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Abstract 
We present an interactive system that lets a user move and deform 
a two-dimensional shape without manually establishing a skeleton 
or freeform deformation (FFD) domain beforehand. The shape is 
represented by a triangle mesh and the user moves several vertices 
of the mesh as constrained handles. The system then computes the 
positions of the remaining free vertices by minimizing the 
distortion of each triangle. While physically based simulation or 
iterative refinement can also be used for this purpose, they tend to 
be slow. We present a two-step closed-form algorithm that 
achieves real-time interaction. The first step finds an appropriate 
rotation for each triangle and the second step adjusts its scale. The 
key idea is to use quadratic error metrics so that each 
minimization problem becomes a system of linear equations. 
After solving the simultaneous equations at the beginning of 
interaction, we can quickly find the positions of free vertices 
during interactive manipulation. Our approach successfully 
conveys a sense of rigidity of the shape, which is difficult in 
space-warp approaches. With a multiple-point input device, even 
beginners can easily move, rotate, and deform shapes at will. 
 
CR Categories: I.3.6 [Computer Graphics]: Methodology and 
Techniques – Interaction Techniques; I.3.3 [Computer Graphics]: 
Picture/Image Generation – Display algorithms; I.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling – 
Geometric algorithms.  

Keywords: Shape Manipulation, Deformation, Image Editing, 
Mesh Editing, Animation, Interaction 
 
1 Introduction 
 
With a 2D image or drawing at hand, a user might want to 
manipulate it—move, rotate, stretch, and bend it. The primary 
application we have in mind is an editing tool for drawing or 
image-editing systems, but our interactive shape manipulation 
technique is also useful in various applications such as real-time 
live performance [Ngo et al. 2000] and enriching graphical user 
interfaces [Bruce and Calder 1995].  
 
One popular approach for shape manipulation is to use a pre-
defined skeleton. The user manipulates the skeleton configuration 
and the system adjusts the overall shape relative to the skeleton. 
However, defining a skeleton structure for a shape is not a trivial 
task [Lewis et al. 2000] and is not effective for objects, such as 
jellies, that lack an obvious jointed structure. Another popular 
method is free-form deformation (FFD) [MacCracken and Joy 
1996] in which the user explicitly divides the space into several 
domains and manipulates each domain by moving control points 
defining it. But setting FFD domains is tedious and the user must 
laboriously manipulate many control vertices.  

This paper presents an interactive system that allows the user to 
manipulate a shape without using a skeleton or FFD. The user 
chooses several points inside the shape as handles and moves each 
handle to a desired position. The system then moves, rotates, and 
deforms the overall shape to match the given handle positions 
while minimizing distortion. By taking the interior of the shape 
into account, our approach can model its rigidity (i.e., internal 
resistance to deformation), making the result much closer to the 
behavior of real-world objects than in space-warp approaches as 
in [Barrett and Cheney 2002; Llamas et al. 2003].  
 
We use a two-step closed-form algorithm for finding the shape 
configuration that minimizes distortion. The typical approach is to 
use a physically based simulation or nonlinear optimizations 
[Sheffer and Kraevoy 2004], but these techniques are too slow for 
interactive manipulation. A key aspect of our approach is the 
design of a quadratic error metric so that the minimization 
problem is formulated as a set of simultaneous linear equations. 
Our system solves the simultaneous equations at the beginning, 
and can therefore quickly find a solution during interaction. 
Ideally we would like a single quadratic error function that 
handles all properties of a shape, but no such function exists (see 
Appendix A). We therefore split the problem into a rotation part 
and a scale part. This divides the problem into two least-squares 
minimization problems that we can solve sequentially. This 
method can be seen as a variant of the method proposed by 
Sorkine et al. [2004]. 
 
Our technique can be useful in standard dragging operations with 
a mouse, but it is particularly interesting when using a multiple-
point input device such as a SmartSkin touchpad [Rekimoto 2002] 
(Figure 1). With such a device, one can interactively move, rotate, 
and deform an entire shape as if manipulating a real object using 
both hands. This is difficult with existing shape deformation tools 
because most allow only local modification while the overall 
position and orientation of the shape remain fixed. 
 

