
Magic Canvas: Interactive Design of a 3-D Scene Prototype

from Freehand Sketches
HyoJong Shin Takeo Igarashi

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku,
113-0033 Tokyo, Japan

shin@ui.is.s.u-tokyo.ac.jp takeo@acm.org

Figure 1. An example of 3-D scene construction from a sketch in our system. The system transforms the initial 2-D sketch (left) to a 3-D
scene (right) by retrieving and placing corresponding models in a database (center). The process is interactive; the user performs sketch and
selects an appropriate model and posture with the aid of the system.

ABSTRACT
Construction of a 3-D scene consisting of multiple objects can be
tedious work. Existing 3-D editing tools require the user to choose
an appropriate model in a database first and then carefully place it
in the scene at a desired position combining various operations
such as translation, rotation, and scaling. To simplify the process,
we propose a system that takes simple 2D sketches of models in a
scene as input for 3D scene construction. The system then
automatically identifies corresponding models in a database and
puts them in the appropriate location and posture so that their
appearance matches the user’s input sketches. The system
combines a 3-D model search and a 3-D posture estimation to
obtain the result. This system allows the user to construct a
prototype of a 3-D scene quickly and intuitively.

We conducted a user study to compare our interface with
traditional menu-based UI and verified that our system was useful
for constructing a 3-D scene prototype, especially for facilitating
the exploration of various alternative designs. We expect our
system to be useful as a prototyping tool for 3-D scene
construction in various application areas such as interior design,
communication, education, and entertainment.

CR Categories: I.3.6 [Computer Graphics]: Methodology and

Techniques – Interaction Techniques

Keywords: prototype, sketch, 3-D scene

Figure 2. The basic operation of the Magic Canvas system. The
user sketches a 2-D model (left); the system then searches for an
appropriate 3-D model and arranges it to fit to the sketch (center).
The model from different angles (right).

1 INTRODUCTION
Three-dimensional (3-D) scenes are applied in various fields, such
as video games, interior design, animation, and feature films. The
design of 3-D scenes usually starts from concept sketches drawn
by a designer off-line, and then 3-D modelers create a
corresponding 3-D scene prototype. However, it is tedious and
difficult to convert a 2-D sketch into a 3-D scene that includes
multiple objects using existing graphics tools because the user
must repeat a series of operations, such as translation, rotation,
and scaling, iteratively.

To facilitate construction of a 3-D scene prototype, we propose
a sketch-based interface, Magic Canvas, for designing 3-D scenes
consisting of multiple models in a database. The user can create a
desired scene by just drawing a 2-D sketch depicting its
appearance. The user first draws rough sketches of desired models
in the scene and the system searches for the most appropriate
models from a database. The system then adjusts the position and

637

Graphics Interface Conference 2007
28-30 May, Montréal, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print form, and ACM
to publish electronically.

posture of the models so that their rendered images on the screen
match to the user’s sketches. It frees the user from manual import
of a suitable model and manual placement of the model using
editing commands in existing 3-D tools. This system has potential
application in areas other than prototyping tools for 3-D scene
design. For example, it can serve as entertainment for
nonprofessionals and as educational software for students learning
the concepts of perspective projection.

We briefly discuss related work on 3-D imaging and then
describe details of the system’s user interface and its
implementation. We further report the results of a user study we
ran to examine usability of the system. The user study showed that
this system was useful for replacing models and changing
postures for comparison with other models. Although the results
indicated that the current implementation performs well compared
to a standard interface, feedback from participants revealed a need
for fine-tuning of the interfaces.

2 RELATED WORK

2.1 Sketch-based 3-D Modeling
Many studies have proposed methods for constructing a 3-D
model from user-defined 2-D drawings. These include the
reconstruction of rectilinear models covered by planar faces
achieved via constraints solving [1] or using optimization-based
algorithms [11,12], and the reconstruction of the 3-D geometry of
a 3-D curve using energy minimization [9] or symmetric
relationships [13]. Our specific interest is in interactive sketching
interfaces for designing 3-D models using 2-D gestures. The
SKETCH system [14] is used to design 3-D scenes consisting of
simple primitives, and the Teddy system is used to design free-
form models [6]. Several extensions of the original Teddy system
have been proposed [8]. Transformation strokes system [15]
allows users to assemble existing 3D models and make a new
model or a scene by means of single strokes. Our system is most
closely related to the SKETCH system, but we combine database
searches to support the construction of 3-D scenes consisting of
existing 3-D models.

