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Figure 1: (a) 105× 73× 78 head MRI data. (b) Drawing a 2D stroke along the contour of the brain. (c) Resulting 3D region. The system
automatically computes the depth of the stroke and applies constrained segmentation.

Abstract

It is difficult to obtain a specific region within unsegmented vol-
ume data (region of interest, ROI). The user must first segment the
volume, a task which itself involves significant user intervention,
and then chooses a desired target within the 3D space. This paper
proposes a simple and intuitive user interface for the task: the user
traces the contour of the target region using a 2D free form stroke
on the screen, and the system instantly returns a plausible 3D re-
gion inside the stroke by applying a segmentation algorithm. The
main contribution is that the system infers the depth information of
the ROI automatically by analyzing the data, whereas existing sys-
tems require the user to provide the depth information explicitly.
Our system first computes the 3D location of the user-specified 2D
stroke based on the assumption that the user traced the silhouette of
the ROI, that is, the curve where the gradient is perpendicular to the
viewing direction. The system then places constraint points around
the 3D stroke to guide the following segmentation. Foreground con-
straints are placed inside the stroke and background constraints are
placed outside the stroke. We currently use the statistical region-
merging algorithm of Nock et al. [Nock and Nielsen 2004a] to
perform the segmentation. We tested our system with real-world
examples to verify the effectiveness of our approach.

CR Categories: D.2.2 [Software Engineering]: Design Tools and
Techniques—User interfaces I.4.6 [Image Processing and Com-
puter Vision]: Segmentation—Pixel Classification

Keywords: User interface, Volume graphics, Segmentation

∗e-mail: sowd@acm.org
†e-mail: frank.nielsen@acm.org
‡e-mail: takeo@acm.org

1 Introduction

Volume segmentation is the process of splitting volume data into
several perceptual or semantic units. It is a fundamental procedure
that is required to obtain useful information from the volume re-
gion, such as its shape, topology, and various measurements (cubic
volume, number of components, etc.). The importance of volu-
metric segmentation has been widely recognized for about thirty
years and many sophisticated segmentation algorithms have been
proposed. However, no fully automated method is yet available be-
cause segmentation is dependent on the observer’s subjective inter-
pretation, which is impossible to obtain without user intervention.
Most segmentation methods have focused on low-level features,
such as edge detection and texture analysis, and have achieved some
degree of success. The difficulty is in high-level recognition that is
related to the semantics of data. For example, suppose we have a
scene that contains a bunch of grapes on a dish. Both “a bunch
of grapes” and “a dish” are semantic elements, which may consist
of more than one low-level feature. The user may want to carve
out only one grape, or the entire bunch, or even the entire bunch
along with the dish. These options are all probable, depending on
the user’s intent. Therefore, it is crucial for the user to give appro-
priate guiding information to get the desired segmentation result.
From the user’s perspective, one problem with 3D volumetric seg-
mentation is that 3D guiding information is difficult to specify, as
the typical input device is a mouse, which provides only 2D infor-
mation. Recent work tried to deal with this problem by allowing
the user to draw strokes on the cross-section of volume data that
roughly indicate foreground and background regions [Tzeng et al.
2003]. This stroke information is used to train a classifier that is de-
signed for segmenting voxels. One drawback of this system is that
it requires much user interaction: the user has to specify the cutting



plane and provide several strokes to train the classifier. We propose
a simple interface for specifying a region of interest. The user sim-
ply delineates the ROI on the rendered image using a 2D free-form
stroke. The system automatically computes the missing depth in-
formation and returns a volumetric region inside the stroke by per-
forming segmentation inside the stroke. The user no longer needs to
specify foreground and background constraints in 3D space manu-
ally. This paper describes the user interface and the implementation
details of our prototype system. We also present some segmentation
examples using real-world datasets.

