates only one candidate as
a result of beauti�cation in this subsection. Next sub-

a) b)

Figure 4: Example use of interval equality among seg-
ments

section describes the generation of multiple candidates
in detail.

Figure 3 shows some examples of supported constraints,
input strokes, and beauti�ed segments. Figures 3a,b de-
scribe the connection constraint. If the user draws a free
stroke whose start or end point is located near a vertex
of an existing segment, the system automatically detects
the adjacency and connects the point to the vertex or
the body of a segment.

Figures 3c,d illustrate parallelism and perpendicularity
constraints. The system compares the slope of the input
stroke and those of existing segments, and if it �nds an
existing segment with approximately the same slope, it
makes the slope of the beauti�ed segment identical to
the detected slope. Similarly, if the system �nds an ex-
isting segment approximately perpendicular to the input
stroke, it converts the stroke into a precisely perpendic-
ular segment.

Figure 3e shows vertical and horizontal alignment con-
straints. When a free stroke is drawn, the system indi-
vidually checks the x and y coordinates of the vertices
of the input stroke, and makes the coordinates precisely
identical to the existing ones if they are near.

Figures 3f,g show congruence and symmetry constraints.
When a new input stroke is drawn, the system searches
for a segment almost congruent to the stroke among
the existing segments. If such a segment is found, the
system makes the input stroke exactly congruent to the
segment (Figure 3f). Similarly, the system searches for a
segment that is similar to the vertically or horizontally

ipped input stroke. If such a segment is found, the
system makes the input stroke exactly congruent to the

ipped one (Figure 3g).

Figure 3h describes interval equality. This relation is
detected by comparing the interval between the input
stroke and an existing line segment parallel to the stroke,
and intervals between existing parallel segments. This
mechanism can be used to draw a pipe with a constant
width or to draw cross stripes or grids (Figure 5). Con-
struction of these diagrams is particularly di�cult with
menu-based systems, where the user must copy, rotate,
and move the segment.

In actual drawing, the geometric constraints described
above are combined and work together to produce a pre-
cise diagram. In Figure 3a, relations such as connec-
tion, perpendicularity, and y-coordinate alignment are
simultaneously satis�ed. In Figure 3b, interval equality,
y-coordinate alignment and 
ipped congruence (symme-

3



a)

b)

Figure 5: Construction of a diagram with many con-
straints

Connection

Connection

Horizontal Alignment

Connection
Congruence

Connection
Vertical Alignment

Connection
Congruence
Horizontal Alignment
Vertical Alignment

Drawing Process Inferred Constraints

Symmetry
(Flipped Congruence)

Figure 6: Construction of a symmetric diagram

try) work together to generate the arch (The unneces-
sary line fragments can be removed easily by `erasing'
interaction, which is explained later).

Figure 6 illustrates how a symmetric diagram is con-
structed using interactive beauti�cation. For each input
stroke, the system infers appropriate constraints and re-
turns a beauti�ed segment. Notice that, except for the
slope sides which constitute the arrowhead, the symme-
try for the rest of the arrow shape is achieved solely
by locally de�ned relationships (alignment, congruence
and connection constraints) without resorting to some
special constraints to achieve global symmetry.

Generation and Selection of Multiple Candidates

The inherent di�culty with any freestroke recognition
systems is that a freestroke is ambiguous in nature. The
user draws an input stroke with an intended image in
mind, and the system must infer the intended image

Multiple candidates are
generated.

Select a candidate by 
tapping.

Confirm.

Confirm
(tapping outside).

Multiple Possibilities

a) b)

c) d)

e) f)

Existing Segments
Primal or Currently Selected Candidate
Multiple Candidates
Geometric Constraints Satisfied by the Candidate

Figure 7: Interaction with multiple candidates: the
user can select a candidate by tapping on it, and sat-
is�ed constraints are visually indicated.

based on the shape of the freestroke. However, it is
not an easy problem to reconstruct the intended image
from the ambiguous input stroke. For example, when
the system observes an input stroke shown in Figure 7a,
it is di�cult to guess which segment in Figure 7b is the
one the user intended. Existing systems do not consider
these multiple possibilities, and just return a single seg-
ment as a result. If the user is not satis�ed with the
result, he must draw the stroke again, but the revised
stroke may also fail.

