
Illumination Brush: Interactive Design of All-frequency Lighting

Makoto Okabe∗ Yasuyuki Matsushita† Li Shen† Takeo Igarashi∗,‡

∗The University of Tokyo †Microsoft Research Asia ‡SORST, JST

Abstract
We present an appearance-based user interface for

artists to efficiently design customized image-based light-
ing environments. 1 Our approach avoids typical iterations
of parameter editing, rendering, and confirmation by pro-
viding a set of intuitive user interfaces for directly specify-
ing the desired appearance of the model in the scene. Then
the system automatically creates the lighting environment
by solving the inverse shading problem. To obtain a re-
alistic image, all-frequency lighting is used with a spheri-
cal radial basis function (SRBF) representation. Rendering
is performed using precomputed radiance transfer (PRT)
to achieve a responsive speed. User experiments demon-
strated the effectiveness of the proposed system compared
to a previous approach.

1. Introduction
Image-based lighting, or the environment map, is a

method of representing a large-scale lighting environment
around a target scene as a texture map [5]. It compactly rep-
resents complicated incoming light from distant sources and
enables real-time rendering of the scene with realistic light-
ing effects [28]. However, most systems rely on captured
environments for image-based lighting [6, 10], and few at-
tempts have been made to manually design such complex
lighting environments. The artist might paint the environ-
ment map directly, but this is labor-intensive and makes it
very difficult to obtain the desired rendering result due to
the non-intuitive relation between lighting conditions and
the appearance of objects. Because a captured environment
is not always available, a practical method for manually de-
signing complicated lighting environments is in great de-
mand.

We propose an appearance-based user interface for de-
signing image-based lighting environments. Instead of
placing lights in the surrounding environment, users can
directly specify the appearance of the resulting image by
painting and dragging the color of outgoing radiance on the
target model. Then the system constructs an appropriate
image-based lighting model by solving the inverse lighting

1This work was done while the first author was visiting Microsoft Re-
search Asia.

(a) (b) (c) (d)

Figure 1. Designing image-based lighting
with Illumination Brushes. The bunny model
has a measured white glossy BRDF.(a) The
user paints the desired diffuse appearance
directly on the 3D model. Pink and orange
diffuse brushes are shown. (b) The scene
is rendered using the estimated environment
map. The user paints a blue highlight on
the bunny with specular brush. (c) All of the
painted lighting effects are satisfied by ren-
dering the bunny using the designed image-
based lighting environment shown in (d).

problem. Other appearance-based interfaces for lighting de-
sign have been proposed [19, 24, 20, 12, 14, 1, 26, 2, 18],
but all of them are limited to simple lighting models, such as
point or directional lights, and are not designed for image-
based lighting, which can produce more appealing results
than simple lighting. It is particularly useful for adding real-
istic lighting effects to synthetic objects when compositing
them into a photographed or video-recorded background.
Our system also supports the design of high-dynamic range
(HDR) lighting on a standard low-dynamic range (LDR)
monitor by introducing interactive tone-mapping, in which
users specify a region of interest (ROI) and the system au-
tomatically adjusts the tone-mapping parameter.

Given the surface appearance specified by the user, the
system must estimate the corresponding image-based light-
ing model. This process is formalized as an inverse lighting
problem, that is, recovering unknown lighting from known
geometry, outgoing radiance, and the surface bidirectional
reflectance distribution function (BRDF) [21]. To solve this
problem at a responsive speed, we represent an image-based
lighting model using the spherical radial basis functions
(SRBF) [29], and estimate coefficients in a precomputed



radiance transfer (PRT) framework [27, 28]. The SRBF
representation allows our system to represent all-frequency
lighting effects and arbitrary BRDFs, which can be either
analytic or measured. The system allows interactive view-
changes and quick update of the lighting environment ac-
cording to user input.

Our current implementation supports dynamic editing of
HDR image-based lighting for a fixed geometry with arbi-
trary BRDF. It can handle both specular and diffuse lighting
effects with appropriate treatment of self-occlusions (soft
shadows). More advanced effects, such as texture mapping,
interreflections, and deformation, will be addressed in fu-
ture work.

2 Prior Work
Several methods have been proposed to manipulate light-

ing effects in a rendered 3D scene, as an alternative to man-
ually setting raw lighting parameters. Pellacini et al. pro-
posed using cast shadows for lighting design [19]. Some
other methods use sketching or painting interfaces that al-
low users to directly draw lighting effects [24, 20, 12, 2,
26, 18]. While these methods are effective, they are lim-
ited to simple local lighting models, or simple geometry.
Other related works have incorporated illumination control
using psychophysical effects [14], and interactive control
of highlighted shapes in cartoon animations [1]. Automated
lighting design systems are also proposed [25, 9].