2 Previous work

Image segmentation has received much attention and has been ex-
plored intensively in the 2D domain. Many different approaches
have been proposed, including thresholding, k-means clustering,
deformable models, watershed segmentation, graphcut algorithms,
level-set methods, and the Hough transform. We will not review
all existing methods here. An interested reader should refer to
the survey paper [Pham et al. 1999]. Instead, we will explain a
few promising approaches. The most common algorithms opti-
mize partitions of weighted neighborhood graphs [Yu and Shi 2004;
Felzenszwalb and Huttenlocher 1998; Shi and Malik 2000]. These
graph-partitioning problems can be solved either locally using fast
greedy decision heuristics [Felzenszwalb and Huttenlocher 1998;
Nock and Nielsen 2004a] or globally by computing decompositions
[Yu and Shi 2004; Shi and Malik 2000] of matrices induced from
these graphs. Segmentation algorithms designed primarily for 2D
data are often applicable to 3D with little or no modification. The
most frequently used volume classification tool, which is a super-
set of volume segmentation, is the transfer function [Pfister et al.
2001]. This technique is explored mainly in the context of vol-
ume visualization. Traditionally, a transfer function maps the orig-
inal voxel values to color and opacity values directly [Drebin et al.
1988]. Recent work generates transfer functions that capture larger
structures, such as higher-order gradients [Kniss et al. 2001] and
topology [Takahashi et al. 2004].

Unfortunately, no completely automatic image segmentation algo-
rithm is possible because segmentation depends on the semantic
interpretation of an image, which is very difficult for computers
to emulate. Therefore, recent systems seek to incorporate human
control into the segmentation task. Examples of such systems for
2D imaging are the Lazy Snapping system [Li et al. 2004] and the
Crayons system [Fails and Olsen 2003]. It is especially difficult to
control 3D segmentation because the typical input device is a 2D
mouse. The most reliable method is to isolate a slice of the volume
and specify the contour of the ROI manually [Hastreiter and Ertl
1998]. This information is then propagated to adjacent slices using
a region-growing technique. Alternatively, the user may place seed
points for region growing on the cross-sectional plane [Sherbondy
et al. 2003]. These techniques require a fair amount of user inter-
action. Setting transfer functions is indirect from the viewpoint of
user interaction [He et al. 1996; Pfister et al. 2001]. Recently, Tzeng
et al. presented a user interface for providing high-level classifica-
tion information that involves drawing freeform strokes on a cross-
sectional plane roughly [Tzeng et al. 2003]. The user cuts the data
perpendicular to each axis and specifies foreground and background
regions using a painting tool. By observing the gradient, location,
and neighboring voxel values, as well as the voxel value itself, this
system captures local texture and positional information on a voxel.
Nock and Nielsen describe a fast, provably good, region-merging
algorithm [Nock and Nielsen 2004b] based on the statistical analy-
sis of regions. Their method easily generalizes [Nock and Nielsen

2004a] to incorporate user-defined constraints and is directly appli-
cable to 3D.

3 User interface

We first describe the system from the user’s perspective. After the
user loads a volumetric model, the system renders it using a tra-
ditional volume-rendering method. Here, the user can apply any
rendering technique to enhance the appearance of the model. Cur-
rently, our system allows the user to modify opacity-transfer, color-
transfer, and gradient-enhancement functions [Lichtenbelt et al.
1998]. The user can change the view direction, scale, and these
transfer functions interactively, to locate a target ROI in the vol-
ume.

To select a ROI, the user simply traces at least a part of the contour
of the ROI on the screen using a 2D freeform stroke (Figure 1b).
We currently assign dragging while pressing the left mouse button
to draw freeform strokes. The current implementation requires that
the user trace the contour in a clockwise direction. In other words,
the area to the right of the stroke’s drawing direction is recognized
as the target region. The system shows hatching along the stroke to
indicate this constraint. The width of the hatched region roughly in-
dicates the allowable error margin. The system automatically com-
putes the depth of the stroke so that the stroke is on a region bound-
ary in the 3D space and applies segmentation based on the fact that
the right hand side of the 3D stroke is inside the region. Finally, the
system returns a volumetric region as either voxels in the volume
(Figure 1c) or a boundary surface computed using the Marching
Cubes algorithm [Lorensen and Cline 1987] (Figure 7d,f). The al-
gorithm is based on the assumption that the user’s stroke traces the
contour of the ROI closely. Consequently, it may fail if the stroke
is far from the contour or if the contour is too fuzzy.

Our current system supports two types of strokes: open and closed
strokes. If the distance between the two ends is close (< 20 pixels
in our current implementation), the system automatically connects
the end points and processes it as a closed stroke. Otherwise, the
stroke is treated as open. Closed strokes are useful when the entire
boundary is visible and open strokes are useful when the boundary
is too long or partially occluded.

