
Lapped Solid Textures: Filling a Model with Anisotropic Textures

Kenshi Takayama∗

The University of Tokyo

Makoto Okabe

The University of Tokyo

Takashi Ijiri

The University of Tokyo

Takeo Igarashi

The University of Tokyo,

JST/ERATO

(a) (b) (c)

Figure 1: Models filled with overlapping solid textures: (a) kiwi fruit, (b) carrot, and (c) tree (the grayscale texture represents the displace-
ment map channel). Note that the input solid textures include surface textures as well as interior textures.

Abstract

We present a method for representing solid objects with spatially-
varying oriented textures by repeatedly pasting solid texture exem-
plars. The underlying concept is to extend the 2D texture patch-
pasting approach of lapped textures to 3D solids using a tetrahedral
mesh and 3D texture patches. The system places texture patches ac-
cording to the user-defined volumetric tensor fields over the mesh
to represent oriented textures. We have also extended the original
technique to handle nonhomogeneous textures for creating solid
models whose textural patterns change gradually along the depth
fields. We identify several texture types considering the amount
of anisotropy and spatial variation and provide a tailored user in-
terface for each. With our simple framework, large-scale realistic
solid models can be created easily with little memory and computa-
tional cost. We demonstrate the effectiveness of our approach with
several examples including trees, fruits, and vegetables.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: lapped textures, solid texture, tensor field

1 Introduction

There are three main approaches to creating solid textured models:
the procedural approach, run-time 2D texture synthesis on cross-
sections, and example-based 3D solid texture synthesis. The first
approach (e.g., [Perlin 1985; Cutler et al. 2002]) allows the de-
sign of an arbitrary solid texture by writing an explicit program,

∗E-mail: kenshi@ui.is.s.u-tokyo.ac.jp

but this is difficult for non-expert users. The second approach (e.g.,
[Owada et al. 2004; Pietroni et al. 2007]) provides efficient and in-
tuitive ways to create quasi-solid models simply by giving example
2D images on cross-sections. However, these methods have sev-
eral limitations (e.g., inconsistency among different cross-sections
or difficulty in handling textures with discontinuous elements, such
as seeds), which sometimes cause unrealistic artifacts. The last ap-
proach (e.g., [Jagnow et al. 2004; Kopf et al. 2007]) allows the
user to create realistic and consistent solid models made of various
materials by explicitly synthesizing volumetric textures from 2D
examples. However, the amount of data and computational cost be-
come problematic for large-scale solid models because the number
of voxels grows cubically as the texture size increases.

Our goal is to create large-scale solid models efficiently using 3D
solid texture exemplars. The basic concept is to extend the 2D tex-
ture patch-pasting approach of lapped textures [Praun et al. 2000]
to 3D solids by replacing the 2D texture and triangular mesh with
a 3D texture and tetrahedral mesh. This enables the creation of
consistent large-scale solid textured models without computing and
storing individual voxel colors.

We made various extensions to the original technique to make it
work for solids. First, our method can arrange solid textures along
a tensor field (i.e., a set of three orthogonal vector fields) instead of
a vector field. This is important because many real-world objects
actually have internal local tensor fields. For example, the horizon-
tal and vertical cross-sections of a kiwi fruit appear different (Fig.
2), which shows that there is a local tensor field inside the fruit that
consists of the circumferential and the vertical directions in addition
to the depth direction. We can create such anisotropic solid models
using appropriate solid texture exemplars and arranging them along
user-specified tensor fields.

Figure 2: Photographs of a kiwi fruit. The appearance of the cross-
section differs depending on the orientation of the cutting plane.

Although the original technique was limited to homogeneous tex-
tures, we have extended it to handle spatially-varying textures. By
considering the depth of the layers during the texturing process, we
can create depth-varying solid models for objects such as kiwi fruit,
carrots, and trees, whose appearance changes gradually in the depth
direction.

We classify solid textures into several types according to the amount
of anisotropy and spatial variation, and provide a tailored user in-
terface and synthesis algorithm for each. A sketching interface is
used to specify the vector field, and a painting interface is used to
define the depth field inside the model. The system computes a ten-
sor field from the user-specified vector orientation and the gradient
of the depth field, and pastes texture exemplars onto the model so
that they align with the tensor field.

Using our method, various solid textured objects can be designed
easily and created efficiently with little memory and computational
cost. We demonstrate the effectiveness of our approach on several
examples including trees, fruits, and vegetables.

2 Related work

One common approach to creating solid textured models is to use
procedural methods. Earlier work by Perlin [1985] produced re-
alistic solid textures by developing material-specific mathematical
models using noise functions. Cutler et al. [2002] created lay-
ered solid models by specifying depth and material information in
a scripting language. However, these methods are not accessible to
non-expert users because of the difficulties in writing the appropri-
ate code.

Another approach is to synthesize 2D cross-sectional images every
time the model is cut. Owada et al. [2004] proposed a model-
ing system in which the user associates 2D reference images with
the object’s cross-sections via an intuitive user interface. The sys-
tem then performs 2D texture synthesis on the cross-sections while
considering the user-specified guidance information. By combin-
ing three types of texture, complex volumetric illustrations such as
teeth and cakes can be created in a short time. However, the con-
sistency among different cross-sections was not considered, and the
approach leads to unrealistic appearances in some cases.