  
Figure 1: Shape manipulation using a SmartSkin touchpad. The user can 
interactively move, rotate, and deform the shape using both hands as if 
manipulating a real object. 

 



2 Related Work 
 
Shape manipulation techniques fall roughly into two categories. 
One is to deform the space in which the target shape is embedded; 
the other is to deform the shape while taking its structure into 
account. 
 
Deformation using skeletons, FFD, and other space-warp 
approaches belong to the first category. With skeletons, each point 
in the shape is associated with a coordinate frame defined by a 
bone [Lewis et al. 2000]. In FFD, each point is associated with a 
closed region in a FFD grid [MacCracken and Joy 1996]. Other 
space warp techniques deform the global space [Milliron et al. 
2002]. Beier and Neely used space deformation for morphing 
[1992]. Twister deforms the global space according to two 6-DOF 
controls [Llamas et al. 2003], and Barrett and Cheney [2002] used 
space-warp deformation for digital image editing. Brookstein 
[1989] used thin-plate splines to find a space deformation that is 
defined by several control points. A drawback of these approaches 
is that they model the rigidity of the ambient space, rather than 
that of the shape itself, and thus the resulting deformation differs 
greatly from the behavior of real objects. 
 
The second category includes physically based methods, the most 
popular of which are mass-spring models [Gibson and Mirtich 
1997]. These are very easy to implement, but their behavior is too 
elastic for many applications and they often converge slowly. In 
addition, careful parameter tuning is required to make them really 
work. More physically accurate simulation is possible with finite-
element methods [Celniker and Gossard 1991], but these are very 
complicated and expensive to solve, making them inappropriate 
for interactive manipulation of simple drawings. The ArtDefo 
system [James and Pai 1999] achieved physically accurate, 
interactive shape deformation using boundary-elements, but it is 
limited to very small deformations such as poking the surface and 
is not applicable to large deformations like bending an arm.  
 
The work presented here belongs to the second category. Our goal 
is to introduce internal model rigidity into shape manipulation. 
However, instead of using physically based models, we use 
simple geometric approach similar to a technique used in [Alexa 
et al. 2000]. They obtain an as-rigid-as-possible interpolation 
between shapes by computing a rigid transformation for each 
triangle element geometrically and stitching them together. 
Similarly, we achieve as-rigid-as-possible manipulation by 
geometrically minimizing the distortion associated with each 
triangle in a mesh. Sheffer and Kraevoy [2004] introduce a similar 
deformation tool, but use an iterative computation that is too 
expensive for interactive manipulations, especially when the 
control vertices move quickly. 
 
The algorithm we use can be seen as a variant of the Laplacian 
surface-editing method proposed by Sorkine et al. [2004]. They 
achieved fast detail-preserving deformation by using rotation- and 
scale-invariant Laplacian coordinates. They also proposed scaling 
the Laplacians of the deformed shape back to their original scale 
and re-solving. Similarly, we add a scale-preserving effect to the 
initial deformation process. We show that this scale-preservation 
effect makes possible more dynamic manipulation than is seen in 
their paper’s examples, where the user fixes most of the shape and 
moves only a specific region of interest.  
 
 

3 Overview 
 
We start with an overview of the system to establish a context for 
the core algorithms described in the next section.  
 
The user first imports a 2D shape—represented either by vector 
graphics or a bitmap image—into the system. The only 
requirement is that the boundary of the shape can be represented 
as a simple closed polygon. For bitmap images, we currently 
manually remove backgrounds and apply automatic silhouette 
tracing using the marching squares algorithm. The system then 
generates a triangulated mesh inside the boundary. Various 
triangulation methods are available [Shewchuk 1996], but better 
manipulation results are achieved by using near-equilateral 
triangles of similar sizes across the region. We use a particle-
based algorithm to obtain such a mesh [Markosian 1999]. Starting 
with a standard constrained Delaunay triangulation, the system 
iteratively refines the mesh by adjusting vertex positions and 
mesh connectivity. To work at interactive rates, it is important that 
the mesh not be too large. Our current implementation generates 
meshes with 100-300 vertices within a few seconds. The resulting 
triangulation is registered as the “rest shape,” and the system 
performs a pre-computation (which we call “registration”) to 
accelerate the computation during the interaction (Figure 2a). 
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a) Triangulation and registration b) Compilation c) Manipulation  
Figure 2: Overview of the system. The system first triangulates the 
original shape, and performs some pre-computation. The user adds 
handles. Moving the handles results in a fast deformation. 