The above systems use sketching as a tool to construct
traditional 3D models, but some systems explore the possibility of
using sketching itself as a new design medium. The projective
stroke system [18] projects the user’s strokes onto a sphere
surrounding the viewpoint and the Harold system [19] projects
strokes to billboards to represent a quasi-3D scene. Bourguignon
et al.’s system allows the user to place strokes in the air that
indicate local surface contours [20]. We take a similar approach
for representing the initial sketch but also provide a way to
transform this sketch into a complete 3D model.

2.2 Sketch-based Retrieval
Funkhouser et al. [4] proposed a sketch-based retrieval system
known as the 3-D Model Search Engine. The types of query that
the user can input include a 3-D model made by Teddy [6] and 2-
D sketches from three different views. We extend their work and
add functionality to place the model in the scene at an appropriate
position, orientation, and scale. Fonseca et al. [3] proposed a
sketch-based retrieval system that searched clip-art items from a
database, but this system limited its retrieval target to 2-D vector
drawings.

2.3 Finding Camera Parameters
Although 3-D objects are usually rendered through a camera that
is already established in the 3-D world, we sometimes need to
estimate camera parameters from a projected 2-D image. Various
camera calibration methods [2] have been widely used in the field

of computer vision for determining camera parameters in 3-D
space based on a 2-D photograph. Gleicher et al. [5] proposed a
novel camera control method where the camera is controlled by
constraints on the screen.

In this paper, we propose a method to estimate the posture of a
3-D model based on a user’s sketch. Whereas the basic principles
are the same, we slightly modified typical camera parameter
estimation algorithms to deal with the high ambiguity
(imprecision) of the input sketch.

Figure 3. Screen shot of the Magic Canvas system. The numbers
in the model candidate panel and the model posture panel
represent retrieval rankings.

3 USER INTERFACE
Our system works as a 3-D scene construction system for scenes
consisting of prefabricated 3-D models in a database. The user
interactively draws the desired appearance of a model on the
screen and the system places the 3-D model in the appropriate
position, orientation, and scale. We also provide a candidate
selection interface [17] to deal with the inherent ambiguity in
hand-drawn sketches. In addition to showing the model with the
highest matching score in the 3-D scene in the most probable
posture, the system presents other possible candidates in the
database as well as other possible postures so that the user can
quickly consider alternatives.

The current system uses a database consisting of 200 ~ 300 3-D
models. The user can construct the database in many ways. For
example, the user can download models from the internet or make
a pool of models provided by model designers if he or she is in a
design-related company.

3.1 Screen
This system is composed of three panels: a sketch panel, a model
candidate panel, and a model posture panel (Figure 3). The sketch
panel is where the system displays the 3-D scene and the user
sketches. The model candidate panel shows candidates of 3-D
objects from the retrieval results, and the model posture panel
presents posture candidates of the selected model.

64 7

Figure 4. Interface overview.

3.2 General Procedure
The user draws a rough sketch in the sketch panel (Figure 4a, c).
We assign left-mouse-dragging to a free-form line drawing and
right-mouse-dragging to camera control. After finishing the sketch
of a model, the user pushes the search button and the system
shows the candidates in the model panel in the order of matching
scores. The model that has the highest retrieval score appears in
the sketch panel and is fit to the sketch automatically (Figure 4b,
d). The user can draw scribble gesture on the target strokes or the

model to delete them (Figure 4e). This system allows the user to
choose other postures in the posture panel when he or she wants to
change the posture (Figure 4f).

The user can replace the model with another candidate model
by clicking it in the model candidate panel (Figure 4g). The user
can also begin scene construction from a bitmap image. The user
interactively selects a set of strokes in the bitmap image that
represents a model using lasso selection and the system places a
corresponding 3-D model in the scene. (Figure 4h–l).

657

3.3 Arrangement and Deletion of Models
The user can place a 3-D model by sketching the projected
appearance of the model. Magic Canvas allows the user to draw
any number of strokes in an arbitrary order. It also lets the user
add an arbitrary number of ornament-scribbles inside the outline.
Furthermore, it is possible to put a new model on top of an already
arranged model by drawing strokes on it. This “stacking” method
is borrowed from the SKETCH system [14].