Pietroni et al. [2007] proposed a similar method to produce pho-
torealistic images on cross-sections. In their system, the user first
takes several photographs of the cross-sections of a real object and
places them in 3D space so that they align with the cross-sections
of a virtual 3D model. When the model is cut, the system morphs
the input photographs to produce cross-sectional images. However,
the morphing approach is applicable to smoothly varying patterns
only and cannot handle textures with discontinuous elements, such
as seeds.

Example-based solid texture synthesis actually fills 3D volumetric
space with patterns seen in example 2D images. Earlier methods
were based on a parametric approach using global statistics, such
as histograms [Heeger and Bergen 1995], spectra [Ghazanfarpour
and Dischler 1996], and their combination [Dischler et al. 1998].
These methods only work well for textures whose appearance can
be fully captured by such global statistics, and cannot synthesize
textures with macro structures, such as a brick wall. To overcome
this issue, the non-parametric approach was later used [Wei 2002;
Qin and Yang 2007; Kopf et al. 2007], and recent work by Kopf
et al. [2007] produced realistic solid textures from 2D exemplars
by combining texture optimization [Kwatra et al. 2005] and his-
togram matching [Heeger and Bergen 1995]. There are some other
approaches to solid texture synthesis including procedural shader-
based methods [Lefebvre and Poulin 2000] and stereology-based

methods [Jagnow et al. 2004], although they were designed for rel-
atively limited texture types.

Solid texture synthesis has advantages over the other approaches
because it can generate consistent and detailed textures from exam-
ples. The drawback, however, is the cost in both computation and
memory, as it explicitly computes and stores a dense 3D array of
voxels covering the entire target model. In addition, a non-trivial
extension is necessary to create spatially-varying oriented textures
in a geometry-dependent manner. Our aim is to solve these prob-
lems by applying the 2D patch-based approach of lapped textures
[Praun et al. 2000] to 3D solid textures. While the lapped textures
technique has already been extended to 3D shell textures for real-
time furs on surfaces [Lengyel et al. 2001], to our knowledge, ap-
plication of this approach to solid textures has not been explored
previously.

3 Classification of solid textures

We first classify solid textures into several types as we provide a
different user interface and construction algorithm for each. As
shown in Fig. 3, our classification is based on two aspects of solid
textures: anisotropy level and variation level.

Anisotropy level

V
a
ri

a
ti

o
n

 l
ev

el
Tilability

Type 0

Type 1-b

Type 1-a Type 2-a

Type 2-b

Type 2-c

Type 2-d

3D

2D

1D

0 1 2

0

1

2

3

–

–

–

–

– Non-tilable

Figure 3: Our classification of solid textures.

The anisotropy level describes how the appearance of a cross-
section varies depending on the orientation of the cutting plane.
Anisotropy level 0 means that the texture is isotropic and the cross-
section looks similar regardless of its orientation. Anisotropy level
1 means that the texture has an axis, and its cross-section shows
two different appearances depending on whether its orientation is
parallel or perpendicular to the axis. This type of texture requires
a vector field for alignment when placed in 3D space. Anisotropy
level 2 means that the cross-section shows three different appear-
ances depending on the orientation. A tensor field (a set of three
orthogonal vector fields) is required to place this type of texture in
3D space.

The variation level corresponds to the number of directions in
which the textural pattern changes gradually. Variation level 0
means that there is no gradual variation in the texture and there-
fore the texture is homogeneous everywhere. Variation level 1
means that the texture has a single direction in which its appearance
changes gradually. Variation levels 2 and 3 mean that the texture has
two and three axes of variation respectively. The variation level also
represents the tilability of the texture. Variation level 0 texture can
be tiled three-dimensionally, variation level 1 texture can be tiled

two-dimensionally, and variation level 2 texture can only be tiled
linearly. Variation level 3 texture cannot be tiled in any dimension.

Note that the variation level is limited by the anisotropy level and
therefore there can be only 7 types of texture in our classification.
Type 0 is the well-known isotropic textures. Type 1-a corresponds
to “anisotropic” textures [Kopf et al. 2007] or “oriented” textures
[Owada et al. 2004]. Type 1-b corresponds to “layered” textures
[Owada et al. 2004]. This paper covers types 2-a and 2-b in addi-
tion to these other texture types. Although the basic framework is
sufficiently general to cover all 7 types, we do not support 2-c and
2-d in the current prototype implementation because we have not
encountered many interesting real-world examples of these types.
In addition, our approach is essentially a tiling method and is not
very effective for textures with limited tilability.

We do not claim that our classification describes all the real-world
objects, although we believe that it is possible to represent most
objects using the solid textures classified as outlined above individ-
ually or in combination.

