
 
Considering the Direction of Cursor Movement 

for Efficient Traversal of Cascading Menus 

Masatomo Kobayashi1 Takeo Igarashi1, 2 
1Department of Computer Science, The University of Tokyo / 2PRESTO, JST 

7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan 
E-mail: {kobayash, takeo}@is.s.u-tokyo.ac.jp 

 

ABSTRACT 
Cascading menus are commonly seen in most GUI systems. 
However, people sometimes choose the wrong items by 
mistake, or become frustrated when submenus pop up 
unnecessarily. This paper proposes two methods for 
improving the usability of cascading menus. The first uses 
the direction of cursor movement to change the menu 
behavior: horizontal motion opens/closes submenus, while 
vertical motion changes the highlight within the current 
menu. This feature can reduce cursor movement errors. The 
second causes a submenu to pop up at the position where 
horizontal motion occurs. This is expected to reduce the 
length of the movement path for menu traversal. A user 
study showed that our methods reduce menu selection times, 
shorten search path lengths, and prevent unexpected 
submenu appearance and disappearance. 

KEYWORDS: GUI, cascading menus, pointing devices. 

INTRODUCTION 
The most common technique for handling hierarchical 
menus is the cascading menu, such as the “Start Menu” in 
Windows® and “Menu Bar” in Mac® OS. The conventional 
method used to produce menu cascading is as follows: 
move the mouse cursor to the target option and wait for a 
while (or press the mouse button) until a submenu appears 
along the right border of the parent menu. This method is 
widely used in almost every cascading menu in various 
GUI systems. 

The typical behavior of cascading menus, however, tends to 
cause incorrect selection changes or unnecessary submenu 
appearance due to straying mouse movement. Since each 
menu item with a string-based label is long from side to 
side, the path to a submenu is elongated, which frequently 
causes movement errors (See Figure 1). A longer or 
narrower horizontal path reduces the efficiency of mouse 

operations, especially with these tunnel-steering tasks [1]. It 
is possible to prevent unintentional selection changing and 
the appearance of submenus by increasing the delay before 
submenus appear; however, this is just a trade-off between 
speed (or the energy required to hold the mouse button 
down) and accuracy. 

 
Figure 1: An elongated path causes movement 
errors, such as unexpected selection changes and 
submenu appearance. 
 

The traditional cascading behavior also tends to extend the 
width of a menu chain excessively, because submenus are 
located to the right of the parent menu item regardless of 
the landscape shape of the menu items. Therefore, menu 
chains often need to be folded back at the right side of the 
screen in order to show the latest menu inside the screen. 
Such a folded menu chain causes irregular overlapping of 
menus, which makes menu traversal difficult. 

This paper proposes a combination of two techniques as 
solutions to these problems. First, we distinguish two 
classes of operations involving cascading menus (changing 
the local selection and opening/closing menus) based on the 
direction of cursor movement: vertical motion changes the 
highlighted menu item within the current menu, whereas 
horizontal motion opens a submenu or closes the current 
menu. This feature is designed to reduce mouse movement 
errors. Second, the newly appearing submenu pops up near 
the cursor. This feature clearly shortens the path to the 
submenu, which reduces mouse movement errors and 
performance time. Moreover, the second technique reduces 
the width of menu chains, preventing irregular overlapping 
of menus. 

 Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage, and that copies bear this notice and the full citation on the 
first page. To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
UIST ’03 Vancouver, BC, Canada 
© 2003 ACM  1-58113-636-6/03/0010 $5.00



We conducted a user study in order to compare our 
techniques with the conventional menu-cascading strategy 
in terms of the efficiency of menu traversal. This 
experiment investigated the general performance of typical 
interactions between people and cascading menus. The 
results showed that our techniques generally improved the 
speed and accuracy of menu-selecting tasks involving 
cascading menus. 

RELATED WORK 
Some menu techniques use the direction of movement of 
the pointing device. One of the most interesting techniques 
uses circular menus, such as FlowMenu [3], and other kinds 
of pie [2] or marking [4] menus. They take advantage of 
two dimensions by arranging menu items as in a pie chart, 
rather than the typical vertical list, to shorten the average 
movement to a menu item. Circular menus are especially 
suitable for pen-based or finger-based interfaces. The 
hierarchical structures of circular menus, however, are not 
as visually effective as those of vertical menus [5]. A circle 
takes more room to display than a corresponding vertical 
list, and the cascaded circles tend to overlap one another. 

In contrast to circular menus that use movement direction 
to determine a selection, our techniques use it to control the 
selection process. Since they are just methods for handling 
menus, one can implement our techniques on any menu 
system that is visually identical to the traditional system. 

CONSIDERING THE MOVEMENT DIRECTION 
The first technique divides the traversal of cascading menus 
into two classes: internal and external. These two traversal 
classes are separated according to the associated direction 
of mouse cursor movement. The system determines the 
movement direction by comparing the horizontal 
component of the mouse-movement vector, dx, with the 
vertical component, dy. The movement direction is vertical 
if |dx| < |dy|; otherwise it is horizontal. Figure 2 shows the 
basic relationships between directions and events. 