Model adjustment is tedious work using existing tools because
they must manually adjust the position of the model combining
translation, scaling, and rotation. This process is especially
laborious when using perspective projection because it is difficult
to recognize the exact size of the model. The user often brings a
model in the scene, adjusts its size at the initial location, moves
the model to the desired position, and then notices that the size is
inappropriate due to the perspective effect. In our system, the user
can intuitively specify the proper size of the model by directly
drawing the desired image. If a model is not satisfactory, the user
can delete it by scribbling on the target model.

3.4 Replacement of Models
The designer sometimes wants to compare different versions of a
3-D scene by replacing one model with a similar model. For
example, suppose that many bed models with similar shapes exist
in the database (Figure 5). If the user is employing existing tools,
he or she would have to reiterate the same work performed in
placing the current model to switch to a new model. The more
models are available, the more variety of scenes the user may
want to try. As a result, the process can be a very tedious and
time-consuming.

With Magic Canvas, if the user wants to replace a specific
model that is already arranged by the user, he or she just needs to
click the model on the floor. The system searches the database
again and shows the candidate models on the model panel because
the system remembers the original sketch information drawn by
the user. The user can replace the selected model by clicking
another candidate model shown in the model candidate panel.
Thus, the user can easily explore many different versions of the
scene without repeating tedious operations.

Figure 5. A bed model is replaced by an alternative model.

3.5 Using Bitmap Images
Some users might want to use existing graphics software they are
familiar with like Photoshop or Illustrator to create a 2-D sketch.
Some users might want to sketch directly onto physical paper
when they are not accustomed to drawing on a computer.

To satisfy those needs, our system allows the user to import a
bitmap image drawn by a designer. After importing an image into
the system, the user converts individual models in the scene by
selecting corresponding parts of the sketch by lasso selection. The
system takes the sketch inside the lasso as a query to the search
system, as is the case with online sketching. The limitation of
current system is not supporting recognition of an image in which
multiple objects are overlapped.

Figure 6. Sixteen contours of a computer monitor model from a
quarter-view.

4 ALGORITHMS
The system consists of two major components. One is model
retrieval from the database and the other is positioning of the
model in the scene. We describe each of these components
separately in this section.

4.1 Retrieval from the Database
Models in the database are indexed using the feature vectors
generated by examining the contours of the model rendered from
16 reference views (Figure 6). We use quarter-views to generate
these reference views because people tend to use a quarter-view
when they are asked to draw a 3-D scene consisting of multiple
models. This is in contrast to the observation that people tend to
use a front view or side view when they are asked to draw a single
model [4]. When the user completes a sketch of a model and
presses the search button, the system generates corresponding
feature vectors from the sketch and returns the models in the
database that have the most similar feature vectors.

Our system uses two types of feature vectors, a global feature
and a local feature, to improve retrieval performance. For a global
feature, we use the Centroid Fourier Descriptor [10]. Steps for
making a feature vector are summarized as follows. First, the
system traces the outermost contour of the model as in Figure 7(b).
Second, the system measures the distance from the center to the
outermost part of the contour or a sketch(Figure 7c) and plots it in
angular space (Figure 7d). Finally, the data are transformed to
frequency domain data by applying a discrete Fourier transform
(Figure 7(e)).

The actual sampling process is a bit more elaborate. Uniform
angular sampling around the center results in uneven sampling
around the boundary when the aspect ratio of the sketch is very
large or small. When the sketch is stretched horizontally, the top
and bottom regions are oversampled and the side regions are
undersampled (Figure 8a). To obtain a more uniform distribution,
the system decides sampling direction by dividing the four edges
of a bounding box into equal numbers of segments (Figure 8b).
The system then casts a ray from the center to the sampled points
on the bounding box and identifies the farthest intersection with
the given sketch (or the rendered image of a model in the
database).

The Fourier transformation generates the global feature vector
we use. We calculate the difference between two feature vectors
as follows:

∑
=

−=
n

i
ielisketch FreqFreqFV

0
,mod,

,

66 7

Figure 7. Examples of (a) the original model, (b) the outermost contour of (a), (c) taking sampling points, (d) radii data, (e) frequency data.

Figure 8. How to make a sampling point. (a) the top and bottom
regions are oversampled and the side regions are undersampled in
uniform angular sampling (b) the top, bottom and side regions are
sampled uniformly in bounding box sampling.