4 User interface

The user first loads a geometry model (triangular mesh) and ex-
emplar solid texture data (cubic array of RGB colors). The user
can rotate, translate, and scale the camera view by dragging with
the right mouse button. The user can also cut the model and see
its cross-sectional surface by drawing a freeform stroke across the
model [Igarashi et al. 1999]. After the input geometry and texture
are specified, the system shows a dialog box to allow the selection
of a texture type. We explain the modeling process for each tex-
ture type in the following subsections. Note that the details of the
algorithm are described in Section 5.

4.1 Texture type 0

This type corresponds to isotropic textures, such as a sponge or con-
crete. The user specifies the texture scaling in this case. The user
first puts a solid texture onto the model by clicking, and moves it
interactively by dragging with the mouse (Fig. 4a). The user can
also change the texture scale interactively using the mouse wheel
(Fig. 4b). When satisfied, the user can set the local texture scale
by double-clicking on the desired position of the model. After the
texture scaling is set appropriately (Fig. 4c), the system fills the
model with the texture taking into account such user-specified tex-
ture scaling (Fig. 4d).

(a) (b) (d)(c)

Figure 4: Modeling process for texture type 0. (a) Moving the
texture patch by dragging with the mouse. (b) Changing the texture
scale with the mouse wheel. (c) User-specified texture scaling. (d)
Result of automatic filling (rendered with displacement mapping).

4.2 Texture type 1-a

This type represents textures with flow or fiber orientation, such as
bamboo and muscle. The user first specifies a volumetric vector
field over the model. The user can draw strokes on the surface or
cross-sections of the model to specify the local vector field (Fig.
5a). A similar interface was described previously [Owada et al.
2004]. After several strokes are drawn, the user then sets the texture

scaling (Fig. 5b) as described in Section 4.1. Finally, the system
fills the model with the texture (Fig. 5c).

(a) (b) (c)

Figure 5: Modeling process for texture type 1-a. (a) Drawing
strokes to specify local vector fields. (b) Setting the texture scal-
ing. (c) Result of automatic filling.

4.3 Texture type 1-b

This type represents models with depth-varying texture, such as
cakes and watermelons. The user specifies a depth field over the
model using a paint-like user interface similar to that reported by
Owada et al. [2004]. The user first chooses the color that represents
the depth (red and blue correspond to the outermost and the inner-
most parts, respectively). The user can then paint the model using
three tools: a multi-face-fill tool, a single-face-fill tool, and a stroke
tool. The multi-face-fill tool assigns a color to multiple surface tri-
angles that are adjacent to each other and have the same color. If
adjacent triangles have a curvature larger than a certain threshold,
the system treats them as if they were not adjacent, which allows the
user to fill, for example, only the side faces of a cylinder (Fig. 6a).
The single-face-fill tool assigns a color to a single surface triangle
clicked by the user (Fig. 6b), which allows modifying and control-
ling the result of multi-face-fill tool. Finally, the stroke tool allows
the user to draw colored strokes on the surface and cross-sections
of the model (Fig. 6c). This tool is useful to mark the central axis
of radial textures. When the user presses the “Update” button, the
system interpolates the depth value over the model (Fig. 6d). After
the depth field is set appropriately, the system then fills the model
with the texture while considering the depth (Fig. 6e). Texture scal-
ing and orientation are derived automatically from the gradient of
the depth field unlike the case of texture type 1-a.

(a) (b) (c) (d) (e)

Figure 6: Modeling process for texture type 1-b. (a) Multi-face-
fill tool. (b) Single-face-fill tool modifying the colored region. (c)
Stroke tool. (d) Computed depth field. (e) Result of automatic fill-
ing.

4.4 Texture type 2-a

This type represents textures whose cross-sections have three dif-
ferent appearances depending on their relative orientations with re-
spect to the local tensor field; a representative example would be
flattened fibers. The user creates a tensor field over the model for
this type of texture. As a tensor field is a set of three orthogonal vec-
tor fields, it is difficult for the user to create an appropriate tensor
field by manually drawing strokes for each vector field separately.
Therefore, we divided the process into two steps. The user first cre-
ates a depth field over the model, as described in Section 4.3 (Fig.
7a). The primary directions are set as the gradient directions of the
depth field. Next, the user can draw strokes on each “layer” (iso-
surface of the depth field) to specify the secondary directions (Fig.
7b). This ensures that the secondary direction is always perpendic-
ular to the first. The third direction is set to the cross-product of

the other two. The original depth field is discarded once the ten-
sor field is computed. After the tensor field is set appropriately, the
user moves on to the process of setting the texture scaling (Fig. 7c),
followed by automatic filling (Fig. 7d).

(a) (b)

(c) (d)

Figure 7: Modeling process for texture type 2-a. (a) Specifying
the depth field. (b) Specifying the secondary directions by draw-
ing strokes on layers. (c) Setting the texture scaling. (d) Result of
automatic filling.

4.5 Texture type 2-b

This type of texture also represents depth-varying models, as in type
1-b, but the two perpendicular cross-sections parallel to the depth
direction appear different. Examples include kiwi fruit, carrots, and
trees. The modeling process is identical to type 2-a (Section 4.4),
but in this case the original depth field is preserved and used in
the synthesis process. In addition, the texture scaling is derived
automatically from the gradient of the depth field.