 
The user manipulates the shape by indicating handles on the shape 
and then interactively moving the handles (Figure 2b,c). The user 
clicks on the shape to place handles and drags the handles to move 
them. We currently let the user place handles only at existing 
mesh vertices. Ideally, the system would allow the user to put 
handles at arbitrary locations and modify the mesh structure to 
include the handle. We plan to incorporate such a re-meshing 
mechanism into the system in the future. 
 
Our system also supports multiple-point input devices. We 
currently use SmartSkin [Rekimoto 2002], which can track 
multiple fingers touching its surface. By projecting the drawing 
onto the SmartSkin we bring the user's fingers into direct 
correspondence with the constraint points (Figure 1). This lets the 
user grasp and manipulate the drawing as if manipulating a real-
world object. We are also testing a Wacom tablet with two 
orientation-sensitive mice. In this case, each mouse is associated 
with a couple of vertices which are moved and rotated by the 
mouse (Figure 16). The interface has some similarity to Twister 
[Llamas et al. 2003], but the operation using our system is more 
like manipulation of physical objects while their system is 
designed for model construction.  
 
Shape manipulation is first applied to the triangle mesh; the 
system then maps the original drawing or image from the original 
mesh to the deformed mesh. When manipulating vector graphics, 



we use the barycentric coordinates of each vertex within the 
corresponding triangle of the mesh. When manipulating a bitmap 
image, we simply use standard linear texture mapping. 
 
The system performs additional pre-computations when new 
handles are added or removed (Figure 2b). We call this process 
“compilation” because this process actually prepares a function 
that takes the handle configuration as input and returns the 
resulting shape as output. During interaction, the system 
repeatedly sends the updated handle configuration to this function.  
 
4. Algorithm 
 
The input to the algorithm is the set of all xy-coordinates of the 
constrained mesh vertices (Figure 3a) and the output is the xy- 
coordinates of the remaining free vertices that minimize the 
distortion associated with all triangles in the resulting mesh 
(Figure 3d). The central challenge is to find an appropriate 
definition for the distortion of an individual triangle. Our strategy 
is to design an error metric that is quadratic in its free variables so 
the system can solve the minimization problem as a simple matrix 
computation.  
 
Ideally we would like a single quadratic error function that 
appropriately represents overall distortion. We have examined 
various possibilities, but finally concluded that it is impossible to 
design such a function (see Appendix A). Our solution is to split 
the problem into a rotation part and a scale part so that each part is 
handled by an independent quadratic error function. With this 
decomposition, we can obtain the final result by sequentially 
solving two least-squares problems. 
 
Given the coordinates of the constrained vertices, the first step 
generates an intermediate result by minimizing an error metric 
that prevents shearing and non-uniform stretching but permits 
rotation and uniform scaling (Figure 3a). The second step takes 
this result and adjusts the scale of each triangle. This second step 
is further decomposed into two sequential processes. The system 
first fits each original triangle to the corresponding intermediate 
triangles without changing scale (Figure 3b), and then computes 
the final result by minimizing an error metric that represents the 
difference between the fitted triangle and the resulting triangles 
(Figure 3c). The following subsections describe each step in detail. 
 

a b c  

Figure 3: Overview of the algorithm. For the given handle configuration, 
the system first generates an intermediate result by minimizing conformal 
(i.e., scale-independent) distortion (a). The system then fits triangles from 
the rest shape to corresponding triangles in the intermediate result (b). The 
system generates a final result (c) by minimizing the difference between 
the fitted triangles and the corresponding triangles. 