Figure 9. Adjusting posture. The system calculates the matrix
Mobject to fit the 3-D model to the orange user’s sketch.

where n is the number of sampling points.
As local feature vector, we use an inverse Fourier transform to

distinguish among objects having the same frequency. We
compute a smoothed contour shape by applying an inverse Fourier
transform to the low-frequency part and discarding the high-
frequency part. The system calculates the difference between two
feature vectors as follows:

∑
=

−=
n

i
ielisketch RadRadSV

0
,mod,

,

where n is sampling point number.
After finishing the calculation of both feature vector

differences, we normalize each result by dividing it by each
maximum value. The matching score is calculated as the linear
sum of the normalized scores as follows:

)1()1(normSVnormFVScore −+−= βα ,

where βα , are mean weight coefficients, normFV is the
normalized difference of the global feature vectors, and normSV is
the normalized difference of the local feature vectors (in our
current implementation, α is 1.2 and β is 0.8). The final score
of each model in the database is defined as the average between
the highest and second-highest scores among the 16 views. The
model panel shows the candidates of the 3-D model in descending
order of matching scores.

4.2 Positioning of the Retrieved Model
The task here is to determine the position, orientation, and scale of
the target model so that the model’s silhouette matches the
contour of the sketch. The system first needs to associate 2-D
sample points of the sketch contour to the corresponding 3-D
points on the model. To do this, we reuse the known relationship
between the 2-D points and 3-D points of the model in the
selected reference view. The 2-D sample points of the input
sketch are first associated with the corresponding 2-D sample
points of the reference view in the same bounding box sampling
(Figure 8) and then they are associated with the corresponding
points in the 3-D model. After establishing the correspondence
between the 2-D points on the screen and the 3-D points of the
model, the remaining task is to find the best posture parameters
(position, orientation, and scale) that minimize the distance
between the 2-D points and the projected 3-D points.

The detailed computation for posture estimation is as follows.
Assume that the points p1, p2,… pn are extracted from the user’s
sketch and v1, v2,… vn are coordinates of the corresponding 3-D
points of the model (Figure 9). We give the coordinates of an
image point q as

)(vMhq = , (1)

where v is a world-space point that projects to q, M is a
homogeneous matrix representing the combined projection and
viewing transformations, and h is a function that converts
homogeneous coordinates into 2-D image coordinates, defined by

⎥
⎦

⎤
⎢
⎣

⎡
=

4

2

4

1 ,)(
x
x

x
xxh , (2)

where the xis are components of the homogeneous point x.
 Our goal is to solve the following minimization problem:

()∑ − 2argmin pq
M

. (3)

677

Matrix M is defined by multiplying Mobject and Mcamera,
where Mobject is a matrix that decides a posture of a model and
Mcamera is a matrix constructed by combining various matrices
subject to camera parameters. Mcamera is given as the current
camera parameter setting defined by the user, so the task is to
compute Mobject. To obtain a reasonable estimation for highly
ambiguous input, we impose a couple of additional constraints to
the original camera calibration method used for photographs [2].
Rotation is limited to those around the y-axis (the model only
rotates horizontally) and scaling is limited to uniform scaling. We
also use the assumption that the model is always placed on the
ground or on an existing model beneath it. The resulting Mobject
matrix is defined as

T

TyCTx
ss

s
ss

M object

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅

⋅−⋅

=

1
0cos0sin
000
0sin0cos

θθ

θθ T

MCM
MM

M
MM

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

1
00
000
00

43

01

2

10 , (4)

where C is the height of the location where the current model is to
be placed. It should be zero when the new model is on the floor.
Given this decomposition, we compute M by solving the
following minimization problem using the Lagrange multiplier
method to emphasize uniform scaling:

)()(2
2

2
1

2
0

2 MMMpqargmin
M

−++−∑ λ . (5)

We solve eq. (5) by using the Newton’s method.
We also used camera calibration method to solve eq. (3) as a

candidate solution when eq. (5) failed. It shows a reasonable and
stable result but it does not guarantee exact uniform scaling.

5 USER STUDY

5.1 Participants
Eight participants (one female and seven males) were recruited,
mostly from the local university. All participants were frequent
mouse users and seven participants had some experience with
tablet PCs.

5.2 Apparatus
The user test was conducted on a Dell 8400 with a display
integrated tablet. The mouse was used under the traditional menu-
based UI condition and the tablet was used under the Magic
Canvas UI condition. The size of the model database was 100
models.