(a) (b) (c)

Figure 8: Modeling process for texture type 2-b. (a) Specifying
the depth field. (b) Specifying the secondary directions by drawing
strokes on layers. (c) Result of automatic filling.

4.6 Manual pasting of textures

After the system generates a solid textured model, the user can also
manually paste additional solid textures onto the model. The user
first loads a solid texture exemplar (Fig. 9a), which can then be
moved and rotated on the model by dragging the mouse (Fig. 9b).
The user can also change the texture scale interactively with the
mouse wheel (Fig. 9c). Finally, the texture can be pasted onto the
model by double-clicking.

(a) (b) (c)

Figure 9: Manual pasting of additional textures. (a) Solid texture
exemplar to be pasted. (b) Moving and rotating the texture patch by
dragging with the mouse. (c) Changing the texture scale with the
mouse wheel.

5 Algorithm

The input to our system consists of a triangular mesh model and a
solid texture exemplar. The output is a lapped solid textured (LST)
model; many overlapping pieces of solid texture are pasted inside
the mesh. The input mesh model is first converted to a tetrahedral
mesh model. Currently, we use the TetGen library [Si 2006], which
produces nearly uniform meshes using Delaunay tetrahedralization.
Preparation of solid texture exemplars is somewhat problematic, but
several options are available, such as solid texture synthesis [Kopf
et al. 2007], noise functions [Cook and DeRose 2005], and vol-
ume capturing using slicers [Banvard 2002]. Most of our exemplars
were created manually from photographs using an in-house voxel
editor. It is unrealistic to manually design a large volume of these,
but we only required small exemplars and so manual editing was a
viable option.

We used a tetrahedral mesh to represent solid models because this
representation has certain advantages over voxel representation for
our purposes. First, it can approximate 3D shapes well with a
smaller number of elements. Second, the tetrahedral mesh naturally
corresponds to a triangular surface mesh when we extend the origi-
nal 2D technique [Praun et al. 2000] to 3D. Finally, cross-sectioning
and iso-surface extraction can be performed easily using marching
tetrahedra [Treece et al. 1999], which is similar to marching cubes
[Lorensen and Cline 1987] except that it is faster and easier to im-
plement.

We first describe how to render an LST model created in our system
and then describe the process of construction of LST models in
detail.

5.1 Rendering an LST model

Each tetrahedron in an LST model has a list of 3D texture coordi-
nates assigned to each of its four vertices. To render such a model,
we first convert it into a polygonal model that consists of surface tri-
angles with a list of 3D texture coordinates assigned to each of its
three vertices. We can then render this polygonal model using the
same run-time compositing algorithm described previously [Praun
et al. 2000]. Each surface triangle is rendered multiple times (ap-
proximately 10–20 times in most of our results) using the texture
coordinates in its assigned list, with alpha blending enabled.

5.1.1 Cutting

When the user cuts the model by drawing a freeform stroke (Fig.
10a), the system constructs a scalar field over the tetrahedral mesh
vertices, which takes negative and positive values on the left- and
right-hand sides of the stroke, respectively (Fig. 10b). We used ra-
dial basis function (RBF) interpolation [Turk and O’Brien 1999] to
construct such a scalar field. The cross-sectional surface is then ob-
tained by extracting the iso-surface of value 0 from the mesh (Fig.
10c). The texture coordinates for each triangle on the cross-section
are obtained by linearly interpolating the texture coordinates of the
original tetrahedron. The tetrahedral mesh is subdivided on the
cross-section to allow subsequent cutting operations.

5.1.2 Volume rendering

We can also perform volume rendering on an LST model using the
same approach as described above. We first construct a scalar field
over the mesh vertices to give the distance between the camera and
each vertex. We then calculate a large number of slices of the model
perpendicular to the camera direction by iso-surface extraction.

+

– – –
00

– –

+ + + +

(a) (b) (c)

Figure 10: Cutting operation. (a) User-drawn stroke across the
3D model. (b) Scalar field computed from the stroke. (c) Resulting
cross-sectional surface mesh.

5.2 Construction of an LST model

The overall procedure closely follows the original [Praun et al.
2000], but each process contains non-trivial extensions, which we
describe in detail in the following subsections. We first create an
alpha mask of the input solid texture to make the resulting seams
between pasted textures less noticeable (Section 5.2.1). We then
construct a tensor field over the mesh based on user input (Section
5.2.2). The direction and magnitude of the tensor field specify the
orientation and scaling of the texture, respectively. Finally, textures
are pasted repeatedly onto the model while aligning with the tensor
field.

The texture pasting process is as follows. First, a seed tetrahedron
is selected (Section 5.2.3). Then, we grow a clump of tetrahedra
around the seed until it is large enough to cover the texture patch
being pasted (Section 5.2.4). Next, we perform texture optimiza-
tion which warps the pasted texture so that it aligns locally with
the tensor field (Section 5.2.5). Finally, we update the coverage of
textures for each tetrahedron (Section 5.2.6).