Our system utilizes inverse rendering, estimating the dis-
tribution of light sources given the scene geometry, surface
properties, and the final image. Previous methods have es-
timated light source distributions from a variety of different
input types, such as cast shadows [23] and shading [30].
Li et al. used integrated cues of shading, shadows, and
specular reflections [15]. Nishino and Nayar proposed a
method for capturing an environment map reflected by a
human eye in an image, and using it for relighting [17]. Ra-
mamoorthi and Hanrahan proposed methods for estimating
either a material BRDF, an illumination condition, or both
from a single image or multiple images of a scene [21]. Our
work builds on these previous results and provides a practi-
cal method suitable for interactive editing without excessive
precomputation.

3 User Interface

This section describes our prototype system for an
appearance-based lighting design from the artist’s point of
view. The system allows users to directly specify the ap-
pearance of the final image by painting the outgoing radi-
ance on the target model. The system also provides drag-
ging tools to modify the lighting environment. The light-
ing environment and screen image are updated in real time.
Users can freely change the viewpoint during the lighting

Figure 2. Our prototype system.

design process. All light sources are assumed to be distant,
and the painting process changes the positions, colors, in-
tensities, and shapes of light sources. The system assumes
a known geometry and a predefined BRDF for each point
on the surface of the target model. Figure 2 shows a snap-
shot of the prototype system. Given a new 3D scene, the
user must first run several minutes of precomputation be-
fore starting an interactive lighting design session.

3.1 Illumination Brushes

Illumination brushes are painting tools for specifying the
desired appearance of a surface. Users draw a stroke on the
screen using a dragging operation. The stroke is projected
onto the object surface and serves as a constraint that spec-
ifies the color of nearby mesh vertices to estimate the light-
ing environment. Color and position can also be changed
later in the process. The system provides two types of il-
lumination brushes: the diffuse brush, for designing diffuse
lighting effects, and the specular brush, for editing specular
lighting effects. An example is shown in Figure 3. Note that
specular highlighting is view-dependent and moves along
the surface as a user changes the viewpoint, while the dif-
fuse component is independent of viewing direction.

For both brushes, users simply select a color and begin
painting on the 3D model. The system immediately and
continuously estimates the corresponding illumination and
updates the image on the screen during the painting process.

However, user input can be inconsistent. Figure 4 shows
two such examples. In (a), the user paints white and black
lighting effects at different positions with the same surface
normal. Because no lighting environment can exactly ac-
commodate this input, the system tries to satisfy the con-
tradictory constraints as much as possible in a least squares
sense. In this example, Figure 4 (b) shows that the painted
positions will have the same gray color, which is the aver-
age of the painted lighting effects. In (c), the user paints
white and black lighting effects at different positions with
the same surface normal. Such input seems to be incon-
sistent, however, because the area painted in black can be



(a) (b)
Figure 3. Painting with illumination brushes.
The bunny model has a glossy aluminum-
bronze BRDF. (a) A user paints green and
purple lighting effects on the 3D model us-
ing diffuse brushes. The resulting lighting envi-
ronment (shown as a cross) is diffused and
blurry, which is reflected in the rendered im-
age. (b) The same colors are painted at the
same positions using specular brushes, which
results in a lighting environment with sharper
features and specular lighting effects.

in the statue’s shadow, the input is consistent and thus the
system can compute the lighting environment accordingly,
which results in a soft shadow under the statue (d).

3.2 Manipulation of Painted Strokes

The result of a painting operation is stored as a stroke
on the object surface, whose color and position can then be
modified. To change the color of a stroke, the user sim-
ply clicks it and adjusts its color using the color panel. To
change the location of the stroke, the user clicks and drags
the stroke on the object surface. As the dragged stroke
moves, it adapts its shape to match the surface (Figure 5).
These operations are useful for locally adjusting the appear-
ance of the scene. Similar operations are used in [11, 3].

If the viewpoint is changed, the position of a stroke no
longer corresponds to the created highlight. To help users
modify strokes in a consistent manner, the system automat-
ically recovers the original viewpoint each time a stroke is
clicked.

3.3 Interactive Tone-Mapping

A standard monitor can display only LDR images, where
color is represented as 8 bits per channel. When designing
a lighting environment, however, editing in such a narrow
range is a severe limitation. To enable users design in a
HDR domain, we provide an interactive tone-mapping in-
terface. Users specify the ROI using a rubber band on the
screen, as shown in Figure 6, and the system automatically
adjusts the exposure so that the contrast in the ROI is max-
imized. The manipulated color is always converted into the
HDR domain using the exposure settings. Users can also
change the exposure directly by controlling a slider.

(a) (b) (c) (d)
Figure 4. Painting with inconsistent multi-
ple colors. The Buddha model has a dif-
fuse BRDF. (a) The user paints white and
black lighting effects at different positions
with the same normal, resulting in a uniform
gray color (b). In (c), the user repeats this
inconsistent input, but at a different location
on the 3D model. Because the region painted
black is identified as the statue’s shadow, the
input becomes consistent, resulting in a soft
shadow under the statue (d).