5.3 Procedure
We compared the Magic Canvas UI to a similar in-house system
with a traditional menu-based UI. The test proceeded as follows.
First, we asked a professional designer to draw a rough sketch of
an interior scene (Figure 10). Second, we showed the sketch to
individual participants and asked them to create a 3-D scene
resembling the rough sketch by combining 3-D models from a
database containing several similar-looking models. Third, the
designer evaluated the quality of the results. The designer was not
aware of the method used for each result.

The menu-based system provides an independent mode for
translation, rotation, and scaling and the user performs these
operations by means of traditional direct manipulation. It also
employed the same constraints used for Magic Canvas, including
uniform scaling, grounding, and horizontal rotation to make the

task easier. The user can put a model on another model with a
simple 2-D dragging operation as in [14].

Each participant performed the task using both interfaces. Four
participants used the menu-based UI first; the other four used the
Magic Canvas UI first. Before testing, each participant was
briefed on the operation of each interface. The menu-based UI
was initiated by clicking the desired model in the model panel.
The model appeared in the middle of the sketch panel and the
menu appeared if the user right-clicked on a model. Users were
allowed to practice before starting each experiment.

Figure 10. The concept sketch by the professional designer.

Figure 11. Completion time.

5.4 Results
Table 1 shows the task completion time. The Magic Canvas UI is
faster than the traditional UI overall but we can observe that there
is a case where the Magic Canvas UI is slower than the traditional
UI (last two rows in Table 1). This happens when the users spend
a lot of time experimenting with different possible models to place
in the Magic Canvas UI and then simply reconstruct the final
layout later in the traditional UI.

Table 1. Task completion time.

 Traditional UI Magic Canvas UI
Experiment

Order
Time
(sec)

Rating
(1…5)

Time
(sec)

Rating
(1…5)

731 3.5 574 3
515 4.5 398 4.5
347 3 217 3.5

Traditional UI
↓

Magic Canvas
386 3 250 4
472 5 365 4
404 3 313 2
593 4.5 709 3

Magic Canvas
↓

Traditional UI
352 3 429 4

68 7

The subjective rating of the results by the designer who offered

the concept sketch was 3.68 for the traditional UI and 3.5 for the
Magic Canvas UI on average. This result was statistically
nonsignificant, which indicates that the Magic Canvas UI was
comparable to a traditional UI in terms of the quality of results.

As for the menu-based UI, all participants reported that
selecting a model from the model list was very tedious and
bothersome work. They frequently made mistakes in selecting
menu items from the menu list. However, participants generally
found that the menu-based UI was suitable for fine-tuning.

As for the Magic Canvas UI, all participants had difficulty in
performing the fine-tuning because they attempted to create a
scene identical to the concept sketch. They also pointed out that
the wrong object appeared if the sketch was too rough and some
people were confused when retrieval failed. It was particularly
hard for the system to recognize very small sketches. All
participants were delighted when an object appeared as they
expected. Participants reported that it was advantageous to be able
to examine similar candidates and that scene construction was fast
when the retrieval results were satisfactory.

Some participants took the time to draw sketches in detail and
some took the time to replace models and change postures for
comparison with other models. The former action, drawing
sketches in detail, has the significance because the sketches are
remained and reused as the concept sketch. The latter actions,
(e.g., replacing models) were not performed with the menu-based
UI, which demonstrates that our system successfully facilitated
the exploration of several alternatives compared to traditional
menu-based interfaces. In addition, two participants drew detailed
sketches while humming a tune, which indicated that they were
enjoying the process.

6 CONCLUSIONS AND FUTURE WORK
We introduced a sketch-based interactive interface and algorithms
for quickly arranging multiple models from a database in a 3-D
scene. The user first draws a sketch on the sketch panel and then
the system retrieves a 3-D model from the database and places it
in the 3-D scene so that the rendered silhouette matches the
outermost contour of the input sketch. One important aspect of
our system is that the user’s sketch is retained in memory and
serves multiple purposes (e.g., a visual reference as a 2-D image,
a search queue for replacing the current model with new one),
whereas editing operations in standard menu-based interfaces
disappear after they are applied. One needs to perform the same
sequence of operations when replacing the current model with
some other model. Our findings showed that it is desirable to
combine our interface with an additional interface for fine-tuning
after initial placement and that it is important to provide a
supplemental interface for decreasing retrieval failure.

As a next step, we are seeking to improve the retrieval
algorithms using other information from sketches. We are
currently applying boundary information from a sketch and are
developing new algorithms that employ interior information as
well. We plan to apply a weighted least squares method to give
larger weights to specific areas, such as those in which the user
draws overlapping strokes multiple times.