To solve the problem, interactive beauti�cation infers
all possible candidates and allows the user to select one
among them (Figure 7c). If the user is not satis�ed
with the primary candidate, he can select other candi-
dates by tapping on them directly (Figure 7e). During
the selection, the system visually indicates what kinds of
constraints are satis�ed by the currently selected candi-
date. Visualized constraints ensure that the desired con-
straints are precisely satis�ed. In addition, they assist
the selection of a candidate in a cluttered region, where
it is di�cult to �nd the desired one. The selection com-
pletes when the user taps on outside the candidates or
draws the next stroke (Figure 7d,f).

Generation of multiple candidates, together with visu-
alization of the satis�ed constraints, greatly reduces the
failure in recognition, and makes it possible to construct
complex diagrams such as Figure 1 using freestroke only.
Additional overhead caused by candidate selection is
minimum because the user can directly go to the next
stroke without any operation when the primary candi-
date is satisfactory.

4



Figure 8: Erasing gesture and trimming operation

Auxiliary Interfaces

In addition to free stroke drawing and selection by tap-
ping, the current system supports a 
oating menu and
an erasing gesture. The 
oating menu is a button on
the screen, and the user can place the button anywhere
by dragging it. Menu commands appear when the user
taps on the button, similar to a pie menu[11]. Currently,
`clear screen' and `undo' commands are implemented in
the menu.

The erasing gesture is scribbling. If the system detects
the gesture, it deletes the nearest line segment to the
start point of the scribbling gesture. As the system par-
titions the line segments at every cross point and contact
point beforehand, the user can easily trim the unneces-
sary fragments (Figure 8). Trimming is a frequently
used operation on any drawing system, and this easily
accessible trimming operation greatly contributes to the
e�cient construction of complex geometric diagrams.

ALGORITHM

This section describes the algorithm of interactive beau-
ti�cation in detail. From a programmer's point of view,
the interactive beauti�cation system works as follows
(Figure 9); 1)When the user �nishes drawing and lifts
the pen from the tablet, the system �rst checks whether
the stroke is an erasing gesture or not. 2)If the input
stroke is not an erasing gesture, the beauti�cation rou-
tine is called. It receives the stroke and the scene de-
scription as input and returns multiple candidates as
output. Then, the generated candidates are indicated
to the user, allowing him to select one. 3)The settle-
ment routine is called when the user �nishes selection,
that is, starts to draw the next stroke or taps on out-
side the candidates. The settlement routine adds the
selected candidate to the scene description and discards
all other candidates. 4)If an erasing gesture is recog-
nized, the erasing routine detects the segment to be
erased and removes the segment from the scene. The
settlement routine is called after the erasing routine to
refresh the scene description. Settlement routine also
performs some preliminary calculations to accelerate the
beauti�cation process (sorting the vertex coordinates,
for example).

We now describe the algorithm of beauti�cation routine
in detail. The beauti�cation routine consists of three
separate modules (Figure 10). First, a constraint infer-
ence module infers the underlining constraints the in-
put stroke should satisfy. Next, a constraint solver gen-
erates multiple candidates based on the set of inferred
constraints. Finally, an evaluation module evaluates the
certainty of generated candidates and selects a primary
candidate. The separation of the constraint inference

Draw

Select

Beautify

Settle

Pen Release

Scribbling

System Action

User Action

Trigger

Erase

Tap on outer region or
draw next stroke.

Stroke

Figure 9: Operational model of interactive beauti�-
cation

Generated Candidates

Ordered Candidates

Segment Coordinates
Input (1,50, 9,51),
Exist (0,50,0,52),(10,50,10,52)

(x0=0, x1=10, y0=50, y1=52, y0=y1)

(0,50,10,50),(0,50,10,52)

Constraint inference module

Constraint solver module

Candidate evaluation module

A Set of Inferred Constraints

primary (0,50,10,52),
secondary (0,50,10,50)

Figure 10: Sturcture of the beauti�cation routine

and the constraint solving remarkably improves the ef-
�ciency of multiple candidates generation, because the
system performs the most time-consuming task of check-
ing all combinations of segments only once, instead of
performing the task for each candidates.

The evaluation process must follow to the solver because
it is necessary to consider the resulting coordinates as
well as the satis�ed constraints to calculate the certainty
of a candidate. That is, the candidate located close
to the input stroke should be evaluated highly, but the
location is unkown until the constraint is solved.

Constraints are represented as numerical equalities bind-
ing four variables (coordinates of the new segment). The
constraint inference module communicates the inferred
geometric relations in a form of numerical equalities, and
the constraint solver solves the simultaneous equations.
Figure 11 shows the currently supported geometric re-
lations and the corresponding numerical equalities.