3.4 Rotation of Lighting Environment
During the light-editing process, users may want to

rotate the entire lighting environment. We provide an
appearance-based tool to achieve this with an intuitive drag-
ging operation on the scene surface. Users can grab any
feature, such as highlights and shadows on the surface, and
move it to another location (Figure 7). Internally, the sys-
tem rotates the entire lighting environment so that the color
under the mouse cursor remains constant while dragging.

Users can directly rotate the light sphere representing the
entire lighting environment, but dragging inside the scene
(e.g., dragging cast shadows around the scene) can be more
convenient in some cases. Figure 8 illustrates an example,
where identical dragging operations result in opposite rota-
tions depending on the scene geometry and lighting condi-
tions.

4 Algorithm

In this section, we describe the algorithms for the inter-
active rendering and user interfaces. To develop the inter-
active rendering algorithm, we used the SRBF-based PRT
framework proposed by Tsai et al. [29], for several reasons.
First, the rendering speed is fast, allowing users to preview
rendering results in real time. Second, unlike spherical har-
monics or wavelet-based systems, the basis function is in
the spatial domain rather than the frequency domain. This
makes the estimation algorithm simple and stable. Third,
SRBFs can be added progressively to locally control the il-
lumination resolution.



(a) (b) (c)
Figure 5. Manipulation of painted strokes. (a)
The user selects the orange painted stroke
at the top of the fish model. (b) The user
drags the stroke to a different location, and
the environment lighting is updated accord-
ingly. (c) The color of the stroke is modified
from orange to blue.

(a) (b) (c)

Figure 6. The system allows scene editing
with tone mapping. (a) The ROI is selected
using a red rubber band. Because the inten-
sity distribution in the ROI is relatively bright,
the system adjusts the exposure to make the
entire scene darker (b). The bottom-left im-
age of (b) shows the original exposure. The
dark area is selected with the red rubber
band, and the system makes the entire scene
brighter (c).

The rendering algorithm is based on the previous PRT
framework [29]: the system renders the scene in real time
by fixing the geometry and BRDF while the user interac-
tively changes the view and lighting. The major problem
with the previous method is that the precomputation takes a
prohibitively long time before start painting a new 3D scene
(e.g., up to 24 h for a 3D scene with 50,000 vertices). There-
fore, our system approximates the result using a simplified
method to reduce precomputation time. First, instead of ac-
curately modeling the shading of a triangle in the spirit of
Phong’s model, we simply interpolate the colors of the mesh
vertices to render a triangle. Second, we use a simplified
method to approximate a function with SRBF. Instead of
solving a global least-squares system to compute the SRBF
coefficients, we determine the coefficients of each SRBF
independently assuming that each SRBF component is rel-
atively independent. These changes shorten the precompu-

(a) (b) (c)

(d) (e) (f)

Figure 7. The user clicks and drags the
white-lit part to rotate the lighting environ-
ment (a-c). The lighting environment rotates
smoothly so that the surface colors under
the mouse cursor remain constant. The user
can also click and drag the shadow under the
teapot (d-f).

Figure 8. The same dragging operations can
result in opposite rotations, depending on
the geometry and lighting conditions.

tation time from 1 day to several minutes. It also slightly
reduces rendering accuracy and speed (it takes 1 second
to render a scene with 10,000 vertices when the view is
changed), but remains sufficiently fast for a preview during
interactive design.

4.1 Interactive Rendering

Representation For distant illumination, the outgoing ra-
diance I from a surface point x is described by the rendering
Equation [13] as follows:

I(x,ωo) =
∫

Ωi

L(ωi)R(x,ωi,ωo)V (x,ωi)max(0,ωi ·n)dωi, (1)

where ωi and ωo are the light and view directions, respec-
tively; L is the incoming ray from the environment lighting;
R is the BRDF; V is the visibility map (which takes [0|1]);
and n is the surface normal at x. We rewrite the Equation (1)
as follows:

I(x,ωo) =
∫

Ωi

L(ωi)T (x,ωi,ωo)dωi, (2)



T (x,ωi,ωo)
def= R(x,ωi,ωo)V (x,ωi)max(0,ωi ·n), (3)

If the viewpoint, ωo, is fixed, then T (x,ωi,ωo) = Tx(ωi) and
I(x,ωo) = Ix. The subscript x indicates that the quantity is
associated with the vertex x.

We represent the light transfer function, Tx(ωi),
and the distant illumination, L(ωi), with SRBF ex-
pansions. The SRBF centers of light transfer func-
tion, ΞT ={ ξT,1, ...,ξT,nt}, and the SRBF centers of light
sources, ΞL ={ ξL,1, ...,ξL,nl}, are the sets of distinct points
on the unit sphere, S2. The associated bandwidth parame-
ters ΛT ={λT,1, ...,λT,nt} and ΛL ={λL,1, ...,λL,nl} are de-
fined by sets of real numbers. Tx(ωi) and L(ωi) can be rep-
resented by the SRBF function G and coefficients as

Tx(ωi) ≈
nt

∑
i=1

tx,iG(ωi,ξT,i;λT,i), (4)

