

An Application-Independent System
for Visualizing User Operation History

Toshio Nakamura
Department of Computer Science

The University of Tokyo
toshi@ui.is.s.u-tokyo.ac.jp

Takeo Igarashi
Department of Computer Science

The University of Tokyo / JST ERATO
takeo@acm.org

ABSTRACT
A history-of-user-operations function helps make applica-
tions easier to use. For example, users may have access to
an operation history list in an application to undo or redo a
past operation. To provide an overview of a long operation
history and help users find target interactions or application
states quickly, visual representations of operation history
have been proposed. However, most previous systems are
tightly integrated with target applications and difficult to
apply to new applications. We propose an application-
independent method that can visualize the operation history
of arbitrary GUI applications by monitoring the input and
output GUI events from outside of the target application.
We implemented a prototype system that visualizes opera-
tion sequences of generic Java Awt/Swing applications
using an annotated comic strip metaphor. We tested the
system with various applications and present results from a
user study.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces - Graphical user interfaces.
General terms: Design, Human Factors.
Keywords: storyboards, diagrams, program visualization,
summarization, operation history.
INTRODUCTION
Many attempts have been made to make applications easier
to use by incorporating a history-of-user-operations func-
tion. Examples include Undo/Redo, which can undo the
last user operation or redo the last undone operation; the
History feature, which can rerun a past operation; and Pro-
gramming by Example, which generalizes user operations
into a program. To make effective use of these features, it
is important to be able to search a long user operation his-
tory and find target states quickly.
However, most conventional interactive systems provide
the user operation history only as a list of text commands.

The text format is very easy to manage, but it is difficult for
users to comprehend detailed user interactions and applica-
tion states quickly and precisely. Another approach is to
visualize operations using animation to explain the user
interaction and the corresponding change in the applica-
tion’s visual state. However, viewing an animation takes
time. Of course, one could fast-forward through an anima-
tion, but as playback speed increases, it becomes more dif-
ficult to recognize important details.

Figure 1: An annotated history generated from an
operation history.

To address these problems, visual history representations
have been proposed. For example, the Chimera system [17]
visualizes an operation history as a sequence of small snap-
shots and Su’s system [27] shows operation history as an
annotated diagram. However, these systems are tightly in-
tegrated with their target applications and difficult to apply
to new applications. Therefore, we propose an application-
independent method that can visualize the operation history
of arbitrary GUI applications without modifying the target
application. We do this by monitoring the input GUI events
and recording screen snapshots from outside of the target
application.
This paper describes a prototype system that visualizes the
operation history of Java Awt/Swing applications. For
visualization, we combine a sequence of snapshots [17]
with annotations on them showing detailed user operations
[27]. We tested the system with several applications and
observed that it could successfully visualize the operation
history of these various applications. We also performed an
informal user study to see whether the proposed system
helps users find specific operations in a history.
The remainder of this paper is organized as follows. First,
we provide a brief overview of previous work in related
areas. Then we present the visual design of an annotated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’08, October 19-22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

history and explain how user interactions are visualized.
Then we describe its implementation in detail, introduce a
prototype application using the technique, and present the
results of a user study we performed to verify the effective-
ness of the method. We conclude with a summary of the
technique, its limitations, and future work.
RELATED WORK
Our work builds on the results of many research attempts in
the past. We briefly summarize the most related systems
that influenced the design of our current system.
Operation History
The history of operations performed by users has long been
used for a variety of purposes, including undoing actions in
a text or graphical editor and going back to previous pages
in a web browser. Visualizing this history as a stack of text
lines is the most popular method. For example, GINA [7]
and Amulet [24] provide descriptive text lists for selective
undo operations. A few applications, such as the electronic
whiteboard [25] and desktop environment [26], retrieve
past information using a time slider. The DocWizard [6]
and Koala [19] systems learn how to perform a task from
an operation history and present the result as instructions in
a natural language. DocWizard also provides an annotated
screenshot of the current step.
Other systems attempt to make the operation history easier
to use and comprehend by using a graphical user interface.
Meng et al. [22] provided interactive snapshots that can
select objects and filter the operation history to show only
those commands that affect the objects. However, each
operation is shown as a text caption, not a graphical annota-
tion as in our system. Chimera [17] uses a comic strip
metaphor to depict the operation history; each operation is
represented as a snapshot that focuses on the objects being
manipulated. It also clusters related actions into a group for
better comprehension. The Pursuit system [23] extends the
comic strip metaphor and builds a more structured visual
representation that represents a program with variables,
loops, and conditionals. Mondrian [18] represents the be-
havior of user operations with a pair of screen snapshots
just before and after the operations were executed. Su’s
system [27] visualizes the operation history of a drawing
editor via a static image with a number of annotations on it,
each of which represents an individual editing operation.
ExperiScope [11] visualizes the log of low-level interac-
tions to help in analyzing empirical evaluation data.
Visual Effect
In the fields of visualization and graphics, many types of
visual effects have been proposed to illustrate dynamic
phenomena using static depictions. Masuch et al. [21] ap-
plied speed lines to convey object motion. Kawagishi et al.
[15] introduced several cartoon-blur techniques for 2D an-
imations. Kim et al. [16] developed a semiautomatic system
to add non-photorealistic and expressive illustrations of
motion to video.
Some approaches improve user comprehension of user in-
terfaces using visual effects. Mac OS X complements ani-
mation with motion blur when iconifying windows. Baud-