Constraint Inference module

First, the system searches the table of parameters of
all the existing segments, in order to �nd values that
are `adjacent' to those of the input stroke and gener-
ates constraints that would constraint the parameters
of the input stroke as variables. To be speci�c, the sys-
tem examines and compares the 5 parameters of the
input stroke (x, y coordinates of start/end vertex, and

5



x0 = const 
y0 = const

x1 = const
y1 = const

Alignment (start -x ) x0 = const

Alignment (start -y ) y0 = const

Alignment (end -x )

Alignment (end -y )

x1 = const

y1 = const

Congruence x1 - x0 = cosnt
y1 - y0 = const

y1 - y0 = const * ( x1 - x0 )Parallelism
  ( Perpendicularity)

y0 = const * x0 + const

y1 = const * x1 + const

y0 = const * x0 + const
y1 = const * x1 + const

Geometric Relations Corresponding 
    Equalities

Vertical line x0 = x1

Horizontal line y0 = y1

Interval equality

Connection
(end point on a vertex)

Connection
(start point on a vertex)

Connection
(start point on a line)

Connection
(end point on a line)

(Symmetry)

Figure 11: Relation between geometric relations and
equalities

the slope of the stroke). As a result, constraints to rep-
resent geometric relations such as x and y coordinate
alignment, parallelism, and perpendicularity, are gener-
ated. As the parameters of all segments in the scene
are sorted in the settlement routine, the computational
complexity of this routine is O(log n) while n is the num-
ber of existing segments. Perpendicularity is achieved
by storing 90 degrees rotation of the existing slopes.

Next, all the segments in the scene are examined to �nd
various geometric relations between the existing seg-
ments and the input stroke, such as congruence, connec-
tion and symmetry. In addition, to �nd the equality of
intervals among segments, this routine calculates the in-
terval between the input stroke and each approximately
parallel segment in the scene, and searches for the stored
interval that are adjacent. The computational complex-
ity of this routine is O(n log n).

This two-phased constraint inference process generates a
set of constraints to be satis�ed. To reduce unnecessary
overhead in constraint solving, the system checks the
duplication whenever a new one is created during the
constraint inference.

Constraint Solver

Subsequently to the constraint inference, the system
calculates the coordinates of the beauti�ed segment
based on the inferred constraints. As the inferred con-
straints are usually over-constrained (they can not be
under-constrained because all variables are automati-
cally bounded to the original coordinates of the input
stroke), the system searches for all the possible combi-

(-,-)

(1,-)

(-,-) (1,2)

(1,-)

(-,2)

(1,1)(2,2)

(-,-)

(-,-)

(1,-)

(-,2)(-,-) (1,2)

(1,1)(2,2)(-,-) (-,2)(-,-) (1,2)
x-y=0

x=1

y=2

x-y=0

x+y=2

(-,-)
x+y=2

(0,2) (1,-)

(0,2)(2,2) (1,1)(1,2)

x-y=0

Final valuation

1

2
3

45

6
7

8

Constraints Intermediate Valuations

Figure 12: Algorithm for constraint solving

nations of inferred constraints to generate multiple can-
didates.

The constraint solver is a modi�cation of the equality
solver of CLP(<)[13] with an extension to generate mul-
tiple candidates from over-constrained equalities. Sim-
ilar to the equality solver of CLP(<), the initial state
consists of an empty valuation, and the system tries to
apply the constraint one by one to the intermediate val-
uation. The di�erence is that the system maintains a
set of valuations instead of a single valuation, and the
new valuation is added to the valuation set without dis-
carding the previous valuation when a constraint is suc-
cessfully applied.

Figure 12 shows how the solver works using a simpli-
�ed example with two variables and four constraints.
First, the solver creates an empty valuation (1), and
then, applies the �rst constraint (x=1) to the valuation.
Naturally, the constraint is successfully applied and a
new valuation is created (1,-)(2). Note that the initial
valuation (-,-) is preserved instead of being replaced
by the new valuation (3). When the solver tries to apply
the constraint (x-y=0) to the valuation (1,2), the ap-
plication fails and no new valuation is created (4). On
the other hand, the constraint can be successfully ap-
plied to the empty valuation (-,-), creating a new val-
uation with a suspended (delayed) constraint (5). The
suspended constraints are solved when enough variables
are ground or enough equalities are given(6). Identi-
cal valuations are detected and uni�ed by the solver to
prevent redundant calculations (7). Finally, the system
returns the fully grounded valuations as multiple candi-
dates (8).