L(ωi) ≈
nl

∑
j=1

l jG(ωi,ξL, j;λL, j), (5)

where G(·,ξ ;λ ) is an SRBF centered at ξ with the band-
width parameter λ . In the following sentences, T-SRBF is
described by G(ωi,ξT,i;λT,i), and L-SRBF is described by
G(ωi,ξL, j;λL, j). By combining Equations (2–5), we obtain
the following matrix notation:

Ix = TT
x AL, (6)

where Tx = [tx,1 tx,2 . . . tx,nt ] is a light transfer coefficient
vector, L = [l1 l2 . . . lnl ] is a light source coefficient vector,
and the (m,n) component of the matrix A is given by

Amn =
∫

Ωi

G(ωi,ξT,m;λT,m)G(ωi,ξL,n;λL,n)dωi. (7)

Equation (7) is called spherical singular integral, and it can
be efficiently evaluated for Gaussian SRBF as described in
[29].

Precomputation To make the initial set of T-SRBF cen-
ters, ΞT , we use an icosahedron subdivided three times to
provide 642 vertices, and project them on the unit sphere
S2. ΛT is assigned the same value based on the relationship
between the variance and the bandwidth parameters for the
Gaussian SRBFs: σ2 = 1− (coth(2λ )− (2λ )−1) [16]. We
fixed the variance at π/40 radians to derive ΛT . It is pos-
sible to increase the number of T-SRBF centers to increase
the accuracy.

Several minutes of precomputation of the visibility map
V (x,ωi) are required for each new 3D scene. The visibility
map of each vertex is obtained by setting the camera at the
vertex and rendering the scene into a cube map with flat
shading. To avoid aliasing, we first render the cube map at
a resolution of 6× 128× 128, and then downsample it to
6×32×32.

Rendering Our system renders the scene by computing
the right-hand side of Equation (6). We have implemented
our system on a platform that includes a GeForce 8800 GPU
and an Intel Core2 2.4-GHz CPU. Computation of Tx and
multiplication of AL is performed using the CPU, and other
operations take place on the GPU. When the user changes
viewpoints, the system computes Tx for all visible vertices.
Computation of Tx requires access to the visibility map of
x and BRDF data. On average, this process takes about 1
second for 10,000 vertices.

Our system allows the user to change the lighting in real-
time (20-60 FPS), but view changing runs at an interactive
rate (several seconds) that is proportional to the number of
vertices. For this reason, our system uses a simplified model
during camera motion.

4.2 Estimation of Lighting Environment

We initialize the lighting environment with uniformly
distributed L-SRBFs obtained by subdividing the icosahe-
dron several times, usually twice to provide 162 L-SRBFs.
We describe a method to estimate the light source coeffi-
cients from diffuse and specular brushes. We also describe
a method of adaptively controlling the number of L-SRBFs.

Basic Formulas Let T′x = (TT
x A)T . Then Equation (6)

can be written as
Ix = T′Tx L. (8)

Given a set of the user-painted colors, I′ = {I′1, ..., I′np}, on
the painted vertices, P = {p1, ..., pnp}, the system estimates
a new lighting environment such that rendered vertex colors
are as close as possible to the user-specified colors. The
simple form of the estimation problem can be written in a
least squares form as

L̂ = argmin
L

np

∑
i=1

(I′i −T′Tpi
L)2, (9)

where L̂ = [l̂1 l̂2 . . . l̂nl ]
T is the estimated light source co-

efficient vector. To derive a unique solution in the under-
constrained case, we add a regularization term. Equation (9)
can then be written as

L̂ = argmin
L

np

∑
i=1

(I′i −T′Tpi
L)2 +κL2, (10)

where κ , the regularization factor that penalizes models to
prevent overfitting, is empirically set to 1.0e−4.

Diffuse and Specular Brushes As we have described in
the user interface section, using the diffuse brush changes
the lighting of the overall environment while the specular
brush changes the lighting only in the direction of specu-
lar reflection. Figure 9 shows our design philosophy for
each brush. We obtain these effects by assigning a differ-
ent weight to each light source. That is, when the specular
brush is used, the system assigns smaller weights to the light
sources located in the direction of specular reflection so that
these light sources are mainly modified. On the other hand,



(a) (b)

Figure 9. The user is painting an orange color
on a glossy surface point. (a) The specular
brush produces effects for light sources lo-
cated in the direction of specular reflection.
This results in a specular lighting effect. (b)
The diffuse brush produces effects for light
sources located off the axis of specular re-
flection. This results in a diffuse lighting ef-
fect.

when the diffuse brush is used, the system assigns smaller
weights to the light sources off the direction of specular re-
flection. To incoporate these features in the process, we
change Equation (10) to

L̂ = argmin
L

np

∑
i=1

(I′i −T′Tpi
L)2 +κ(diag(W)L)2. (11)

where W = [w1 w2 . . . wnl ]
T are the weighting factors con-

trolling the variability of the light sources. Smaller values
of wi means larger changes in li, and vice versa.