4 Algorithm

4.1 From 2D freeform stroke to 3D path

Our algorithm first converts the 2D stroke on the screen into a 3D
path by adding depth information. We assume that the ROI is dis-
tinct visually and that the user follows its contour. If this assump-
tion is valid, the 3D path should be close to the silhouette of the
ROI. In other words, the gradient vector of the volume data near
the 3D stroke should be almost perpendicular to the view direction.
We find such a 3D path as follows:

1. Sweep the 2D freeform stroke along the depth direction to cre-
ate a 3D curved surface (Figure 2a). The sweep extent is set
to cover the entire volume. This curved surface is called the
sweep surface. In our implementation, this surface is repre-
sented by a piecewise planar surface (quadrangular polygons).

2. Parameterize the sweep surface. The system assigns the x co-
ordinate axis to the depth direction and the y coordinate axis
to the direction parallel to the stroke on the screen (Figure 2b).
That is, x = 0 along the curved edge of the sweep surface near



the camera and y = 0 along the straight edge corresponding to
the starting point of the stroke.

3. Set sampling points on the sweep surface. Sampling points
are lattice points in the parameter space. We set the interval of
the lattice as 0.3% of the diameter of the bounding sphere for
the volume data1. In the following context, each lattice point
is denoted by Li j (i, j are indices along the x and y directions
in the parameter space where 1 ≤ i ≤ Xmax,1 ≤ j ≤Ymax.).

4. On each lattice point Li j, compute Si j =|Ni j ·Gi j | where Ni j is
a unit normal vector of the surface while Gi j is a unit volume
gradient (Figure 2c). Si j is called a silhouette coefficient, and
it indicates how much the point looks like a silhouette from
the current viewpoint.

The volume gradient Gi j is computed as follows. If the orig-
inal data contain color channels, the system first converts the
color values into grayscale values that represent the perceptual
brightness of the colors using the standard equation Gray =
Al pha×(0.299×Red +0.587×Green+0.114×Blue) [Russ
2002]. If the volume renderer filters the original data (e.g., us-
ing the opacity and color transfer functions), the post-filtered
color should be used because we assume that the user wants to
select a visually distinct structure in the current rendered im-
age. Furthermore, to handle the user’s imprecise input stroke
and to suppress the effect of noise, the system computes Gi j
from a blurred version of the original data. Any kind of blur
filter can be used. We chose a discrete approximation of the
Gaussian filter. The radius R of the filter in the data’s coordi-
nate system is matched to the extent of the stroke’s error mar-
gin in the screen coordinate system2. The stroke’s error mar-
gin is set as five pixels in our implementation. To blur and dif-
ferentiate the data simultaneously, we convolve the data with
the derivative of a blur filter. We construct our blur/differential
filter kernel by first computing a blur filter and taking the for-
ward difference along the x direction. The result can be used
immediately for the y and z directions by rotating it by 90 de-
grees.

5. The problem of computing the depth of the user-drawn 2D
stroke is now the problem of finding a path in the parameter
space that starts from a point on the edge y = 1 and ends at
a point on the edge y = Ymax, where the sum of the silhouette
coefficients along the path is maximized (Figure 2d). As this
path has only one x value for each y, it is represented as a
function x = f (y). To maintain the continuity of the path, we
impose the condition that | f (yi)− f (yi+1) |≤ c, where c is an
integer constant value that controls the continuity of the path.
We currently use c = 1. We introduce an additional condition
of | f (y1)− f (ymax) |≤ c for a closed stroke. We use dynamic
programming to solve this problem [Cormen et al. 2001]. For
an open stroke, the dynamic programming is performed only
once while for closed stroke, it must be performed for each
point on the edge y = 1, to satisfy the additional condition
| f (y1)− f (ymax) |≤ c. The optimal path on the parameter
space is then converted into a 3D path by connecting the cor-
responding 3D lattice points (Figure 2e). The matrix Si j and
optimal path for Figure 1 are shown in Figure 3.

1Strictly speaking, this parameterization is not uniform if we use per-
spective transformation. The space is slightly stretched in the y direction
where x = 1.

2In perspective projection, R should depend on the depth. However, we
use a constant value computed at the center of the voxels.
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Figure 2: From a 2D stroke to a 3D path. (a) Construction of the
sweep surface. (b) Parameterization of the sweep surface. (c) Com-
putation of the silhouette coefficient. (d) Finding the optimal path.
(e) The resulting 3D path.

