
A Sketch-based Interface for Modeling
Heart Fiber Orientation

Kenshi Takayama1, Takeo Igarashi2, Ryo Haraguchi3 and Kazuo Nakazawa3

1 Department of Computer Science, The University of Tokyo,
Bunkyo-ku, Tokyo, Japan

kenshi@ui.is.s.u-tokyo.ac.jp
2 Department of Computer Science, The University of Tokyo / PRESTO, JST

takeo@acm.org
3 National Cardiovascular Center Research Institute

Suita, Osaka, Japan
{haraguch, nakazawa}@ri.ncvc.go.jp

Abstract. This paper proposes a sketch-based interface for modeling
muscle fiber orientation of a 3D virtual heart model. Our current target
is electrophysiological simulation of heart and fiber orientation is one of
the key elements to obtain faithful simulation results. The interface and
algorithm are designed based on the observation that fiber orientation is
always parallel to the heart surface. The user specifies the fiber orienta-
tion on the surface by drawing a freeform stroke on the object surface.
The system first builds a vector field on the surface by applying Lapla-
cian smoothing to the mesh vertices and then builds volumetric vector
field by applying Laplacian smoothing to the voxels. The usefulness of
the proposed method is demonstrated through a user study with a doctor
in that area.

1 Introduction

Many people suffer from abnormal cardiac rhythm and effective treatment is
much desired. An approach to understand the mechanism of this disease is elec-
trophysiological simulation of heart. Various kinds of parameters are required
for this simulation, and muscle fiber orientation is one of the key elements that
determines the behavior of signal propagation [1] [2].

Fiber orientation of a living heart is difficult to measure non-invasively, so
it is necessary for a doctor to manually design fiber orientation based on his
or her expert knowledge. A simple method is to have the user set orientations
on discrete slices but it is very difficult to design complicated orientation field
using such crude methods. To support this process, we present a sketch-based
interface for designing a volumetric vector field that represents muscle fiber
orientations inside of a given 3D heart model. We designed the system based on
the observation that muscle fiber orientation is parallel to the model’s surface.
This makes it possible to use simple sketching on the surface as input and to
use two-step interpolation (surface and volume) scheme for the construction of
volumetric vector field.

Fig. 1. Designing fiber orientations by sketching. (a) Drawing a stroke on the surface
to specify the orientations on the surface. (b) Cutting the model to see the orientations
inside the model. (c) Drawing a stroke on the cross-section surface to further control
the orientation inside the model.

Figure 1 shows snapshots of our prototype system. The user can draw strokes
on the model with common 2D input device such as a mouse or pen. The system
applies two-step interpolation to these user-drawn strokes obtaining the volu-
metric vector field. We use Laplacian smoothing method for the interpolation to
enable interactive trial-and-error design. Using our method, the user can design
volumetric vector fields quickly and easily.

We asked a doctor in the area of cardiology to test our system and got positive
feedback. He appreciated the ability to design fiber orientations quickly and
confirms that the proposed system can be a useful tool for practical applications.
We also run sample electrophysiological simulation using the heart fiber model
created by him to demonstrate the capability of the system.

2 Related Work

Various studies have been done on the analysis and visualization of vector fields
of various kinds [4]. On the other hand, studies on the design of vector fields
are relatively few. Here we introduce some of the existing methods for designing
vector fields.

Salisbury et al. [6] made a simple tool for designing vector fields on 2D plane
for the purpose of rendering 2D image with orientable textures. Its interface was
more like that of ordinary ’Paint’ applications with operations such as ’draw’,
’blur’ and ’fill’. Praun et al. [5] and Turk [8] used vector fields on surfaces of
3D models to synthesize textures on surfaces. In those papers, they let the user

Fig. 2. Drawing a stroke on the internal surface by cutting off the interfering part of
the surface.

specify vector values on some of the vertices of the 3D model and assigned inter-
polated vector values to the remaining vertices. Praun used Gaussian radial basis
functions technique for interpolation, while Turk used mesh hierarchy technique.

Topology of vector field is often very important for certain applications.
Zhang et al. [9] showed a novel method for designing vector fields on 2D planes
and 3D surfaces with consideration of topology.

To our knowledge, however, there has been no study on design of volumetric
vector fields. We propose a sketch-based interface for designing volumetric vector
fields using two-step approach.

3 User Interface

The system first loads a 3D polygonal model specified by the user. After several
precomputations including polygon-to-voxel conversion and calculation of Lapla-
cian matrices, the user can design volumetric vector fields using the sketch-based
interface.