 
4.1 Step one: scale-free construction 
 
Step one generates an intermediate result by minimizing an error 
function that allows rotation and uniform scaling. The input is the 

xy-coordinates of the constrained vertices and the output is the xy-
coordinates of the remaining free vertices. Note that this algorithm 
does not use the previous result as an initial configuration, as do 
physically-based simulation or relaxation methods. Instead, we 
provide a closed-form solution for the problem. 
 
This step corresponds to the 2D case in Laplacian editing [Sorkine 
et al. 2004]. Our formulation is slightly different in that we use a 
triangle mesh rather than the boundary and we assign quadratic 
error functionals to each individual triangle rather than each 
vertex. We believe that our formulation is slightly easier to 
implement but their formulation can certainly be used instead of 
ours in this step.  
 
The error function for a deformed triangle {v0′, v1′, v2′} is defined 
as follows (Figure 4). For the corresponding triangle in the rest 
shape {v0, v1, v2}, the system first computes relative coordinates 
{x01, y01} of v2 in the local coordinate frame defined by v0 and v1 
(R90 denotes rotation counterclockwise by 90 degrees):  
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Figure 4: Error metric used in step one. v2

desired is obtained by fitting the 
original triangle to the target triangle by translation, rotation, and scaling 
so that v0′ and v1′ match v0 and v1. 

 
The error for the entire mesh is simply the sum of errors for all 
triangles in the mesh. Since the error metric is quadratic in v′ 

=(v0x′, v0y′, …, vnx′, vny′) T, we can express it in matrix form: 
′′=′ Gvvv

T
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The minimization problem is solved by setting the partial 
derivatives of the function E1{v′} with respect to the free variables 
u = (u0x, u0y,…, umx, umy)T in v′ to zero. By reordering v′ to put the 
free variables first we can write v′T=(uT qT) where q represents the 
constrained vertices. This gives us 
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We rewrite this as 
0BquG =+′                                     (8) 

Note that G′ and B are fixed and only q changes during 
manipulation. Therefore, we can obtain u by simple matrix 
multiplication by pre-computing G′-1B at the beginning. G′ is a 
2m×2m sparse, symmetric matrix with approximately 12 entries 
per column, because of the near-equilateral structure of the mesh. 
 
Computing the solution in step one, as shown in Figure 3a, is very 
fast; it requires only one matrix multiplication during interaction. 
Step one generates reasonable results as long as the distances 
between handles are close to their distances in the rest shape, as 
shown in [Sorkine et al. 2004]. For example, one can successfully 
translate or rotate the shape using this step alone. However, since 
the error function does not capture changes in scale, the shape 
inflates as the handles move away from each other and shrinks as 
they approach each other. We fix this problem in step two. 
 
4.2 Step two: scale adjustment  
 
This step takes the intermediate result from step one (the xy-
coordinates of all vertices) as input and returns the final result 
(updated xy-coordinates of the free vertices) by adjusting the scale 
of the triangles in the mesh (Figure 3b, c).  
 
4.2.1 Fitting the original triangle to the intermediate 
triangle 
 
The system first fits each triangle in the rest shape to the 
corresponding triangle in the intermediate result, allowing rotation 
and translation but not shearing or scaling (Figure 3b). There are a 
couple of methods for this sort of fitting; we use the following 
method in our current implementation. 
 
Given a triangle {v0′, v1′, v2′} in the intermediate result and 
corresponding triangle in the rest shape {v0, v1, v2}, the first 
problem is to find a new triangle {v0

 fitted, v1
 fitted, v2

 fitted} that is 
congruent to {v0, v1, v2} and minimizes the following functional 
(Figure 5): 
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Since it is difficult to obtain such a result directly, we approximate 
it by first minimizing the error allowing uniform scaling and then 
adjusting the scale afterwards.  
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Figure 5: Fitting the original triangle to the intermediate triangle by 
translation and rotation. 