A depth-varying solid model is a new feature in our system. We
prepared several exemplar textures with different alpha masks and
pasted them according to the depth (Section 5.2.7).

In the following subsections, we explain the details for each pro-
cess.

5.2.1 Creating an alpha mask of the solid texture

In the original 2D case, Praun et al. [2000] created an alpha mask
of the 2D texture using a standard image editing tool. For a less-
structured texture, they used a “splotch” mask independent of the
content of the texture. For a highly structured texture, they created
an appropriate alpha mask that preserved the important features of
the texture as much as possible.

In our 3D case, we manually created an alpha mask of the solid tex-
ture by modeling a 3D shape of the mask using existing 3D model-
ing techniques, such as that reported by Nealen et al. [2007] (Fig.
11a). This mask is the 3D version of the “splotch” mask in the 2D
case, which can be applied to a less-structured solid texture (Fig.
11b). The alpha value drops off around the boundary of the mask,
which makes the resulting seams between pasted textures less no-
ticeable. We found that an appropriate width of this drop-off is
about 5–10% of the texture size in our experiments.

(a) (b)

Figure 11: Manual creation of a 3D alpha mask. (a) 3D model of
the shape of the mask. (b) Cross-sections of the alpha mask.

It is still very difficult, however, to create an appropriate alpha mask
manually for a highly structured solid texture that preserves the im-
portant features of the texture as much as possible. For now, we
assume all the textures in our examples are less structured, and
therefore we use a constant “splotch” mask shown in Fig. 11 for all
the textures. However, this assumption often causes some artifacts
when using highly structured textures, and this will be discussed in
detail in Section 7.

5.2.2 Constructing a tensor field

This process depends on the texture type. In the case of texture
type 0, the system does not create a consistent global tensor field
and pastes a texture in a random orientation each time. In the case
of texture types 1-a and 1-b, the first direction is globally defined
according to the user-drawn strokes (1-a) or is set to the gradient
direction of the depth field (1-b), and the other direction is chosen
randomly when pasting each patch. In the case of texture types 2-a
and 2-b, the system defines a global tensor field whose first direc-
tion is set to the gradient direction of the depth field with the second
direction specified by the user-drawn strokes. The third direction of
the tensor is set to the cross product of the two. The magnitudes
of tensors are set to the user-specified texture scaling values, except
for types 1-b and 2-b where the texture scaling is set automatically
from the depth field (see Section 5.2.7 for these cases).

The original 2D lapped textures used Gaussian RBF over the mesh
surface for interpolation of user-specified vectors, but we used
Laplacian smoothing on the tetrahedral mesh vertices to interpo-
late user-specified vectors and scaling values, because this allows
more detailed control over the interpolation process by adjusting
weight parameters. After obtaining tensors at the mesh vertices, the
tensor of a tetrahedron is given as the average of the tensors of its
four vertices.

Laplacian smoothing [Fu et al. 2007] minimizes the difference be-
tween the value assigned to each vertex and the weighted average
of the values assigned to its neighboring vertices while satisfying
the user-specified constraints as much as possible. More precisely,
suppose we are solving for the texture scaling values xi assigned to
each vertex vi (i = 1, . . . , n). The Laplacian δi is then defined as

δi = xi −
∑

j∈Ni

w
i
jxj (1)

where Ni is the index set of one-ring neighboring vertices of vi

and wi
j are the corresponding weights. For now, we set wi

j = 1

|Ni|
,

which means that
∑

j∈Ni

wi
jxj is simply the average of the values of

the neighboring vertices. The goal is to minimize all these Lapla-
cians while satisfying user-specified constraints, which are formu-
lated as follows. When a constraint scaling value c is given at 3D
position p, we first search for a tetrahedron T in the mesh whose
barycenter is closest to p. We then calculate barycentric coordi-
nates λ1, . . . , λ4 on T to represent p as

λ1vi1 + λ2vi2 + λ3vi3 + λ4vi4 = p

λ1 + λ2 + λ3 + λ4 = 1

where i1, . . . , i4 are the indices of the four vertices of T . The con-
straint is then given as

λ1xi1 + λ2xi2 + λ3xi3 + λ4xi4 = c. (2)

Minimizing Laplacians (Eq. 1) while satisfying the collection of
constraints (Eq. 2) in a least squares sense forms a sparse linear
system, which can be solved quickly.

For interpolation of the user-specified vectors, we perform Lapla-
cian smoothing for each x-, y-, and z-component of the vectors,
which are later combined and normalized. In the case of texture
types 2-a and 2-b, there is no guarantee that resulting vectors will
always be orthogonal to the first direction, i.e., the gradient direc-
tion of the depth field. Therefore, we orthogonalize these vectors to
the first direction after smoothing.

In addition, note that in the case of texture types 2-a and 2-b, we al-
ter wi

j so that the resulting vector field is smoother on the same
depth (layer) than on different depths. To achieve this, we set
weights as

w
i
j =

exp(−(di − dj)
2)∑

k∈Ni

exp(−(di − dk)2)

where di is the depth value assigned to vi.