To determine components of W, we use the light trans-
fer coefficient vector, T′x = [t ′x,1 t ′x,2 . . . t ′x,nl

], that repre-
sents which light source coefficient is important in de-
termining Ix (see Equation (8)). The weighting factors
Wx = [wx,1 wx,2 . . . wx,nl ]

T at painted vertex x are deter-
mined as follows: if the vertex x is painted with the
diffuse brush, the weighting factors are given by wx,i ∝

t ′x,i/max j{t ′x, j}, and if the vertex x is painted with the spec-
ular brush, the weighting factors are given by wx,i ∝ 1−
t ′x,i/max j{t ′x, j}. We assign weighting factors of zero to light
sources that are invisible at the surface point x. Finally, W
is computed as W = ∑Wpi for all painted vertices, pi. To
avoid a zero weight factor, we add ε = 2.0e−4 to each ele-
ment of W.

Solving the Linear System To avoid negative lighting in-
tensity, the estimated lighting L̂ must satisfy the following
condition:

l̂i ≥ 0 ∀i ∈ [1,nl ]. (12)

This gives us a least square problem with inequality con-
straints. We use the Active Set method [7] on UMFPACK
Version 4.1 [4] to solve the problem iteratively.

Adaptive Control of Number of L-SRBFs The original
environment map is represented by uniformly distributed

Screen
Object surface

Figure 10. Dragging a stroke on the object
surface. The system moves the grabbed
edge and then determines the locations of
the surrounding edges.

L-SRBFs. As mentioned earlier, there are 162 L-SRBFs,
as determined by the number of vertices in an icosahedron
subdivided twice. While the original number of L-SRBFs
is limited, the resolution can be locally enhanced by adding
more. When the user provides new input to the system us-
ing the specular brush, an L-SRBF is added in the direction
of the specular reflection. This mitigates the low-sampling
problem of the illumination and ensures that the light source
in the highlight direction always exists when edited.

4.3 Dragging Painted Strokes

When the user grabs and drags a stroke, the system
moves the grabbed edge on the surface and then determines
the location of the neighboring vertices one by one so that
the local positional relationships among neighboring ver-
tices are maintained (Figure 10). This process is viewed
as a walking operation on the surface: given the original
location and the target location of an edge (vi,vi+1), the tar-
get location of a neighboring vertex vi+2 is determined so
that both the angle between edges (vi,vi+1) and (vi+1,vi+2)
projected onto the tangent plane at vi+1 and the geodesic
distance between vi+1 and vi+2 remain constant. The lo-
cation of the dragged edge is determined so that it follows
the mouse cursor and its orientation on the screen remains
constant.

4.4 Rotation of Environment Lighting

The lighting environment can be revolved by rotating the
centers of the L-SRBFs (ξ ). When users perform a dragging
operation using the rotation tool, the system automatically
updates the rotation angles so that the radiance under the
mouse cursor remains the same. To be more precise, the
computation proceeds as follows (Figure 11). Suppose that
the mouse cursor moves from the screen coordinate p0 to
p1. The corresponding surface vertices are v0 and v1. The
system estimates the new orientation minimizing the differ-
ence between the original radiance Iv0 at v0 and the new



Lighting rotated by R Lighting rotated by R’

Iv 0

Iv1

Iv’0

Iv’1

Figure 11. Rotation of light source using a
dragging operation. The system computes R
so that the resulting radiance at v1 is identical
to the previous radiance at v0.

surface radiance I′v1
at v1 after rotation.

We solve this problem using a standard minimization
method. The rotation matrix R is represented by three ro-
tation angles: α , β , and γ . The system uses the smallest
changes to the rotation angles (dα , dβ , and dγ) that sat-
isfy I′v1

= Iv0 . To achieve this, the system solves the fol-
lowing minimization problem using the Lagrange multiplier
method:

min{dα
2 +dβ

2 +dγ
2} s.t. dIv1 =

∂ Iv1

∂J
dJ, (13)

where J = [α β γ]T , and dIv1 is the target differential scalar
of the radiance at v1(Iv0 − Iv1). The system continuously
solves this equation in the background process, and updates
J using a small gradient step εJ = 0.05.

4.5 High-dynamic Range Support
To achieve the operation described in Section 3.3, we use

Reinhard et al. ’s global tone-mapping operator [22], which
can be efficiently implemented using programmable graph-
ics hardware [8]. The operator calculates the log average
luminance L̄w as

L̄w = exp
(

1
N ∑

x,y
log(δ +Lw(x,y))

)
, (14)

where N is the number of pixels in the image, (x,y) repre-
sents the pixel coordinate, and δ is a small constant used to
avoid numerical underflow when Lw(x,y) = 0. The source
luminance values (Lw(x,y)) are mapped to the relative lu-
minance (Lr(x,y)) by

Lr(x,y) =
a

L̄w
Lw(x,y), (15)

where a is a key value that controls whether the tone-
mapping image appears relatively bright or relatively dark.
Then Lr(x,y) is mapped to the display luminance Ld(x,y)
by