 
Using the coordinates x01 and y01 defined in Section 4.1, we can 
express v2

fitted using v0
fitted and v1

fitted: 
fitted
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so the fitting functional becomes a function of just the coordinates 
of v0

fitted and v1
fitted, a quadratic in the four free variables of 
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fitted)T. We can minimize Ef by setting 
the partial derivatives of Ef over the four free variables to zero. 
The result is an easily-solved 4×4 linear system. In matrix form,  
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F is fixed for a given mesh and C is defined by the result of step 
one. Therefore, we compute F and invert it during registration. By 
solving this equation, we obtain a newly fitted triangle {v0

fitted, 
v1

fitted, v2
fitted} that is similar to the original triangle {v0, v1, v2}. We 

make it congruent simply by scaling the fitted triangle by the 
factor of ||v0

fitted-v1
fitted||/||v0-v1||. We apply this fitting operation to 

all triangles in the mesh. Note that each vertex of the original 
mesh appears in several triangles and hence corresponds to 
multiple vertices in the fitting triangles (gray triangles in Figure 
3b). Reconciling these distinct locations is the sole remaining task. 
 
4.2.2 Generating the final result using the fitted 
triangles 
 
The system now computes the final xy-coordinates of the free 
vertices for given xy-coordinates of the constrained vertices by 
minimizing the difference between the resulting triangle in the 
mesh and the fitted triangle (Figure 2d). Note that we use only the 
fitted triangles here and no longer need the intermediate mesh. 
This process is very similar to the assembly process in [Alexa et al. 
2000; Sumner and Popovic 2004; Yu et al. 2004]. 
 
We again begin the explanation with the single triangle {v0, v1, v2} 
(Figure 6). Given the corresponding fitted triangle {v0

fitted, v1
fitted, 

v2
fitted}, we define a quadratic error function by  
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Note that we associate an error with each edge, not each vertex. 
That is, we use the rotation of the fitted triangle and ignore its 
position. The translation is solved for as a side effect only. The 
error is clearly minimized when the triangles {v0′′, v1′′, v2′′} and 
{v0

fitted, v1
fitted, v2

fitted} are identical. But since the vertex v0′′, for 
instance, may lie in several triangles, the optimal position for v0′′ 
will be some average of the positions desired by each triangle in 
which it appears. 
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Figure 6: Error metric used in step two. This metric measures the 
difference between the edge vectors of the fitted triangle and those of the 
target triangle. 

The error for the entire mesh can be represented in a matrix form: 
cE v +′′+′′′′=′′ fvHvv T
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Note that H is defined by the connectivity of the original mesh 
and is independent of the fitted triangles, while f and c are 
determined by the fitted triangles and thus change during 
interaction. 
We minimize E2 by setting the partial derivatives of E2 over free 
vertices u to zero. By reordering v′′, we can write v′′ T = (u T q T). 
This gives us 
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We rewrite this as 
0fDquH =++′ 0                           (16) 

 
H′ and D are fixed but q and f0 change during manipulation. We 
therefore pre-compute LU factorization of H′ at the beginning and 
solve the equation using it during interaction. Actually, the x and y 
components are mutually independent in H′, so we can perform 
the above computation for each component separately. For each 
component, H′ is an m×m sparse, symmetric matrix with 
approximately 6 entries for each column.  
 
4.3 Algorithm summary  
 
Our algorithm can be summarized as follows. 
1 Registration (when a new rest shape is defined) 

1-1 Construct matrices G and H using the vertex coordinates in 
the rest shape. 

1-2 Construct F and invert it for each triangle. 
2 Compilation (when handles are added or removed) 

2-1 Construct G′ and B from G and compute G′-1B. 
2-2 Construct H′ and D from H and construct LU factorization 

of H′. 
3 During manipulation (when handles are moved) 

3-1 Obtain intermediate coordinates for the free vertices as        
-G′-1Bq where q represents the coordinates of handles. 

3-2 Construct C for each triangle using the intermediate vertex 
coordinates. Multiplying F-1 and C and adjust its scale to 
obtain each fitted triangle. 

3-3 Construct f0 using the fitted triangles and obtain the final 
result by solving H′u+Dq+f0=0 using pre-computed LU 
factorization.  

 
5. Extensions 
 
This section discusses various adjustments necessary to make the 
system work in practice, as well as other enhancements.  
 