While we use Laplacian smoothing for the vectors and scaling val-
ues, we use thin-plate RBF interpolation in the 3D Euclidean space
[Turk and O’Brien 1999] to obtain a depth field. This is because
the depth field must be defined as a smooth function in 3D space to
calculate its gradient directions accurately. We assign depth values
of 0 and 1 to the outermost (red) and the innermost (blue) regions,
respectively. In the case of texture types 1-b and 2-b, these depth
values are used directly as one of the three texture coordinates (see
Section 5.2.7 for details).

5.2.3 Selecting a seed tetrahedron

We first initialize a list of “uncovered” tetrahedra with all the tetra-
hedra in the mesh. For each pasting operation, one is selected at
random from this list as a seed tetrahedron. After the pasting op-
eration, tetrahedra are removed from the list if they are completely
covered by the previously pasted textures. We repeat this process
until the “uncovered” list becomes empty. In the case of manual
pasting of the textures, the seed tetrahedron is set to the one clicked
by the user.

5.2.4 Growing a clump of tetrahedra

We first map the seed tetrahedron from the geometric space into the
texture space, so that its mapped tensor axes align with the standard
axes of the texture space, and its transformed central position is
located in the center of the texture.

Let (R,S,T) be the three orthogonal vectors of the tensor asso-
ciated with the seed tetrahedron T . We first compute barycentric
coordinates r1, . . . , r4 on T to represent R as

r1v1 + r2v2 + r3v3 + r4v4 = R

r1 + r2 + r3 + r4 = 0

where v1, . . . ,v4 are the four vertices of T . We do the same
with S and T. We then compute the transformed vertex positions
w1, . . . ,w4 in the texture space by solving the following equations

r1w1 + r2w2 + r3w3 + r4w4 = (1, 0, 0)t

s1w1 + s2w2 + s3w3 + s4w4 = (0, 1, 0)t

t1w1 + t2w2 + t3w3 + t4w4 = (0, 0, 1)t

c1w1 + c2w2 + c3w3 + c4w4 = (0.5, 0.5, 0.5)t

where c1, . . . , c4 are the barycentric coordinates on T , which repre-
sent the position inside T where the center of the texture should be.
In the case of automatic filling, the position is set to the barycenter
of T (c1 = · · · = c4 = 0.25), while it is set to the user-specified

position in the case of manual pasting. After appropriate transfor-
mation of vertex positions, we finally compute an affine transform
matrix M that maps vi to wi.

Next, we grow the clump by adding adjacent tetrahedra. We visit
each tetrahedron around the clump and add it to the clump if the
tetrahedron satisfies the following two conditions: its tensor is not
markedly different from that of the seed, and it is partially inside
the alpha mask in the texture space when transformed by M .

5.2.5 Texture optimization

The purpose of texture optimization is to warp the texture so that it
aligns locally with the tensor field. More precisely, for each tetrahe-
dron in the clump, we minimize the difference between the tensor
axes of the tetrahedron transformed into the texture space and the
standard texture coordinate axes.

The input to this process is a clump of tetrahedra {Ti} and its asso-
ciated tensors {(Ri,Si,Ti)} (i = 1, . . . , n). The output is the 3D
texture coordinates {wj} for all the vertices {vj} (j = 1, . . . , m)
in the clump.

For each Ti, we first compute the barycentric coordinates ri
k, which

represent Ri in the same way as described in Section 5.2.4. We then
define the difference vector di

r between the transformed tensor axis
R′

i and the standard texture axis r̂ as

d
i
r = r

i
1wj1 + r

i
2wj2 + r

i
3wj3 + r

i
4wj4 − (1, 0, 0)t

where j1, . . . , j4 are the indices of the four vertices of Ti. We do
the same for the s and t directions (Fig. 12). We minimize all these
difference vectors, while satisfying the positional constraint given
to the seed tetrahedron in the same way as described in Section
5.2.4. The optimized solution {wj} can be obtained quickly in a
least squares sense by solving a sparse linear system.

(Ri,

Si,

Ti

R
′

i

S
′

i,

,T′i)

d
i

r

d
i

s

d
i
t

r̂,

ŝ,

t̂

Geometric space Texture space

transform

Figure 12: The optimization minimizes the difference vectors
di

r,d
i
s,d

i
t between the texture coordinate axes (r̂, ŝ, t̂) and the

transformed tensor axes (R′
i,S

′
i,T

′
i).

Note that the optimization may warp the texture coordinates such
that the image of the clump in the texture space no longer fully cov-
ers the splotch mask. In such cases, we add the lacking tetrahedra
to the clump and re-compute the optimization.

5.2.6 Coverage test of tetrahedron

The original 2D method [Praun et al. 2000]
used a rasterization technique to test the
coverage of overlapping textures. We per-
form a similar computation over sampling
points inside the tetrahedra. We first create
several predefined discrete sampling points
(165 points in our current prototype) inside
each tetrahedron in the mesh, as shown in the figure at right. Each
time a texture is pasted, we linearly sample the alpha values of
the mask at these discrete points of each tetrahedron in the clump,

which are then accumulated. If the accumulated alpha values of all
the sampling points of a tetrahedron reach 255, we assume that the
tetrahedron is completely covered by the overlapping textures.