To improve e�ciency, intermediate valuations are stored
in a tree structure whose root node is the initial empty
valuation. This representation is natural because every
valuation is created as a child of another valuation with
additional grounded variables or additional suspended
constraints. If a constraint fails to be applied to a valu-

6



0

5
0

1
0
0

1
5
0

2
0
0

o
pe
ratio
n
 se
qu
e
n
c
e

msec,number
tim
e
 spe
n
t in

be
au
tific
atio
n

#
 o
f c
an
didate

s

F
ig
u
re

1
3
:
T
im

e
sp
en
t
in

th
e
b
ea
u
ti�

ca
tio

n
ro
u
tin

e
a
n
d
th
e
n
u
m
b
er

o
f
g
en
era

ted
ca
n
d
id
a
tes

d
u
rin

g
th
e

co
n
stru

ctio
n
o
f
F
ig
u
re

1
.

ation
,
it
m
ean

s
th
at

th
e
con

strain
t
can

n
ot

b
e
ap
p
lied

to
all

its
d
escen

d
an
ts,

an
d
th
e
sy
stem

can
avoid

w
astefu

l
calcu

lation
s.

T
h
e
b
asic

m
eth

o
d
to

solv
e
sim

u
ltan

eou
s
eq
u
ation

s
is

G
au
ssian

elim
in
ation

,
b
ecau

se
cu
rren

t
im

p
lem

en
tation

su
p
p
orts

on
ly

lin
er

eq
u
ation

s.
O
th
er

algorith
m
s,

su
ch

as
N
ew

ton
's

m
eth

o
d
[8][10]

w
ou
ld

b
e
req

u
ired

to
su
p
-

p
ort

n
on
-lin

er
con

strain
ts,

su
ch

as
lin

e
len

gth
eq
u
ality

or
tan

gen
cy

of
cu
rv
ed

segm
en
ts.

P
air

eq
u
alities

for
su
ch

con
strain

ts
as

con
n
ection

to
a
v
ertex

,
con

gru
en
ce,

an
d

in
terval

eq
u
ality

(see
F
igu

re
11)

are
b
ou
n
d
b
y
a
n
d
con

-
d
ition

;
b
oth

eq
u
alities

fail
if
on
e
of
th
em

is
n
ot

satis�
ed
.

In
su
m
m
ary,

ou
r
con

strain
t
solv

er
is

a
m
u
lti-w

ay
n
u
-

m
erical

eq
u
ality

solv
er

w
ith

an
ex
ten

sion
to

gen
erate

m
u
ltip

le
solu

tion
s
e�

cien
tly

from
over-con

strain
ed

con
-

strain
ts.

T
h
e
com

p
lex

ity
of

com
p
u
tation

is
O
(2
n
),
b
u
t

is
su
b
stan

tially
red

u
ced

b
y
p
ron

in
g
w
astefu

lcalcu
lation

s
u
sin

g
a
tree

stru
ctu

re
an
d
u
n
ify

in
g
id
en
tical

in
term

ed
i-

ate
valu

ation
s,
an
d
h
as

n
ot

cau
sed

p
rob

lem
s
in

in
terac-

tion
so

far
in

ou
r
p
rototy

p
e
sy
stem

.

P
R
O
T
O
T
Y
P
E
S
Y
S
T
E
M

P
E
G
A
S
U
S

T
h
e
p
rototy

p
e
sy
stem

,
P
egasu

s,
is
b
ein

g
d
ev
elop

ed
w
ith

M
icrosoft

V
isu

al
B
asic

an
d
V
isu

al
C
+
+

on
W
in
d
ow

s
95.

T
h
e
u
ser

in
terface

p
art

of
th
e
co
d
e
th
at

m
an
ages

th
e
in
p
u
t
op
eration

s
an
d
v
isu

al
feed

b
ack

s
is
w
ritten

in
V
isu

al
B
asic

for
ease

of
im

p
lem

en
tation

an
d
freq

u
en
t

rev
ision

.
T
h
e
b
eau

ti�
cation

rou
tin

e
is
w
ritten

in
V
isu

al
C
+
+
to

accelerate
th
e
m
ost

tim
e
con

su
m
in
g
p
ro
cess.