5.1 Collision detection and depth adjustment 
 
We must be careful when different parts of the shape overlap. If 
we assign depths inappropriately, the overlapping parts can 
interpenetrate (Figure 7 middle). One problem is that one cannot 
assign static consistent depth values that work for all possible 
deformations. Figure 8 shows a simple case. Suppose we had 
continuous depth values across the shape. Given three points a, b, 
and c, we can assume that a’s depth <  b’s depth <  c’s depth. If 
we bring vertex b between a and c by deformation, there must 
exist an edge where one vertex is deeper than b and the other is 
shallower. This produces the undesirable artifact in Figure 8. 
 
Our approach is to dynamically adjust depth during interaction 
(Figure 7 right). We continuously monitor the mesh for self-
intersection and assign appropriate depth values to the 
overlapping parts. This process is similar to the hidden-line 
removal algorithm in [Hornung 1984]. We first locate boundary 
intersections and then search for overlapping regions starting from 
those boundary intersections. Determining the depth order of the 

overlapping regions is still an open problem. We currently use a 
statically predefined order as a starting point. We have also 
implemented a very simple mechanism to achieve frame-to-frame 
coherence, but it is still in preliminary form. 
 

                      
           rest shape         without depth adjustment       with depth adjustment 

Figure 7: Collusion detection and depth adjustment. Without appropriate 
depth assignment, one can see interpenetration (center). We detect 
overlapping regions and adjust depth on the fly. 

 
Figure 8: Limitation of static depth assignment.  

 
5.2 Weights for controlling rigidity 
 
Because our algorithm minimizes a simple error functional, 
adding different weights to different parts of the mesh is 
straightforward. We do this to control the local rigidity of the 
shape. We provide a painting interface in which the user can make 
certain parts stiffer than others. We currently use a weight of 
10000 for the painted triangles and 1 for the others. This is useful 
in preventing important features such as a head from being 
distorted (Figure 9). It is possible to enforce perfect rigidity by 
reducing the number of free variables in the minimization, thus 
obtaining similar results, but we found that weighting is more 
flexible, and produces more pleasing results under extreme 
distortions.. 

 
rest shape                   without weights                 with weights  

Figure 9: Adjusting rigidity with weights. By adding extra weights to 
important regions, one can prevent undesirable distortion. 

 
5.3 Animations 
 
Our shape manipulation technique is useful in making 2D 
animations, for example by setting the character shape at each key 
frame. This is especially helpful when one wants to animate 
drawings with detailed surface decoration, since drawing them 
manually is tedious. It also makes it practical to make animations 
by deforming photographed objects. 
 
Another approach is to use it for performance-driven animation. 
By manipulating multiple control vertices simultaneously, one can 



make interesting animations by recording live performances.  We 
are currently testing a technique similar to Ngo et al.’s system 
[2000] and facial animation example in [Lewis et al. 2000]. The 
user first sets a pose by manipulating control vertices and 
associates the control vertex configuration with a specific point on 
the canvas. After setting several such key poses, the user can 
direct multiple control vertices simultaneously by simply moving 
a control cursor. The system computes an appropriate control 
vertex configuration by interpolating nearby key poses using a 
radial basis function (Figure 10).  
 

 
Figure 10: Designing performance-driven animation using spatial 
keyframing. The users specify a set of key poses (yellow mark) by 
manipulating handles. They can then manipulate the entire body by 
dragging a control cursor (red mark). The system blends nearby poses 
using a radial basis function.  

 
The resulting motion is very smooth and lively because the user’s 
own hand movement appears in the resulting animation. In 
addition, it is much easier and faster than traditional temporal 
keyframing using existing shape deformation techniques.  
 
5.4 As-rigid-as-possible curve editing 
 
We have also applied our two-step algorithm to curve editing. For 
curve editing, we take a polyline instead of a triangle mesh as 
input. We first apply 2D Laplacian curve editing [Sorkine et al. 
2004] and then apply our scale adjustment procedure to the result. 
Figure 11 shows an example operation. Without scale adjustment, 
the curve grows and shrinks freely. With scale adjustment, the 
curve behaves as if it is rigid.  
 

 
without scale adjustment                  with scale adjustment 

Figure 11: Curve editing with and without scale-adjustment procedure. 
Without scale adjustment, the stretched region grows and the squashed 
region shrinks. 