5.2.7 Creation of depth-varying solid models

We create depth-varying solid models by arranging a depth-varying
solid texture so that it aligns with the depth field defined over the
target 3D model. The basic concept is to map the clump of tetra-
hedra into the corresponding depth position in the texture space in-
stead of the central position. To achieve this, we alter the posi-
tional constraints in Section 5.2.4 and 5.2.5 from (0.5, 0.5, 0.5)t to
(0.5, dseed, 0.5,)t, where dseed is the depth value assigned to Tseed

assuming the s-axis corresponds to the depth orientation. However,
a problem occurs when we paste textures onto the inner and outer
parts of the model (Fig. 13a), because the alpha mask covers only
the middle part of the texture.

(a) (b)

Figure 13: (a) A problem occurs if we use only a single alpha mask.
(b) The use of three types of alpha mask solves this problem.

To solve this problem, we prepared solid textures corresponding
to different layers of the original texture, each with different al-
pha masks (Fig. 14). These were created by simply applying the
same alpha mask to different places (outer, middle, and inner). In
the texture pasting process, an appropriate texture is chosen from
these three according to the depth value of the seed tetrahedron (Fig.
13b).

(a) (b) (c)

Figure 14: Three types of alpha mask: (a) outer part, (b) middle
part, and (c) inner part.

The depth values defined over the 3D model can be used directly as
the texture coordinates of the depth direction, so we only solve for
texture coordinates of the other two directions. We have also found
that the appropriate texture scaling is the inverse of the magnitude
of the depth gradient vector. This can be explained as follows. Sup-
pose we have a large depth gradient vector at a certain position in
the 3D model. This means that the depth value changes rapidly
there, which also implies that the region corresponds to the thin
part of the 3D model. Therefore, the texture scale should be small.

6 Results

As shown in Figs. 1 and 16, our results showed consistency among
different cross-sections, which was not seen in the work of Owada
et al. [2004]. Models in Figs. 1a and 16a contain many seeds,
which can cause artifacts in the work of Pietroni et al. [2007]. Tex-
ture type 2-b is used in all the results in Fig. 1, and the appearance
of the cross-sections differs depending on the orientation with re-
spect to the radial axes. Most textures of type 1-b and 2-b in our
results have a thin (1–3 voxel thickness) slice of outer skin, and
our depth adjustment technique arranges solid textures successfully

so that such outer skin regions align precisely with the surfaces of
the models. Cross-sectioning is faster than run-time synthesis ap-
proaches because the computation only involves linear sampling of
texture coordinates. We can create more complex solid models by
combining several LST models together (Figs. 16c and 16d). We
can also perform volume rendering on translucent LST models (Fig.
16b), which is impossible when using inconsistent quasi-solid mod-
els. This result was obtained by taking 200 slices from the model,
a process that took about 3 s. Our method can be extended easily to
support other channels of textures, and we show the displacement
mapping results in Figs. 1c and 4d where the grayscale displace-
ment map channel is shown next to the RGB texture. This is done
by first subdividing the surface mesh and then moving each ver-
tex along its normal direction according to the displacement value
sampled there.

We implemented our prototype system using C++ and OpenGL on
a notebook PC with a 2.3-GHz CPU and 1.0 GB of RAM. The
statistics of our results are summarized in Table 1, which shows
that our method is fairly inexpensive in terms of both computation
and memory for representing large-scale solid models. It took a rel-
atively long time to fill a cake model (Fig. 16d), because the model
has a large thin sponge region that requires pasting a large number
of texture patches. However, the rendering and cross-sectioning
could still be performed in real-time.

Title Tetra Design [sec] Fill [sec] Cut [msec] Size [MB]

Kiwi fruit 4126 29 39 78 9.1

Carrot 2313 38 31 63 7.1

Tree 5012 76 104 125 12.2

Watermelon 2717 17 25 63 9.0

Tube 1089 27 18 31 2.7

Strata 2827 113 77 110 10.4

Cake 2734 34 416 187 14.5

Table 1: Statistics of our results. Column describe (from left to
right): title, number of tetrahedron, time for tensor field design,
time for automatic filling, time for cross-sectioning (without subdi-
vision), and total data size of LST model (including texture exem-
plars). The size of texture exemplars was 643 throughout.

7 Limitations and future work

Our method inherits the limitations of the original method [Praun
et al. 2000]. First, the patch seams become noticeable when using
a texture with strong low-frequency components. Second, artifacts
appear around singularities of the tensor field, such as the center
of a depth-varying object with a radial axis. This can be allevi-
ated by locally subdividing tetrahedra in such areas. Finally, as we
use a constant “splotch” mask for all the textures, blurring artifacts
appear when a highly structured texture is used (Fig. 15b). It is nec-
essary to create an appropriate alpha mask that preserves the struc-
ture of the texture as much as possible, and this may be achieved by
extending the existing 2D contour detection technique [Kass et al.

(a) (b) (c)

Figure 15: Failure case with a highly structured texture. (a) A
curved cylinder filled with bricks shows (b) blurring and (c) mis-
alignment artifacts.