P
egasu

s
can

w
ork

on
an
y
P
C
w
h
ere

W
in
d
ow

s
3.1/95

is
in

op
eration

.
H
ow

ever,
as

P
egasu

s
is
b
asically

d
esign

ed
for

p
en

b
ased

in
p
u
t,
it
is
d
ev
elop

ed
an
d
tested

m
ain

ly
on

p
ortab

le
p
en

com
p
u
ters

(M
itsu

b
ish

i
A
M
iT
Y
S
P
)
an
d

a
p
en
-b
ased

electron
ic
b
lack

b
oard

sy
stem

(X
erox

L
iv
e-

b
oard

).
A
s
p
en

b
ased

freestrok
e
in
p
u
t
an
d
m
ou
se

b
ased

freestroke
in
p
u
t
h
ave

con
sid

erab
ly

d
i�
eren

t
ch
aracteris-

tics,
th
e
p
rep

ro
cessor

of
th
e
recogn

ition
algorith

m
n
eed

s
to

b
e
tu
n
ed

d
i�
eren

tly
d
ep
en
d
in
g
on

th
e
in
p
u
t
d
ev
ice

(p
en

or
m
ou
se).

F
ig
u
re

1
4
:
D
ia
g
ra
m
s
fo
r
p
h
y
sics

a
n
d
m
a
th
em

a
tics

F
ig
u
re

1
5
:
T
h
ree-d

im
en
sio

n
a
l
illu

stra
tio

n
s

F
igu

re
13

b
rie


y
illu

strates
th
e
p
ro
cessin

g
p
erform

an
ce

of
th
e
cu
rren

t
b
eau

ti�
cation

rou
tin

e.
T
h
is

d
ata

w
as

record
ed

d
u
rin

g
th
e
con

stru
ction

p
ro
cess

of
F
igu

re
1
on

a
P
C
/A

T
m
ach

in
e
(P
en
tiu

m
75M

H
z).

R
ecord

ed
tim

e
is

n
ot

accu
rate

b
ecau

se
of

th
e
coarse

sam
p
lin

g
rate

of
th
e

sy
stem

call,
b
u
t
ap
p
rox

im
ately

80%
of

th
e
b
eau

ti�
ca-

tion
s
�
n
ish

ed
w
ith

in
100

m
sec,

su
�
cien

t
for

in
teractive

d
raw

in
g.

T
h
e
n
u
m
b
er

of
gen

erated
can

d
id
ates

are
u
su
-

ally
sm

all,
w
h
ere

62%
of

b
eau

ti�
cation

s
gen

erated
less

th
an

5
can

d
id
ates.

H
ow

ever,
in

som
e
cases

(17%
)
th
e

sy
stem

gen
erated

m
ore

th
an

20
can

d
id
ates,

w
h
ich

m
ad
e

can
d
id
ate

selection
d
i�

cu
lt.

W
e
sh
ow

som
e
of

th
e
p
ictu

res
th
at

h
ave

b
een

p
ro
d
u
ced

on
P
egasu

s.
F
igu

re
14

illu
strates

th
e
u
sage

of
th
e
tech

-
n
iq
u
e
in

classro
om

s.
M
en
u
-b
ased

op
eration

s
h
ave

d
e-

terred
th
e
u
se

of
p
recise

d
iagram

s
on

electron
ic

w
h
ite-

b
oard

s
d
u
rin

g
oral

com
m
u
n
ication

s.
b
u
t
th
e
sim

p
licity

of
in
teractive

b
eau

ti�
cation

m
ay

en
cou

rage
th
e
u
se

of
m
ore

p
recise

d
iagram

s.
F
igu

re
15

sh
ow

s
3D

illu
stra-

tion
s.

T
h
e
con

stru
ction

of
th
ese

d
iagram

s
is

ach
ieved

u
sin

g
p
arallelism

an
d
con

gru
en
ce

am
on
g
segm

en
ts.

It
is

n
otab

le
th
at

th
ese

d
iagram

s
are

easily
con

stru
cted

u
sin

g
rath

er
sim

p
le
con

strain
ts,

in
stead

of
som

e
sp
ecial

tech
-

n
iq
u
es

for
3D

m
o
d
els.

F
igu

re
16(left)

sh
ow

s
an

ex
am

p
le

F
ig
u
re

1
6
:
G
eo
m
etric

illu
stra

tio
n
s

7



parallelism (b,d)

perpendicularity (a,b)

a

b c

d

connection

symmetry (triangle)

symmetry (horns)

connection (all vertices)

(all vertices)

connection (all vertices)

parallelism (slopes)

parallelism (horizontal lines)

parallelism (a,c)

vertical and horizontal alignment interval equality between
                 the parallel lines

Figure A Figure B Figure C

Figure 17: The diagrams used in the experiment, and
required geometric relations

of a geometric design. The widths of the ring and spokes
are all identical, which may be di�cult for conventional
editors. Figure 16(right) gives an example of symmetric
illustration. As horizontal symmetry is achieved with-
out any additional operation, a designer can concentrate
on design itself, instead of struggling with complex op-
erations.