Internal traversal corresponds to changing the highlight, 
which is handled by vertical motion of the cursor. When the 
mouse cursor enters the territory of a selectable menu item 
that is currently not highlighted, this item is highlighted. If 
the mouse cursor exits the rectangular frame of the current 
menu or enters the territory of a non-selectable item, such 
as a separator, no item in the current menu is highlighted. 
Note that the territory of a menu item is unlimited 
horizontally within the width of the screen. 

External traversal includes a submenu popping up, closing 
the current menu, and selecting a terminal menu item, 
which is handled by the horizontal motion of the mouse 
cursor. When the cursor moves to the right and the 
movement distance, d, exceeds a threshold, d1, the system 
shows the submenu that is related to the currently 
highlighted item. Pressing the mouse button can also open 

the submenu. Once the submenu appears, it becomes active 
and the current menu becomes inactive. When a terminal 
item is highlighted and the user moves the cursor to the 
right, the item is selected and the menu selection task is 
concluded. Nothing occurs if there is no highlighted item in 
the menu. When the mouse cursor moves to the left, 
crossing over the left border of the current menu, this menu 
closes itself and activates the parent menu. 

 
Figure 2: A user must move the mouse to the right 
to have a submenu pop up or to select a terminal 
item, to the left to close the current menu, and up or 
down to change the highlight. 
 

In addition, we dim currently inactive menus so that users 
can clearly perceive the difference between the active menu 
and the others. This feature is important, since the menu 
under the mouse cursor is not always active with our 
techniques. In fact, users cannot change the active menu 
without a horizontal motion or clicking the mouse. 

We believe that our modified menu behavior is still easy to 
use for most users since the horizontal/vertical policy is 
natural for them. According to our informal observation, 
users mostly move the mouse cursor horizontally and 
vertically, but rarely diagonally, although the optimal path 
is often diagonal in traditional cascading menus. 

OVERLAPPING MENUS 
The second technique causes a submenu to pop up at the 
position where horizontal motion occurs. Menus overlap 
their parent menus, to shorten the path to the terminal item. 
According to the steering law, shorter paths should cause 
fewer movement errors. As a result, we can prevent 
unnecessary selection changes and submenu appearance. 
Note that we might have a problem in integrating this 
technique with the traditional delay strategy. Unintended 
submenus appear automatically in such a menu system and 
hide the currently active menu unnecessarily. 

Our second technique puts the upper left corner of a newly 
appeared submenu at coordinate (x, yn), where x is the 
horizontal position where the horizontal motion started and 
yn is the vertical location of the middle of the nth item, when 
the nth item is highlighted and it has a submenu (see Figure 

Highlight up

Highlight down

Submenu pops upClose



3). If there is not enough space below or to the right of the 
menu, the system adjusts the location of the submenu so 
that it all appears within the screen area. 

 
Figure 3: A submenu is located at the position 
where horizontal motion occurred. 
 

In a straightforward implementation of our technique, a 
submenu could obscure too much of the parent menu when 
the horizontal motion occurred near the left side of the 
screen. We place a relative constraint on the location of the 
newly appearing submenu to prevent this. The constraint is: 

e = xs – xp ≥ e1 

where xs and xp are the horizontal locations of the left 
borders of the submenu and the parent menu, respectively, 
and e1 is a constant that is defined as the minimum offset of 
the horizontal location of the submenu from that of the 
parent menu. The distance threshold, d1, can then be 
adjusted so that the inequality is satisfied, as shown in 
Figure 4. That is: 

d1' = max{d1, d1 + e1 – (x – xp)}  

Then, d1' places an appropriate offset between the submenu 
and the parent menu so that the hierarchical structure of the 
menus is visually clear. 

d1 e1 

d1' 

xp xs x 

 
Figure 4: Adjusting d1' keeps the proper offset e ≥ e1, 
so that the menus are aligned orderly. 
 

EVALUATION 
In this section, we describe a user study that we conducted 
to compare our techniques with the conventional 
menu-cascading strategy. 

Participants 
Ten right-handed students attending the local university 
were recruited as participants. Eight participants were 
frequent mouse users and six were frequent users of 
conventional cascading menus. None had any experience 
with our techniques. 

Apparatus 
The experiment was conducted on a Toshiba DynaBook SS 
3500 with a 12.1-inch TFT LCD (1024 × 768 pixel 
resolution), equipped with a Logitech Wheel Mouse. The 
software used in the experiment was developed in Java™ 
1.4.1. 

Procedure 
Before testing, the participants were briefed on the purpose 
of the experiment and the method of operating both our 
cascading menu and a traditional cascading menu. The 
participants were ordered to select a menu item, following 
the instruction displayed on the title bar of the window. 

The menu-selection process starts with a mouse click action 
on a certain item in the menu bar. It ends up with the item 
selecting action on the instructed terminal menu item. The 
participants were allowed to study the instructions as long 
as needed before starting each menu-selection process. 