(a) (b)

(d)(c)

Figure 16: Results of our method. (a) Watermelon. (b) Volume rendering of a fibrous tube. (c) Strata. (d) Cake.

1987] to 3D. It is also necessary to consider the alignment between
texture patches to avoid misalignment artifacts (Fig. 15c). Soler et
al. [2002] proposed hierarchical pattern mapping, which considers
the coherency between texture patches on surfaces, but extending
their technique to 3D solid appears to be non-trivial.

Preparation of exemplar solid textures is still an unsolved problem,
especially for organic objects. First, many organic objects, such
as kiwi fruit, contain translucent regions, and the color seen on a
cross-section depends on the materials beneath it. Another problem
is that objects such as carrots that contain fibrous structures can
cause anisotropic reflection; the appearance of these fibers differs
depending on the orientation of the cross-section. The existing tex-
ture synthesis methods from 2D exemplars assume consistent color
of a given voxel and cannot handle such cases. A sort of inverse
volume rendering may be necessary to obtain volumetric represen-
tation from 2D photographs, and this is an interesting direction for
future research.

Acknowledgments

We thank Shigeru Owada and Kazuo Nakazawa for their valu-
able comments and advice. We also appreciate the anonymous re-
viewers’ various helpful suggestions for improving the paper. The
first author was funded by the Information-technology Promotion
Agency (IPA), Japan.

References

BANVARD, R. A. 2002. The visible human project (r) image data sets from inception

to completion and beyond. In Proc. of CODATA 2002: Frontiers of Scientific and

Technical Data.

COOK, R. L., AND DEROSE, T. 2005. Wavelet noise. ACM Trans. Graph. 24, 3,

803–811.

CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND JAGNOW, R. 2002.

A procedural approach to authoring solid models. ACM Trans. Graph. 21, 3, 302–

311.

DISCHLER, J., GHAZANFARPOUR, D., AND FREYDIER, R. 1998. Anisotropic solid

texture synthesis using orthogonal 2d views. Computer Graphics Forum 17, 3,

87–95.

FU, H., WEI, Y., TAI, C.-L., AND QUAN, L. 2007. Sketching hairstyles. In Proc. of

Fourth Eurographics Workshop on Sketch-Based Interfaces and Modeling.

GHAZANFARPOUR, D., AND DISCHLER, J.-M. 1996. Generation of 3d texture using

multiple 2d models analysis. Computer Graphics Forum 15, 3, 311–323.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture analysis/synthesis.

In Proc. of SIGGRAPH ’00, 229–238.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a sketching interface

for 3d freeform design. In Proc. of SIGGRAPH ’99, 409–416.

JAGNOW, R., DORSEY, J., AND RUSHMEIER, H. 2004. Stereological techniques for

solid textures. ACM Trans. Graph. 23, 3, 329–335.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes: Active contour

models. International Journal of Computer Vision 1, 4, 321–331.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHINSKI, D., AND WONG,

T.-T. 2007. Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26, 3,

2.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005. Texture optimization

for example-based synthesis. ACM Trans. Graph. 24, 3, 795–802.

LEFEBVRE, L., AND POULIN, P. 2000. Analysis and synthesis of structural textures.

In Proc. of Graphics Interface ’00, 77–86.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001. Real-time fur

over arbitrary surfaces. In Proc. of the 2001 symposium on Interactive 3D graphics,

227–232.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution 3d

surface construction algorithm. In Proc. of SIGGRAPH ’87, 163–169.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M. 2007. Fibermesh:

designing freeform surfaces with 3d curves. ACM Trans. Graph. 26, 3, 41.

OWADA, S., NIELSEN, F., OKABE, M., AND IGARASHI, T. 2004. Volumetric il-

lustration: designing 3d models with internal textures. ACM Trans. Graph. 23, 3,

322–328.

PERLIN, K. 1985. An image synthesizer. In Proc. of SIGGRAPH ’85, 287–296.

PIETRONI, N., OTADUY, M. A., BICKEL, B., GANOVELLI, F., AND GROSS, M.

2007. Texturing internal surfaces from a few cross sections. Computer Graphics

Forum 26, 3, 637–644.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures. In Proc. of

SIGGRAPH ’00, 465–470.

QIN, X., AND YANG, Y.-H. 2007. Aura 3d textures. IEEE Transactions on Visual-

ization and Computer Graphics 13, 2, 379–389.

SI, H. 2006. On refinement of constrained delaunay tetrahedralizations. In Proc. of

the 15th International Meshing Roundtable, 509–528.

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchical pattern mapping.

ACM Trans. Graph. 21, 3, 673–680.

TREECE, G. M., PRAGER, R. W., AND GEE, A. H. 1999. Regularised marching

tetrahedra: improved iso-surface extraction. Computers and Graphics 23, 4, 583–

598.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation using variational implicit

functions. In Proc. of SIGGRAPH ’99, 335–342.

WEI, L.-Y. 2002. Texture synthesis by fixed neighborhood searching. PhD thesis,

Stanford University.