EXPERIMENT

This section describes an experiment performed to eval-
uate the interactive beauti�cation using the prototype
system compared to existing drawing systems in some
diagram drawing tasks. We were particularly interested
in whether or not interactive beauti�cation would im-
prove the task performance time (rapidness) and the
completeness of the geometric constraint satisfaction in
the diagrams (precision). Similar experiment is pre-
sented in [12], but this experiment is focused on eval-
uation of the technique, while previous paper intended
to clarify the problems of existing drawing editors.

Method

Systems The experiment was conducted on a Mitsubishi
pen computer AMiTY SP (i486DX4 75MHz, Win95).
Along with our prototype system Pegasus, we used a
CAD system (Auto Sketch by AutoDesk Inc.) and
an OO-based drawing system (Smart Sketch by Future
Software Inc.) The CAD system is used as a repre-
sentative for precise geometric design systems, and the
OO-based editor is selected as a representative for easy-
to-use rapid drawing editors.

Task Subjects were required to draw three diagrams
shown in Figure 17 using the editors. They were in-
structed to 1) draw as rapidly as possible, satisfying the
required geometric relations as much as possible, 2) to
quit drawing when drawing time exceeds the limit of 5
minutes, and 4) give the completion of drawing priority
over the complete constraint satisfaction, if it appears
to be too di�cult.

Subjects 18 student volunteers served as subjects in the
experiment. They vary in their pro�ciency in using com-
puters and each software. 8 subjects were accustomed
to typical window-based GUI, but other subjects had
little experience with computers.

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Ti
m
e 
(s
ec
.)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Ti
m
e 
(s
ec
.)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Ti
m
e 
(s
ec
.)

CAD Pegasus

Fig. A

Fig. B

Fig. C

Draw

Subjects
(sorted)

Figure 18: Drawing time required for each task: Each
column corresponds to a drawing session of a subject.
The order of subjects is sorted by the time required.

Procedure To avoid the e�ect of learning, the order of
editor usage was changed for each subject in a balanced
way. The experiment consisted of 18 (subjects) � 3 (sys-
tems) � 3 (diagrams) = 162 diagram drawing sessions
in total. Each session lasted less than 5 minutes and
they were video-recorded and examined later.

Prior to performing the experiment with each system,
each subject was given a brief explanation of each sys-
tem and a practice trial. This tutorial session lasted 5 -
10 minutes varying among systems and subjects. CAD
system generally required more tutorial time than oth-
ers.

Result and discussion

Rapidness Figure 18 shows the time required for each
subject to complete each task. Each column corresponds
to a drawing session of a subject. The order of subjects
is sorted by the drawing time. As the drawing time was
limited to 300sec., drawing sessions which exceeded the
limit are indicated as 300sec. The time required with
the prototype system was clearly shorter than with other
systems, and all sessions �nished within the limit, while
many sessions exceeded the limit with the CAD system
and the OO-based drawing editor.

Figure 19 shows how many sessions are �nished within
the limit. Many subjects failed to �nish drawing tasks
within the limit using the CAD system and the OO-
based editor, while all subjects �nished drawing using
our prototype. Whether the required constraints are
precisely satis�ed or not is not considered in this graph.

It is impossible to calculate the exact mean drawing
time and the mean variance because the recorded draw-
ing time was limited to 300sec., but Figure 20 gives an
approximation of the mean drawing time. Drawing time

8



0
10
20
30
40
50
60
70
80
90
100

CAD Draw Pegasus

Ra
tio
 o
f fi
nis
he
d 
se
ss
ion
s (
 %
 )

Figure 19: The ratio of �nished sessions: this �gure
shows in how many sessions subjects �nished drawing
within 300sec. among each 3 � 18 = 54 sessions.

507
448

232

0

100

200

300

400

500

600

CAD Draw Pegasus

Av
er
ag
ed
 to
ta
l d
ra
wi
ng
 tim
e 
(s
ec
.)

Figure 20: Estimation for time required for a subject
to draw the three diagrams: the prototype system
exhibits considerable advantage.

is averaged for each diagram-editor combination over
those sessions that �nished within the limit, and the av-
eraged time for each editor is summed to estimate \to-
tal drawing time for a subject to draw three diagrams
on each editor." According to the calculations, subjects
were able to draw the three diagrams at least 48 % faster
than the OO-based editor and 54 % faster than the CAD
system. As the averages do not include sessions exceed-
ing 300sec., actual di�erences are greater.