Design 
The experiment consisted of eight blocks: four for each 
cascading menu. The first block was a warm-up, and the 
remaining three were for data collection. Each block had 12 
trials of menu-selection. The 12 targets were randomly 
preselected from the total of 521 menu items. The 
hierarchical levels of the target items ranged from two to 
five. Three trials were for each level. The default distance 
threshold, d1, was set to 24 in pixels. Figure 5 shows 
screenshots of the software used in the test. 

  
Figure 5: (a) Traditional menu and (b) our 
direction-based menu used in the experiment. 
 

The experiment used a within-subjects design. Each 
participant was tested with both cascading menus. Half of 
the participants had their four blocks of the traditional 
menu first, followed by four blocks of our menu. The other 
half of the participants had the reverse order. 

a b 



Result 
Figure 6 shows the average selection time, movement path 
length, and unexpected submenu appearance per trial with 
standard errors. Each is the average of 12 × 3 × 10 = 360 
trials. The cascading strategy had a significant effect on 
each measure (p < .005). Our techniques reduced the 
selection time by 12%, the movement path length by 31%, 
and unexpected submenu appearance by 85%. We used the 
Wilcoxon signed-ranks test to determine the significance of 
the results. 

Traditional
Proposed
Std. Error

0 2 4 6 8

(a)

Selection time (sec)

0 500 1000 1500 2000 2500

(b)

Movement path length (pixels)

0 0.2 0.4 0.6 0.8

(c)

Unexpeted submenu appearance
 

Figure 6: (a) Selection time, (b) movement path 
length, and (c) unexpected submenu appearance. 
 

DISCUSSION AND FUTURE WORK 
A number of studies have documented the fact that 
performance changes with practice when using 
menu-selection systems [6]. Users not only learn the 
arrangement of menu items, but also the behavior of the 
system. In fact, some participants in our experiments 
traversed menu hierarchies more fluently with the 
traditional behavior than with our techniques. Considering 
the reduction in the movement path length, the selection 
time should also be reduced after using our system several 
times. 

Our direction-based strategy might be effective only when 
the user knows which menu contains the target option. The 
traditional delay strategy allows a user to browse submenus 
just by slowly moving the mouse cursor up or down over 

the current menu. This might be preferable for the user who 
does not know where the target is and needs to search for it. 
Our techniques, however, force such a user to repeat the 
unnecessary active process: move right to have a menu 
pop-up temporarily, review its contents, and move left to 
close it in disappointment. We need to conduct additional 
research on the menu-searching task in addition to the 
menu-selecting task used in this experiment. 

The proposed techniques can be applied to menu systems 
that have a traditional appearance, which means that our 
direction-based strategy is easy to implement on existing 
systems. The cascading menu implemented with our 
techniques can be seen as a gesture-based system; yet it is 
easy to use, even for users who are accustomed to 
traditional cascading menus. Moreover, our techniques can 
be used with various pointing devices, such as mice, 
styluses, and fingers. We plan to apply our techniques to 
existing menu systems, and to make them available for 
general use. 

ACKNOWLEDGMENTS 
We thank all the participants in the user study for their help. 

REFERENCES 
1. Accot, J. and Zhai, S. Beyond Fitts’ Law: Models for 

Trajectory-Based HCI Tasks. In Proceedings of the 
SIGCHI conference on Human factors in computing 
systems, pp.295-302, ACM Press, 1997. 

2. Callahan, J., Hopkins, D., Weiser, M., and 
Shneiderman, B. An Empirical Comparison of Pie vs. 
Linear Menus. In Proceedings of the SIGCHI 
conference on Human factors in computing systems, 
pp.95-100, ACM Press, 1988. 

3. Guimbretiére, F. and Winograd, T. FlowMenu: 
Combining Command, Text, and Data Entry. In 
Proceedings of the 13th annual ACM symposium on 
User interface software and technology, pp.213-216, 
ACM Press, 2000. 

4. Kurtenbach, G. and Buxton, W. User Learning and 
Performance with Marking Menus. In Proceedings of 
the SIGCHI conference on Human factors in 
computing systems, pp. 258-264, ACM Press, 1994. 

5. Lee, E.S. and Raymond, D.R. Menu-Driven Systems. 
In Encyclopedia of Microcomputers, Volume 11, 
pp.101-127, Marcel Dekker, Inc., 1992. 

6. Norman, K.L. The Psychology of Menu Selection: 
Designing Cognitive Control at the Human/Computer 
Interface. Ablex Publishing Corporation, 1991. 

 


	Numbx: 
	C: 
	L: 
	R: 

	P1: 
	Numb: 
	Numbx: 
	C: 91
	L: 
	R: 



	P2: 
	Numb: 
	Numbx: 
	C: 92
	L: 
	R: 



	P3: 
	Numb: 
	Numbx: 
	C: 93
	L: 
	R: 



	P4: 
	Numb: 
	Numbx: 
	C: 94
	L: 
	R: 