The user draws freeform strokes on the surface of the model to specify the
local fiber orientation on the surface (Fig. 1a). The user can draw arbitrary
number of strokes on the surface to specify the fiber orientation field in detail.
The user can cut the model by drawing a crossing stroke. The stroke is extruded
to the viewing direction and the system hides the part of the model on the left
hand side of the extruded surface (Fig. 1b). The user can also draw strokes on
this cross-section surface to specify the fiber orientation inside of the model (Fig.
1c). Cutting is also useful for drawing strokes on the internal surfaces (Fig. 2).

Receiving these user-drawn strokes as inputs, the system performs two-step
Laplacian smoothing to obtain the resulting volumetric fiber orientation field.
The computation completes within a few seconds and the user can incrementally
add or remove strokes until obtaining a satisfactory result.

4 Algorithm

4.1 Overview

When the 3D model is loaded, the system first converts the surface model into
voxels using a standard scanning method. Note that each boundary voxel is asso-

ciated with its neighboring polygon, which is required when setting constraints
on the vector field of the volume from vector field of the surface.

The vector field of the surface is defined as unit orientation vectors associated
with the mesh vertices, while the vector field of the volume is defined as unit
orientation vectors associated with the voxels. After receiving user-drawn strokes
as input, the system sets the orientation vector of mesh vertices near the stroke
to the direction parallel to the nearest stroke direction (Fig. 3). The system
then applies Laplacian smoothing to the surface mesh by using the vertices near
the input strokes as constraints (Fig. 1a). The system then sets the orientation
vector of boundary voxels to the blending of nearby mesh vertices (Fig. 4). The
strokes drawn on the cross-sections are also mapped to the neighboring voxels
(Fig. 5). The system finally applies Laplacian smoothing to the inside voxels to
obtain the final volumetric vector field (Fig. 1c).

Fig. 3. Orientation vector of mesh vertices near the input stroke is set to parallel to
the stroke and used as constraints for applying interpolation to the surface.

blend

Fig. 4. Setting vector of a boundary voxel
to the blending vector of its neighboring
vertices.

Fig. 5. Orientation vector of voxel near the
stroke drawn on the cross section is set
to parallel to the stroke and used as ad-
ditional constraints for applying interpola-
tion to the volume.

Note that the magnitudes of vectors are not considered in the system because
our purpose is only to design orientation. Therefore, the system normalizes all the
vectors after each smoothing. The interpolated vectors on the surface may not
be tangent to the surface. The system therefore projects the vectors associated

to the mesh vertices to their tangential planes after each interpolation on the
surface.

4.2 Laplacian Smoothing

Here we briefly describe how our Laplacian smoothing works (more details are
available in [7]). Let x1, · · · , xn be orientation vectors associated with mesh
vertices or voxels. Laplacian of xi is defined as

δi = xi −
∑

j∈Ni
wijxj (1)

where Ni is the neighbors of xi (i.e., 1-ring of the i-th mesh vertex or voxels
adjacent to the i-th voxel). We simply set weights as wij = 1

|Ni| , meaning that
δi is the difference between xi and the average of its neighbors. Our goal is
to minimize these Laplacians in the least-squares sense while satisfying given
constraints:

xki = bi (i = 1, · · · ,m) (2)

where ki is the index of the i-th constraint and m is the number of constraints. In
the case of the mesh vertices, constraints are given at the vertices near the input
strokes (Fig. 3). In the case of the voxels, constraints are given at the voxels near
the surface (Fig. 4), as well as those near the additional strokes drawn on the
crosssections (Fig. 5).

This goal can be rewritten using vectors and matrices as

argmin
x

{∣∣∣∣
(
L
C

)
x−

(
0
b

)∣∣∣∣
2
}

where x = (x1, · · · , xn)T and b = (b1, · · · , bm)T are vectors, and L = (lij) and
C = (cij) are n× n and m× n matrices respectively defined by

lij =

−1 (i = j)
wij (j ∈ Ni)
0 (otherwise)

cij =
{

1 (j = ki)
0 (otherwise)

This corresponds to solving the following system

ATAx = AT

(
0
b

)
(3)

where A =
(
L
C

)
. Matrix ATA and vector AT

(
0
b

)
can be rewritten in a simple

form as

ATA = (LT CT)
(
L
C

)

= LTL+ CTC

AT

(
0
b

)
= (LT CT)

(
0
b

)

= CTb

Note that the ki-th diagonal element in CTC is 1 and the ki-th element in CTb
is bi (for i = 1, · · · ,m) and all the other elements in CTC and CTb are 0.

We solve equation (3) for the mesh vertices every time the user draws a
stroke on the surface. Since Laplacian matrix L remains constant for a given
mesh, we can precompute LTL and add 1 to the constrained diagonal elements
when solving. In the case of Laplacian smoothing for the voxels, ATA remains
constant as long as the user draws strokes only on the mesh surface, and changes
only slightly when the user adds a stroke on crosssection. This matrix is sparse
enough to apply an optimized algorithm for sparse matrices. We currently use a
fast sparse matrix solver based on LU-decomposition [3].