 
To let the user adjust the influence region dynamically during 
interaction, we introduce a peeling interface in which the 
influence region grows as the user drags the curve father away 
(Figure 12). This frees the user from specifying an influence 
region beforehand and makes the interaction very intuitive. As an 

option, we also allow the user to explicitly specify the influence 
region by putting virtual pushpins along the curve before dragging. 
A similar grab-and-pull curve editing tool is used in Macromedia 
Flash, but it allows only local changes and does not let the user 
change the influence region.  
 

 
Figure 12: Curve editing with a peeling interface. As the user pulls the 
curve further away, the influence region grows (left to right). The user can 
also explicitly specify the region beforehand (bottom left). 

 
6. Results 
 
We have applied our technique to various drawings and images. 
Figure 13 shows the manipulation of arms and legs by controlling 
the end points. This is similar to the pin-and-drag interface for 
articulated characters [Yamane and Nakamura 2003], but our 
system works with no explicit skeleton structures. Figure 14 
shows manipulation by controlling the internal points. Note that 
the arms and legs are displaced appropriately due to the rigidity of 
the body. By contrast, a mass-spring model can take some time to 
propagate the effect to the entire body. Figure 15 shows 
manipulation of a shape that lacks articulated structure; note that 
the shape is stretched and squashed appropriately. Figure 1 and 16 
show applications of our technique to images. The natural 
deformation effects give the feel of manipulating real 3D objects. 

   
Figure 13: Manipulation of a shape by controlling the end points.  

   
Figure 14: Manipulation of a shape by controlling the internal points. The 
user moves the handle at the center horizontally and the entire body is 
deformed appropriately.  

   
Figure 15: Stretch and squash of a non-articulated shape. 



 

Figure 16: Manipulation of an image using two rotation sensitive mice. 
 
Figure 1 shows a snapshot of operation using a SmartSkin multi-
point touchpad [Rekimoto 2002]. Test users found it easy to bend 
and stretch the shapes, and enjoyed experimenting with the shapes 
and the movements they could produce. Since the deformation is 
updated in real time and is easy to control, several fingers can be 
used to steer different parts of the shape and perform simple 
animations. Two users can work together to create more complex 
motion.  
 
Table 1 summarizes the performance of the current 
implementation. This data is for a system running Java 1.4 on a 
Windows XP notebook PC (Pentium III 1GHz processor and 756 
MB of memory). We use a native sparse LU solver [Davis 2003] 
for matrix computations. We obtained the data by running the 
corresponding routines 100 times, so these are very rough 
estimates severely affected by garbage collection and CPU cache. 
The result indicates that step two is the bottleneck during 
manipulation. In our experience, one can obtain quite nice results 
with a very coarse mesh with fewer than 100 vertices (Figure 17 
left). All examples in this paper are obtained with similar mesh 
sizes. In this range, the system shows completely real-time 
performance and the user experiences no delay. One can obtain 
smoother results by using a finer mesh but the interaction 
eventually becomes choppy. The delay becomes obvious at a 
vertex count of around 300 on our notebook PC (Figure 17 right). 
 
Table 1: Sample running times (milliseconds) for the meshes in Figure 17 

Registration Compilation Update # of 
vertices Step1 Step2 Step1 Step2 Step1 Step2

93  16 18 14 4 0.06 2.2
150 42 38 29 8 0.09 3.5
287 160 107 72 19 0.16 7.5

 

     
Figure 17: Example triangulations. The number of vertices is 85, 156, 298 
respectively and three handles are attached to each. 

 
We have experimentally examined the effect of uneven 
triangulation on our algorithm and found it to be fairly robust 
against irregularly spaced mesh. Figure 18 shows an example. The 
dense and sparse regions are evenly squashed and stretched, and 
similar behavior is observed for bending. This can be explained as 
follows. If triangle size is reduced by a factor of 1/n, the distortion 
associated with each triangle decreases by a factor of 1/n2. At the 
same time, the density of triangles becomes n2 times higher. As a 
result, triangle size does not affect the total cost. This does not 

apply for curve editing, where the density increases only linearly. 
The error in a dense region is estimated as smaller, thus making 
the region softer. The simplest solution is to approximate the 
curve by an evenly spaced polyline and apply our algorithm to the 
resampled curve. 
 

rest shape squashed

stretched

 
Figure 18: The effect of uneven triangulation. Our algorithm is not 
strongly affected by the mesh density. 