Precision Even if task performance time might be im-
proved, the bene�t could be nulli�ed if the precision of
the resulting diagrams is considerably lost. Figure 20
shows how many sessions �nished satisfying all the re-
quired geometric relations shown in Figure 17. The ses-
sions where the subjects �nished drawing within 300sec.
but failed to satisfy the required geometric relations
completely are not counted. It is interesting to see that
the OO-based system is superior to the CAD system in
time performance, but the opposite holds true concern-
ing the precision, which is in accordance with the nat-
ural expectation. Our prototype system showed better
performance in both criteria than either systems.

We must note, however, that this experiment is still a

0
10
20
30
40
50
60
70
80
90
100

CAD Draw Pegasus

Ra
tio
 o
f p
re
fe
ct 
dr
aw
ing
s (
 %
 )

Figure 21: The ratio of diagrams where required
constraints are perfectly satis�ed: this graph shows
in how many sessions subjects successfully satis�ed
all the required geometric constraints among each
3 � 18 = 54 sessions.

preliminary evaluation. Many important aspects of di-
agram drawing are not accounted for, such as line pat-
tern variation, scaling, rotation, etc. Curves, circles,
and text did not appear in the diagrams. Also various
kinds of diagrams must be considered, such as node-
link diagrams, informal illustrations, complex mechan-
ical diagrams, etc. In spite of these limitations, this
preliminary experiment clearly shows a promising po-
tential of interactive beauti�cation system, particularly
its signi�cant advantage in rapid and precise construc-
tion of simple geometric diagrams. Time performance
and constraint satisfaction rate were considerably im-
proved, even though interactive beauti�cation is rather
new for the subjects compared with other systems.

LIMITATIONS AND FUTURE WORK

Unsolved problem with interactive beauti�cation is that
it is di�cult to select the intended candidate among
many overlapping candidates. This problem becomes
serious when one draws complex diagrams. Possible so-
lutions are to reduce the number of generated candidates
and to improve the user interface for candidate selection.

The number of candidates can be reduced by restrict-
ing the number of inferred constraints in the constraint
inference module and the number of valuations in the
constraint solving module, and removing the unwanted
candidates in the evaluation module. Various heuristics
and user adaptation may be required to �nd intended
constraints and candidates.

Improvement of user interface is also required. One solu-
tion is to magnify the cluttered region to help the user to
distinguish the desired one from others. Another tech-
nique is to let the user specify the reference segment and
display those candidates that satisfy constraints related
to the speci�ed reference segment.

We plan to implement curves, texts, and line pattern
variations to see whether interactive beauti�cation can
work as an established interaction technique. Imple-

9



mentation of arcs and curves give rise to various di�-
culties, but is strongly desirable because satisfaction of
curve-related constraints is especially di�cult with con-
ventional menu based editors.

We would like to perform more user studies to answer
various questions: what kinds of constraints are required
for rapid geometric design, how fast user can master the
e�ective use of the technique, and to what extent the
generation of multiple candidates facilitates the interac-
tion, etc.

Integration of interactive beauti�cation into 3D scene
construction systems such as [24] is also being consid-
ered. The most challenging issue may be how to dis-
play half-constructed 3D models and multiple candi-
dates without confusing the user.

SUMMARY

We have proposed interactive beauti�cation, a technique
for rapid geometric design. The beauti�cation sys-
tem receives a freestroke and converts it into a pre-
cise segment. The technique is characterized by stroke-
by-stroke beauti�cation, recognition of global geomet-
ric constraints, and generation and selection of multiple
candidates, which make the technique suitable for pre-
cise geometric design preserving considerable dexterity.
Our prototype system, Pegasus, is implemented on pen
computers, and user evaluations showed promising re-
sults. The beauti�cation process consists of three inde-
pendent modules, constraint inference, constraint solv-
ing, and candidate evaluation, which achieves e�cient
generation of multiple candidates.

This technique can be used for geometric modeling on
traditional CAD systems, but more informal pen-based
rapid drawing of simple diagrams seems to be the most
promising target. To be speci�c, interactive beauti�ca-
tion appears to be an ideal technique for note-taking on
pen-based PDA systems and graphical explanation on
electronic whiteboards during meeting or in classrooms.
Finally, this technique can be used for creative design
process[15], which has been done with traditional pen
and paper rather than on computers because of com-
plex operations.