5 Results and User Experience

Current prototype system is implemented in C++ using OpenGL and runs on
Windows PCs. Figure 6 shows some fiber orientations designed using the system.
It took about 3 seconds in total to compute a volumetric vector field from user
specified strokes for a heart model with 1,992 vertices and 7,646 voxels using a
PC with 2.1 GHz CPU and 2.0 GB RAM.

Fig. 6. Example fiber orientations designed using the system.

We asked a doctor in the area of cardiology to try our system in order to
obtain feedback for the system. He designed a fiber orientation for a given heart
model using our system. The test was performed using a standard laptop PC

and a mouse. We used a commercially available 3D polygonal model of heart for
this test. We first gave a brief tutorial and he got used to it in about 10 minutes.
He then started to design a complete heart fiber orientation and finished it in
about 8 minutes. Figure 7 shows the fiber orientations he designed and a sample
result of electrophysiological simulation using this model.

Fig. 7. (a) Heart fiber model designed by the doctor using our system. (b) Sample
result of electrophysiological simulation using (a).

We then interviewed him and obtained following feedback. First, he evaluated
our system as significant contribution to his research area, because it is the
first system that allows the user to directly design 3D fiber structures. Existing
methods forced the user to work on 2D slices to specify a 3D vector field and
it was very tedious. He was pleased with the resulting heart fiber orientation he
created using the system, as it successfully represented typical twisted structure
of heart fibers. He stressed that our system is definitely faster than existing
methods, even if it may take considerable time for calculation as the number of
voxels increases.

It is important, he also noted, that our method defines volumetric vector
field using 3D surface geometry and strokes, because this approach indicates the
possibility that the user can quickly generate another volumetric vector field
from existing one by simply deforming the geometry (which is not yet supported
in the current implementation).

He gave us some suggestions for further improvements. First, he noted that
it would be great if the user can design heart fiber orientation using some sample
images of actual medical data mapped onto the model’s surface. This will allow
the user to create far more realistic fiber orientation by tracing such sample
images. He noted that tracing is an important operation in the medical sense,
since it achieves human filtering of noisy medical data.

He also pointed out that cross-sectioning is not suitable for the visualization
of heart fiber orientation because actual heart fiber consists of number of layers
parallel to the surface, and researchers usually associate heart fiber orientations
with such layers, not with cross-sections. He proposed a peeling interface, with
which the user can understand the gradual change of fiber orientation by con-
tinuously peeling layers to depth direction. He also noted that such visualization
technique would enhance further intuitive design.

6 Conclusion

In this paper, we presented a novel method for designing volumetric fiber ori-
entation field filling a 3D heart model using a sketch-based interface. We ap-
ply two-step Laplacian smoothing, on the surface and on the volume, to obtain
smoothly varying 3D fiber orientation field from user-specified constraints on the
surface. We asked a doctor in the area of cardiology to try our prototype system
and confirmed the effectiveness of our method. There are still many points to
be improved in our method and we plan to continue working on this problem in
the future.

Acknowledgements

We thank Dr. Takashi Ashihara for his cooperation in our user study and his
valuable feedback.

References

1. Takashi Ashihara, Tsunetoyo Namba, Takanori Ikeda, Makoto Ito, Masahiko Ki-
noshita, and Kazuo Nakazawa. Breakthrough waves during ventricular fibrillation
depend on the degree of rotational anisotropy and the boundary conditions: A sim-
ulation study. Journal of Cardiovascular Electrophysiology, 12(3):312–322, 2001.

2. Takashi Ashihara, Tsunetoyo Namba, Takenori Yao, Tomoya Ozawa, Ayaka Kawase,
Takenori Ikeda, Kazuo Nakazawa K, and Makoto Ito. Vortex cordis as a mecha-
nism of postshock activation: Arrhythmia induction study using a bidomain model.
Journal of Cardiovascular Electrophysiology, 14(3):295–302, 2003.

3. Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method. ACM Trans. Math. Softw., 30(2):165–195, 2004.

4. Helwig Hauser, Robert S. Laramee, and Helmut Doleisch. State-of-the-art report
2002 in flow visualization.

5. Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 465–470, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

6. Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin.
Orientable textures for image-based pen-and-ink illustration. In SIGGRAPH ’97:
Proceedings of the 24th annual conference on Computer graphics and interactive
techniques, pages 401–406, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

7. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In SGP ’04: Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 175–184, New York, NY,
USA, 2004. ACM Press.

8. Greg Turk. Texture synthesis on surfaces. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive techniques, pages 347–
354, New York, NY, USA, 2001. ACM Press.

9. Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector field design on
surfaces. ACM Trans. Graph., 25(4):1294–1326, 2006.