Ld(x,y) =
Lr(x,y)

1+Lr(x,y)
. (16)

Finally, the RGB display values Rd ,Gd , and Bd are deter-
mined by

Rd = Ld

(
Rw

Lw

)b
, Gd = Ld

(
Gw

Lw

)b
, Bd = Ld

(
Bw

Lw

)b
. (17)

Buddha Bunny Dragon Fish
Vertices 23,884 17,483 23,960 7,634

Precomputation (sec) 398 292 400 127
Viewpoint (msec) 2,136 1,575 2,166 696

162 L-SRBFs (FPS) 56 61 56 62
642 L-SRBFs (FPS) 26 27 26 30

Table 1. Time and rendering performance of
the proposed approach. The run-time FPS in
the last two rows lists the rendering perfor-
mance for lighting environment changes with
either 162 or 642 L-SRBFs.

In our implementation, a and L̄w are initially set to 2.0 and
1.0, respectively. When the user selects the ROI, the sys-
tem recalculates the log average luminance L̄w to update the
RGB values. The user can also change a by directly manip-
ulating the slider bar to control the brightness distribution in
the image. We use a fixed value of 0.6 for b. The LDR color
values used can easily be converted to HDR values Rw, Gw,
and Bw by solving Equation (17), and the system stores the
HDR representation internally.

5 Result

For all of the glossy objects illustrated, we used both
measured and synthetic BRDFs. The reflectance properties
are unrelated to the numerical performance or stability in
the computation. However, more user input is needed when
an object’s reflectance contains high frequency component.

Table 1 shows the time and rendering performance of the
proposed approach. It takes a few minutes for precomputa-
tion, a few seconds to change the viewpoint, and less than
40 msec for the lighting change. The system estimates the
illumination within a few seconds (e.g., 1-5 seconds for 162
L-SRBFs). Optimization speed depends not on the size of
the 3D model but on the numbers of L-SRBFs and iterations
of the Active Set method.

3D Object Insertion The system is also useful for adjust-
ing photometric consistency when inserting a synthetic 3D
object into a photograph. For example, users can load and
display a background image behind the 3D object, and then
paint and adjust the lighting effects of the 3D object so that
it seamlessly matches the lighting conditions of the back-
ground photograph. Figure 12 and the accompanying video
show the results of inserting a synthetic 3D object into a
photograph using the system. Each 3D object has a mea-
sured glossy BRDF, and shadows under the 3D object are
inserted using Adobe Photoshop.
Editing imported environment map The more reflective
an object surface is, the greater is the number strokes that
must be drawn on the object to design the lighting environ-
ment map. This is a fundamental limitation of any inverse-
lighting algorithm. One reasonable solution is to edit an im-



(a) Diffuse:14 / Specular:0 (b) Diffuse:12 / Specular:2

Figure 12. Adjusting the photometric effects of a superimposed 3D model with respect to the back-
ground image. The two images shown in (a) are the result of inserting a 3D bunny with pink plastic
BRDF. The left image has an arbitrary illumination and the image on the right is rendered using an
image-based lighting environment designed by our system. (b) The result of inserting a 3D budda
with white glossy material.

(a) Original (b) Mask Image

(c) Modified #1 (d) Modified #2

Figure 13. Editing an existing environment
map. (a) Original lighting environment and
rendered scene. (b) Mask Image. (c-d) Modi-
fied versions. Painted colors are also shown.

ported environment map. This allows users to input a sparse
collection of strokes and still retain the spatial structure of
the original environment.

The proposed system can also be extended for this pur-
pose as shown in Figure 13. This extension takes two im-
ages as input: an original environment map and a mask im-
age that labels pixels as groups. During the design process,
the system updates the lighting environment while retain-
ing the visual structure of the original environment maps.
The design process is as follows. First, the original envi-
ronment map is segmented using image manipulation tools
(e.g., Photoshop) to create a mask image as shown in Fig-
ure 13(b). Second, the environment map and the mask im-
age are loaded into the system. The system fits L-SRBFs
to the environment map and creates labeled groups of L-
SRBFs based on the mask image. Finally, the user designs
L-SRBF lights using the system tools. During lighting es-
timation, the system allows only one scaling factor to be
updated for each group. In this way, the pixel intensities

in a segment change together preserving the original image
structure as shown in Figure 13(c) and (d). We used 2562
L-SRBFs. The mask image had four colors that created four
labeled groups of L-SRBFs.