isch et al. [4] proposed a high-density cursor to help users
keep track of fast-moving mouse cursors by adding a strobe
effect to the mouse trajectory. Kaptelinin et al. [14] showed
that transient visual cues, such as temporarily dimming old
text immediately after scrolling, can improve the reading
performance of scrolled pages. Bezerianos et al. [8] intro-
duced the idea of mnemonic rendering, using persistence or
flashback to present visual changes that may otherwise be
missed by users because of changes that occurred in the
background. Baudisch et al. [5] presented Phosphor, a
technique for explaining transitions in the user interface
using afterglow effects.
Visual Summarization
Our work was motivated by several recent approaches us-
ing visual abstraction and summarization. LineDrive [2] is
a real-time system for automatically generating customized
route maps emphasizing the most essential information for
following a route. Agrawala et al. [1] also presented design
principles for automatically creating effective assembly
instructions that are easy to understand and follow. Assa et
al. [3] attempted to carefully select the key poses or frames
for composing a stroboscopic image (Action Synopsis) that
illustrates motion capture data.
There are also techniques for summarizing video in a single
image such as [28, 13, 29, 20, 9]. Goldman et al. [10] in-
troduced a method for visualizing short video clips in a
single static image, using the visual language of story-
boards. Their schematic storyboards annotate subject and
camera motion with 3D arrows, outlines, and text.
VISUAL DESIGN
Building upon previous visualization methods for GUI op-
eration histories, we visualize the entire operation history
with a comic strip metaphor [17] and augment each history
entry with annotations [27] such as word balloons and ar-
rows. This section describes the visualization details of the
annotated history approach.

Figure 2: Visualizing a series of user interactions,
namely two files dragged and dropped into a folder.

Figure 2 shows an example of an annotated history. User
operations are visualized as annotations on each screen
snapshot. The white arrows indicate mouse movements and
the red arrows indicate mouse drags.
However, as can be seen in Figure 2, this method of visual-
izing all interactions in isolation appears complicated and
redundant. For example, mouse movements need not be
visualized because they are usually not associated with any
operation in general applications. Another potential com-
plication using this method is when users wish to integrate
two consecutive clicking operations (double-click) into a
single image because there are numerous way to depict
such an operation, depending on the target application or
the purpose of visualization. We refined this type of anno-

tated history to make it more effective and versatile by al-
lowing customizable filtering and cluster processing as the
needs arise (see implementation section).
Mouse Operation
In general, the behavior of mouse operations depends on
the location of the mouse pointer. In the standard desktop
environment, the clicking operation selects the object di-
rectly under the pointer. Therefore, mouse operations in the
annotated history are annotated on the mouse trajectory.
Figure 3 describes the annotation list for mouse operations.
Operations with motion are denoted by an arrow; those
without motion are denoted by an icon.

Figure 3: Annotation list for mouse operations: (a)
moving the mouse, (b) mouse drag, (c) mouse click,
and (d) mouse wheel.

Mouse operations also vary according to the type of mouse
buttons in use, such as object selection via left click and
menu open via right click. To distinguish these operations,
the annotations for the same interactions are color-coded by
button as shown in Figure 4. (Color-coding may not be the
best choice. We would like to test more intuitive represen-
tations in the future.)