REFERENCES

1. Apte,A., Vo,V., Kimura,T.D., "Recognizing Multistroke
Geometric Shapes: An Experimental Evaluation," Proc.
of UIST'93, pp. 121-128, 1993.

2. Bier,E.A., Stone,M.C., \Snap Dragging", Proc. of SIG-
GRAPH '86, pp. 233-240, 1986.

3. Bier,E.A., \Snap Dragging: Interactive Geometric De-
sign in Two and Three Dimensions", Ph.D thesis, U.C.
Berkley EECS Department, April, 1988.

4. Bolz, D., \Some Aspects of the User Interface of a Knowl-
edge Based Beauti�er for Drawings", Proc. of 1993 Int'l

Workshop on Intelligent User Interfaces, ACM Press,
New York, 1993.

5. Borning,A., \The Programming Language Aspects of
ThingLab, A constraint-Oriented Simulation Labora-

tory", ACM Trans. on Program. Lang. Syst., Vol.3, No.4,
pp.353-387. 1981.

6. Bouma,W., Fudos,I., Ho�man.D., Cai,J., Paige,R., \Ge-
ometric constraint solver", Computer Aided Design,
Vol.27, No.6, pp. 487-501, 1995.

7. Chen,C.L.P., Xie,S., \Freehand drawing system using a
fuzzy logic concept", Computer Aided Design, Vol.28,
No.2, pp.77-89, 1996.

8. Conte,S.D., Boor,d.C., \Elementary Numerical Analy-
sis", McGraw-Hill, 1972.

9. Gross,M.D., Do,E.Y., \Ambiguous Intentions: A Paper-
like Interface for Creative Design", Proc. of UIST'96, pp.
183-192, 1996.

10. Heydon,A., Nelson,G., \The Juno-2 Constraint-Based
Drawing Editor", SRC Research Report 131a, System
Research Center, Digital Equipment Corporation, Palo
Alto, California, USA, December, 1994.

11. Hopkins,D., \The design and implemetation of pie
menus", Dr.Dobb's Journal 1, Vol.6, No.12, pp.16-26,
1991.

12. Igarashi,T., Kawachiya,S., Matsuoka,S., Tanaka,H., \In
Search for an Ideal Computer-Assisted Drawing System"
Proc. of INTERACT'97, 1997, (in press).

13. Ja�ar,J., Michaylov,S., Stuckey,P.J., Yap,R.H.C., \The
CLP(<) Language and System", ACM Trans. on Pro-

gram. Lang. Syst., Vol.14, No.3, pp. 339-395, 1992.

14. Kurlander,D., Feiner,S., \Interactive Constraint-Based
Serach and Replace", Proc. of CHI'92, pp.609-618, 1992.

15. Lakin,F., Wambaugh,J., Leifer,S., Cannon,D., Stew-
ard,C., \The electronic notebook: performing medium
and processing medium", Visual Computer, Vol.5,
pp.214-226, 1989.

16. Landay,J.A., Myers,B.A., \Interactive Sketching for
Early Stages of User Interface Design", Proc. of CHI'95
, pp. 43-50, 1995

17. Myers,B.A., Wolf,R., Potosnak,K., Graham,C., \Huris-
tics in Real User Interfaces", INTERCHI'93 Panel, Proc.
of InterCHI'93, pp.304-307, 1993.

18. Pavlidis,T., VanWyk,C.J., \An Automatic Beauti�er for
Drawings and Illustrations", Proc. of SIGGRAPH '85 ,
pp. 225-234, 1985.

19. Rubine,D., \Combining Gestures and Direct Manipula-
tion", Proc. of CHI'92, pp.659-660, 1992.

20. Saund,E., Moran,T.P., \A Perceptually Supported
Sketch Editor", Proc. of UIST'94, pp. 175-184, 1994.

21. Sutherland,I.E., \Sketchpad: A Man-Machine Graphical
Communication System", Proc. of Spring Jint Computer
Conf., No.23, pp.329-346, 1963.

22. Weitzman,L., \Designer: A Knowledge-Based Graphic
Design Assistant", ICS Report 8609, University of Cali-
fornia, San Diego, 1986.

23. Zao,R., \Incremental Recognition in Gesture-Based
and Syntax-Directed Diagram Editors", Proc. of Inter-
CHI'93, pp. 95-100, 1993.

24. Zeleznik,R.C., Herndon,K.P., Hughes,J.F., \SKETCH:
An Interface for Sketching 3D Scenes", Proc. of SIG-
GRAPH '96 , pp. 163-170, 1996.

10