User Test To validate the effectiveness of the proposed
system, we performed a user test to compare its perfor-
mance to a combination of Adobe Photoshop and a HDR-
Shop plug-in (the most popular combination for editing an
environment map today). Eight computer science students,
all novice users of our system and 3D graphics interfaces in
general, participated in the study. Each subject was given
a target image (Figure 15 a) and a 3D bunny model under
a default lighting condition (Figure 15 b). Each scene has
the same measured BRDF, aluminum-bronze. After a brief
tutorial, the subjects were asked to adjust the lighting envi-
ronment around the bunny model to that of the target image,
using either our system or the alternative software (Photo-
shop+HDRShop). For both design tools, subjects are al-
lowed to pick a color from the target image and use it for il-
lumination design. The testing order of the software was al-
ternated between subjects; four used Photoshop+HDRShop
first, and the other four used our prototype system first. The
subjects were allowed to work on the task until satisfied, for
up to 20 min. Most of the subjects spent approximately 70
minutes for the study including tutorial. Figure 15 shows
some of the resulting images.

Figure 14 (a) illustrates the time of design process across
eight subjects and two design tools. Subjects using Illumi-
nation Brush overall took less than 75% of the time that they
did when using Photoshop+HDRShop. Figure 14 (b) shows
the subjective evaluation of the produced images. Sixteen
people voted on the rendered images, regarding their simi-
larity to the image rendered with the ground truth environ-
ment map (Figure 15 c). The numbers represent the votes
for each system. A binomial test of the scores shows that
our system performed significantly better than the Photo-



20

15

10

5

0
#1 #2 #3 #4 #5 #6 #7 average

Subject

Ti
m

e 
(m

in
ut

es
)

#8

Illumination BrushPhotoshop+HDRShop

9
13 12

14 13 14 14

7
3 4

12

2 3 2 2

4
20

15

10

5

0
4.4

11.6

#1 #2 #3 #4 #5 #6 #7 average#8

N
um

be
r o

f V
ot

es

Subject

Illumination BrushPhotoshop+HDRShop

(a) (b)

Figure 14. Subjective evaluation of the de-
signed scenes. Each of eight users designed
two environment lightings, one using Illu-
mination Brush and the other using Photo-
shop+HDRShop, so that the rendered images
were similar to the target image (shown in
Figure 15 a). (a) illustrates the time of de-
sign process across eight subjects and two
design tools. (b) Then, 16 people voted on
the results, regarding how similar each ren-
dered image matched the bunny image ren-
dered using the ground truth lighting condi-
tion (shown in Figure 15 c). The numbers rep-
resent the votes for each system.

shop+HDRShop system in editing a lighting environment
(p < .001). These results show that our system achieves
better quality in less time than the combination of Adobe
Photoshop and a HDRShop plug-in.

6 Limitations and Future work
The system approximates each transfer function using T-

SRBFs. The ability to render strong specularity depends on
the number of T-SRBFs. We tested the system using 642
T-SRBFs that can represent not specular but glossy BRDFs.
If the number of T-SRBFs is increased, more specular mate-
rial can be rendered, but it will result in a slower rendering
speed and more memory usage.

Our future work also includes the evaluation/analysis of
the relationship between reflectance property and illumina-
tion estimation algorithm. For the weighting factors de-
scribed in 4.2, since it is difficult to obtain the best parame-
ter analytically, we have used parameters and formulations
that are empirically obtained. In the future, we want to find
the best weighting factors with respect to reflectance prop-
erty.

It would be interesting to extend our system to separate
diffuse lighting and specular lighting. We could achieve this
by incorporating two environment maps, one for each type
of lighting. (A diffuse environment map can be represented
more compactly by SH than L-SRBFs.) This could be use-
ful for computer graphic designers, who often perform sim-
ilar separations by rendering a scene into several compo-
nents, which can be modified one by one and subsequently
composed. The extension of our system may help them with

the lighting design.
We are interested in appearance-based design tool not

only for illumination but also for material, i.e., BRDF, BSS-
RDF, and spatially variant BRDF, etc. Our future research
includes supporting BRDF editing in the unified framework.

Because recent works have designed methods for con-
verting image-based lighting environments into a manage-
able number of light points [10], our system is useful for de-
signing illumination for scenes that must be rendered with
limited computation power, such as 3D games. Our future
research includes such an application.

7 Acknowledgements
This work is supported in part by JSPS Research Fel-

lowship and Microsoft Institute for Japanese Academic Re-
search Collaboration.

References

[1] K. Anjyo and K. Hiramitsu. Stylized highlights for car-
toon rendering and animation. IEEE Comput. Graph. Appl.,
23(4):54–61, 2003.

[2] F. Anrys and P. Dutré. Image based lighting design. In
The 4th IASTED International Conference on Visualization,
Imaging, and Image Processing, 2004.

[3] H. Biermann, I. Martin, F. Bernardini, and D. Zorin. Cut-
and-paste editing of multiresolution surfaces. In SIGGRAPH
’02, pages 312–321. ACM Press., 2002.

[4] T. A. Davis. A column pre-ordering strategy for the
unsymmetric-pattern multifrontal method. ACM Trans.
Math. Softw., 30(2):165–195, 2004.

[5] P. Debevec. Rendering synthetic objects into real scenes:
bridging traditional and image-based graphics with global
illumination and high dynamic range photography. In SIG-
GRAPH, pages 189–198, 1998.