ACKNOWLEDGMENTS
We thank all of the participants in the user study for their help.

REFERENCES
[1] Eggli, L., Ching-Yao, H., and Bruderlin, B.D. Inferring 3D models

from freehand sketches and constraints. Computer-Aided Design 29
(2), 101–112, 1997.

[2] Faugeras, O. Three-dimensional computer vision: A geometric
viewpoint. MIT Press, Cambridge, MA, USA, 1993.

[3] Fonseca, M., Barroso, B., Ribeiro, P., and Jorge, J. Sketch-based
retrieval of clipart drawings. In AVI’04: Proceedings of the ACM
Press, New York, NY, USA, 2004.

[4] Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A.,
Dobkin, D., and Jacobs, D. A search engine for 3D models. ACM
Trans. Graph. 22(1), 83–105, 2003.

[5] Gleicher, M., and Witkin, A. Through-the-lens camera control. In
SIGGRAPH ’92: Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 331–340. ACM
Press, New York, NY, USA, 1992.

[6] Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: A sketching
interface for 3D freeform design. In Proceedings of SIGGRAPH ’99,
pp. 409–416. ACM Press, New York, NY, USA, 1999.

[7] Ip, H.H.S., Cheng, A.K.Y., Wong, W.Y.F., and Feng, J. Affine-
invariant sketch-based retrieval of images. In CGI ’01: Proceedings
of the international Conference on Computer Graphics, p. 55, IEEE
Computer Society, Washington, DC, USA, 2001.

[8] Owada, S., Nielsen, F., Okabe, M., and Igarashi, T. Volumetric
illustration: Designing 3D models with internal textures. ACM Trans.
Graph. 23(3), 322–328, 2004.

[9] Pentland, A., and Kuo, J. The artist at the interface. Vision Science
Technical Report 114, 18–26, 1989.

[10] Safar, M., Shahabi, C., and Sun, X. Image retrieval by shape: A
comparative study. IEEE International Conference on Multimedia
and Expo, pp. 141–144, 2000.

[11] Shpitalni, M., and Lipson, H. Identification of faces in a 2D line
drawing projection of a wireframe object. IEEE Trans. Pattern Anal.
Mach. Intell., 18(19), 1000–1012, 1996.

[12] Shpitalni, M., and Lipson, H. Optimization-based reconstruction of a
3D object from a single freehand line drawing. Computer-Aided
Design, 28(8), 651–663, 1996.

[13] Tanaka, T., Naito, S., and Takahashi, T. Generalized symmetry and
its application to 3D shape generation. Visual Computer, 5(1–2), 83–
94, 1989.

[14] Zeleznik, R.C., Herndon, K.P., and Hughes, J.F. SKETCH: An
interface for sketching 3D scenes. In Proceedings of SIGGRAPH ’96,
pp. 163–170. ACM Press, New York, NY, USA, 1996.

[15] Aaron, S, Faramarz, S, and Mario, C.S. Transformation strokes. In
Proceedings of the 3rd Eurographics Workshop on Sketch-based
Interface and Modeling, Vienna, Austria, September 2006.

[16] Karthik, R., and Suyu, H. Sketch-based 3D engineering part class
browsing and retrieval. In EuroGraphics Symposium Proceedings on
Sketch-based Interfaces and Modeling, 131–138, 2006.

[17] Igarashi, T, and Hughes, J.F, A Suggestive Interface for 3D Drawing.
14th Annual Symposium on User Interface Software and Technology,
ACM UIST'01, Orlando, FL, November 11-14, 2001

[18] Tolba, O.,Dorsey, J., and Mcmillan,L.: Sketching with Projective
2D Strokes. In Proceedings of the ACM Symposium on User
Interface Software and Technology, Asheville, NC. 1999.

[19] Cohen J,M. ,Hughes, J,F, and ZELEZNIK R.C.: Harold: A World
Made of Drawings, In Proceedings of NPAR, 2000, pp. 83-90.

[20] Bourguignon, D., Cani, M,P, and Drettakis, G.: Drawing for
Illustration and Annotation in 3D, Computer Graphics Forum, 20, 3
(2001), 114-122. (Proc. Eurographics ’01)

697

Figure 12. The part of results created by menu-based UI from the user study

Figure 13. The part of results created by magic canvas UI from the user study

Figure 14. Examples by Magic Canvas UI. Input sketch (left), converted 3-D scenes (center), rotated scenes (right)

70 7