 
7. Limitations and Future Work 
 
The two-step algorithm introduced here is merely a practical 
approximation to achieve interactive performance. It works 
surprisingly well in most cases as shown in our examples, but in 
some cases its limitations are revealed. Figure 19 shows an 
example. When the control handle is moved one might expect the 
result shown on the right, but our algorithm returns the result 
shown in the middle due to its inherent linear nature. The free 
vertices only move parallel to the line connecting the constrained 
vertices. To handle these cases, a more accurate distortion metric 
similar to the one in [Sheffer and Kraevoy 2004] is probably 
necessary.  
 

 
     rest shape                  current results              physically plausible results 

Figure 19: A limitation of our algorithm. If the user stretches a shape (left), 
the current algorithm returns the result in the middle; the results on the 
right would be more desirable. 

As is discussed in [Alexa et al. 2000], a linear mapping from an 
original triangle to a deformed triangle ignoring the translation 
factor can be represented by a 2×2 affine transformation matrix A. 
Using singular value decomposition (SVD), the matrix A can be 
represented as a combination of a rotation part Rγ, a shearing part 
sh, and a scaling part sx, sy [Shoemake and Duff 1992]: 
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Given this formulation, one can obtain as-rigid-as-possible 
mapping by minimizing |sh|, |sx-1|, and |sy-1|. We would like to 
experiment with this by finding a way to minimize these errors 
directly. 
 
Volume preservation is another feature that the current 
formulation cannot achieve [Angelidis et al. 2004]. With volume 
preservation, an object is squashed vertically when it is stretched 
horizontally. In the decomposition above, volume preservation is 
simulated by minimizing |sxsy-1|. We tried to implement this effect 
by adjusting the target triangle in the step 2, but the result was not 



very satisfactory. Our experience suggests that it is necessary to 
implement volume transfer between triangle elements to obtain a 
globally convincing result. We plan to explore this path in the 
future.  
 
We very much want to extend the technique to 3D shapes. The 
ability to freely move, rotate, and deform a 3D object is very 
attractive in various applications such as object manipulation in 
virtual environments. Unfortunately, the extension is not 
straightforward. We have experimented with various formulations 
but we have yet to find quadratic error functions equivalent to 
those we use in 2D, and it seems that we must take a very 
different approach.  We plan to continue our exploration. 
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A  Proof of nonexistence of quadratic error metric 
 
We claimed that there is no quadratic function of the locations of 
the deformed mesh vertices that measures the distortion from the 
original mesh, in the sense that it is minimized exactly when the 
deformed mesh is oriented congruent to the original.   
The proof is by contradiction: Suppose there is such a measure, 
and apply it to a one-triangle mesh with an original triangle ((0,0), 
(1,0), (0,1)) and a deformed triangle ((0,0), (x,y), (u,v)). This gives 
a function T(x,y,u,v) that is quadratic in the variables x,y,u,v. By 
subtracting the constant term, we can get a new quadratic with no 
constant term, but with exactly the same minima. Because rotation 
through 180 degrees is an orientation preserving congruence, we 
know that T(x,y,u,v)= T(-x,-y,-u,-v) for all (x,y,u,v). This means 
that T can be written with no linear terms. We already removed 
the constant term, so T is “pure quadratic” (i.e., all terms have 
total exponent two).  
The function T must be “positive semidefinite” (i.e., T(x,y,u,v) >= 
0 for all (x,y,u,v)),  because if T(x0,y0,u0,v0) = K < 0, then 
T(tx0,ty0,tu0,tv0) = t2K < 0; as we increase t, the values of T 
become arbitrarily negative; hence T has no minimum value, 
which contradicts the hypothesis. 
However, for such a function, the value at (0,0,0,0) is zero, and 
this is certainly the global minimum. But (0,0,0,0) represents a 
degenerate triangle that is not congruent to our chosen one. This is 
a contradiction. 
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