[6] P. E. Debevec and J. Malik. Recovering high dynamic range
radiance maps from photographs. In SIGGRAPH, pages
369–378, 1997.

[7] R. Fletcher. Practical Methods of Optimization. John Wiley
& Sons, 2nd edition, 1987.

[8] N. Goodnight, R. Wang, C. Woolley, and G. Humphreys. In-
teractive time-dependent tone mapping using programmable
graphics hardware. In Proc. of the 14th Eurographics work-
shop on Rendering, pages 26–37, 2003.

[9] S. Gumhold. Maximum entropy light source placement. In
VIS ’02: Proceedings of the conference on Visualization ’02,
pages 275–282, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[10] V. Havran, M. Smyk, G. Krawczyk, K. Myszkowski, and
H.-P. Seidel. Interactive system for dynamic scene lighting
using captured video environment maps. In Eurographics
Symposium on Rendering 2005, pages 31–42,311, 2005.

[11] T. Igarashi and J. F. Hughes. Clothing manipulation. In UIST
’02, pages 91–100. ACM Press., 2002.

[12] T. Jung, M. D. Gross, and E. Y.-L. Do. Light pen – sketching
light in 3d. In Proc. of CAAD Futures, pages 327–338, 2003.



(a) Target (b) Default (c) Answer

(d) Our system #2 (e) Our system #5 (f) Our system #7 (g) Our system #8

(h) Photoshop+HDRShop #1 (i) Photoshop+HDRShop #2 (j) Photoshop+HDRShop #3 (k) Photoshop+HDRShop #4

Figure 15. Results of the user test comparing the proposed system to Photoshop+HDRShop. The
users were presented a target image (a) and asked to modify the bunny scene (b) to exhibit a similar
illumination environment. The middle row (d-g) presents the resulting environment maps obtained
by different users of the proposed system. The bottom row (h-k) shows the results using Photo-
shop+HDRShop. Note that users were not shown the ground-truth environment map. The ground-
truth environment map and the rendered scene are given in (c).

[13] J. T. Kajiya. The rendering equation. In SIGGRAPH, pages
143–150, New York, NY, USA, 1986. ACM Press.

[14] J. K. Kawai, J. S. Painter, and M. F. Cohen. Radioptimiza-
tion: goal based rendering. In SIGGRAPH, pages 147–154,
1993.

[15] Y. Li, S. Lin, H. Lu, and H.-Y. Shum. Multiple-cue illu-
mination estimation in textured scenes. In Int’l Conf. on
Computer Vision, pages 1366–1373, Nice, France, 2003.

[16] F. J. Narcowich and J. D. Ward. Nonstationary wavelets on
the m-sphere for scattered data. Applied and Computational
Harmonic Analysis, 3(4):324–336, 1996.

[17] K. Nishino and S. K. Nayar. Eyes for relighting. ACM Trans.
Graph. (SIGGRAPH), 23(3):704–711, 2004.

[18] F. Pellacini, F. Battaglia, R. K. Morley, and A. Finkelstein.
Lighting with paint. ACM Trans. Graph., 26(2):9, 2007.

[19] F. Pellacini, P. Tole, and D. P. Greenberg. A user interface for
interactive cinematic shadow design. In SIGGRAPH, pages
563–566, 2002.

[20] P. Poulin, K. Ratib, and M. Jacques. Sketching shadows
and highlights to position lights. In Proc. of Conference on
Computer Graphics International, pages 56–63, 1997.

[21] R. Ramamoorthi and P. Hanrahan. A signal-processing
framework for inverse rendering. In SIGGRAPH, pages
117–128, 2001.

[22] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photo-
graphic tone reproduction for digital images. ACM Trans.
Graph. (SIGGRAPH), 21(3):267–276, 2002.

[23] I. Sato, Y. Sato, and K. Ikeuchi. Illumination from shad-
ows. IEEE Trans. Pattern Anal. Mach. Intell., 25(3):290–
300, 2003.

[24] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Green-
burg. Painting with light. In SIGGRAPH, pages 143–146,
1993.

[25] R. Shacked and D. Lischinski. Automatic lighting design us-
ing a perceptual quality metric. Computer Graphics Forum,
20(3):1067–7055, 2001.

[26] A. Shesh and B. Chen. Crayon lighting: Sketch-based illu-
mination of models. Proceedings of Pacific Graphics 2006,
pages 113–116, 2006.

[27] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered prin-
cipal components for precomputed radiance transfer. SIG-
GRAPH, 22(3):382–391, 2003.

[28] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency
lighting environments. In SIGGRAPH, pages 527–536,
2002.

[29] Y.-T. Tsai and Z.-C. Shih. All-frequency precom-
puted radiance transfer using spherical radial basis func-
tions and clustered tensor approximation. ACM Trans.
Graph.(SIGGRAPH), 25(3):967–976, 2006.

[30] Y. Wang and D. Samaras. Estimation of multiple direc-
tional light sources for synthesis of augmented reality im-
ages. Graph. Models, 65(4):185–205, 2003.