4.2 Generating constraints and segmentation

The next task is to generate constraints to guide the segmentation.
We currently use the region-merging algorithm of Nock et al. [Nock
and Nielsen 2004a] for segmentation, which takes a set of constraint
points that specify foreground and background regions as input and
separates the volume into foreground and background regions that
contain the corresponding constraints. The constraints can be used
directly for other segmentation algorithms, such as those that use
the Graphcut technique [Li et al. 2004]. We generate the constraints
by offsetting the 3D path. The offset direction, D, is obtained sim-
ply by computing a cross-product of the view vector and the tangent
vector of the path (Figure 4a). The displacement extent e is propor-
tional to the radius of the blur kernel R computed in the previous
section; therefore, it is also proportional to the stroke’s error mar-
gin (e = 2R, in our implementation). Each point in the 3D path is
offset by ±e D

|D| and the points on the right hand side become fore-
ground constraints and those on the left hand side become back-
ground constraints (Figure 4b). The constraints generated for Fig-
ure 1 are shown in Figure 5.

We perform the actual volume segmentation using these constraints.
If the user-given stroke is a closed stroke, only those voxels inside
the sweep surface are returned.

5 Results

We applied our technique to several datasets. Figure 6 shows an
example of a high-potential iron protein dataset. Note that our sys-
tem works even when only part of the target region is visible (Fig-
ure 6b). We also applied our system to color data (Figure 7). We
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Figure 3: Silhouette coefficient matrix and computed optimal path
for Figure 1.
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Figure 4: Constraint locations

captured this full color volumetric data using the slicer system de-
veloped by Ogawa et al. [Ogawa et al. 1999] (Figure 8). This slicer
can cut a 3cm× 5cm× 2cm object frozen in OCT compound or a
paraffin-embedded object into 10µm thick slices. The green matter
in Figure 7 is OCT compound and the slice interval for the choco-
late crisp data is 42µm thick.

To evaluate the speed of our system, we asked three subjects to
use it. Their task was to select various desired regions 20 times
for two datasets (high-potential iron protein(66×66×66) and head
MRI(105× 73×78)), respectively. Figure 9 is the chart that shows
the time required to convert a 2D stroke into a 3D path and to gener-
ate constraints. The horizontal axis represents the number of sam-
ple points on the sweep surface, while the vertical axis represents
the elapsed time in milliseconds. We used a desktop computer with
an Intel Xeon(TM) 3.2-GHz processor and 2 GB of RAM. The chart
shows that the required time is almost proportional to the number
of sample points for both open and closed strokes, although closed
stroke requires running dynamic programming multiple times. We
suppose it is because running time is dominated by the resampling
cost on the sweep surface. This chart does not contain the time for
segmentation, because it is strongly affected by which algorithm
is used. In our case [Nock and Nielsen 2004a], it took 0.5 to 10
seconds, depending on the size of the data and the number of con-
straints.

6 Limitations and future work

Although our system works for many real-world examples, there
are several cases in which our system does not work properly. An
intrinsic limitation of our approach is that the system carves out
only one object when two objects have almost the same contour
from the current viewpoint (Figure 10a). Another limitation is that
the generated constraints can be outside the ROI when the ROI is
too thin or has a complicated boundary shape near the 3D path (Fig-
ure 10b). We believe that we can solve this by carefully analyzing

Figure 5: The constraints generated for Figure 1

(a)

(b)

Figure 6: An application using 663 high-potential iron protein data.
The segmented region is rendered as opaque, red voxels.

the structure around the path when placing the constraints. Finally,
the performance of the system is dependent on the specific segmen-
tation algorithm being used. For example, our current implementa-
tion fails when it is necessary to consider positional information for
obtaining correct segmentation because our current segmentation
algorithm [Nock and Nielsen 2004a] only considers color informa-
tion (Figure 10c).

Our current implementation is very basic and we plan to extend it in
various ways. First, we plan to extend it to adjust transfer functions
automatically. When the user traces the silhouette of very faint or
partially occluded objects, the system can adjust the transfer func-
tion automatically to increase their visibility. This process hope-
fully reduces the user’s “trial-and-error” loop [Pfister et al. 2001].
Second, we plan to experiment with other segmentation algorithms,
such as snakes. A key issue is that we need to provide different
information to the segmentation algorithm depending on the type.
For example, snakes require an initial boundary, which we need to
generate from the user-drawn contour. Other miscellaneous future
work includes the implementation of a mechanism to fix partially
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Figure 7: Application to a chocolate crisp dataset (126× 89× 53,
color data). The opacity transfer function is applied to the original
data (a) to distinguish the almond (b). When the user draws a stroke
(c), the almond region is segmented and rendered as a surface (d).
The surface color is set to the mean color of the selected region.
The user can also pick small masses (e, f).

failed results, application to surface representations, and designing
better user feedback.
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