Figure 4: Color-coded annotations: (a) left click, (b)
right click, and (c) click of other buttons.

Keyboard Operation
Unlike mouse operations, the objects targeted by key input
operations cannot be identified by tracking the mouse poin-
ter. To show the target object of keyboard operations, the
annotated history first highlights the region of the keyboard
in a green frame. Then a word balloon labeled with the key
input sequence appears near the highlighted region (Figure
5). Some keys are represented by specific characters (e.g.,
“<Enter>” for the enter key and “<BS>” for the backspace
key).

Figure 5: Annotation for key input operations.

Exception
Applications with failures behave in unexpected ways, and
unless the result of failure is clearly shown on the screen, it
is very difficult to identify the point of failure from the op-
eration sequences. Therefore, it is important to recognize
where failures occur by visualizing them in the operation
history. In the annotated history, execution failures are de-
noted by a sticky note labeled with the type of failure
(Figure 6).

Figure 6: Annotation for execution failure.

The annotations for execution failures are shown together
with the annotations for interactive operations. This makes
it easier during debugging to investigate dependencies be-
tween execution failures and the responsible interactions.
Enhanced Snapshots
One of the simplest ways to illustrate application states at
the time of operation execution is to use a single snapshot
image. Although this can represent the application state at a
specific point in time, it is not enough to represent the vis-
ual transitions. To address this weakness, we provide the
following two visualizations as options: strobe style (Figure
7a) and inset style (Figure 7b).
To generate a strobe style image, the system first synthe-
sizes a single background image by examining all images
during the execution of the target operation such as drag-
ging. Specifically, the system examine the color of a spe-
cific pixel across all target frames and choosing the domi-
nant color as the background color. The system then identi-
fies the moving object by comparing each frame and the
base background image. Finally, the system adds the mov-
ing object on the background with increasing opacity (Fig-
ure 7a). This technique is useful for translational movement,
but it is not good for in-place movement such as rotation
and scaling.
To generate an inset style image, the system first computes
the difference of pixel color between the scene's first and
last snapshots. If the difference between two pixels in the
same location is higher than a given threshold, the location
is identified as the active region. The system creates a
smaller sized version of the last snapshot, adds bounding
boxes indicating the location of active regions, and pastes it

onto the annotated snapshot avoiding the mouse trajectory
(Figure 7b).

Figure 7: Two extended styles of snapshots used in
the annotated history: (a) strobe style and (b) inset
style.

IMPLEMENTATION
Our system is broken into the following four stages, per-
formed in sequence: data recording, operation analysis,
filtering/clustering, and scene composition. This section
describes the implementation details of each of these stages.
Our current system is implemented as a Java application
and is designed to visualize user operation history for Java
applications using Awt/Swing. However, our basic ap-
proach can be applied to general interactive applications
with GUIs.
Recording
There are several ways to monitor user interactions. One is
to modify the platform where the target application is run-
ning, as in DocWizard [6] modifying the Eclipse platform
and Koala [19] modifying FireFox. However, modifying
the virtual machine seems to be overkill for our purpose.
Another is to modify the target application directly as in
many PBD systems [17, 27], but this is labor-intensive and
lacks generality. In general, GUI events are managed in an
Event Queue object and sent to the target application.
Therefore, we insert a proxy between them to add a record
function without modifying the target application (Figure
8).

Figure 8: Overview of the record module.

When recording, the system inserts the proxy and auto-
matically records the interaction sequences as operations
are executed. In addition to mouse and keyboard operations,
however, there are various GUI events sent from the Event
Queue to the target applications, such as paint screen, focus
change, and notification events for windows or components.

The system records all of these GUI events in order to ana-
lyze what is happening in detail.
The system also automatically captures a snapshot of win-
dows in parallel with recording events as needed. Each
snapshot includes not only the image data on the screen but
also some additional information such as a timestamp cor-
responding to the recorded events and hierarchical struc-
tures of GUI components.
Operation Analysis
This process takes the recorded raw event sequence as in-
put and derives semantically coherent operations. The raw
event sequence recorded by the recording module includes
low-level events representing user interactions (e.g., mouse
and key events) and a variety of other events such as
change focus and paint components. From these, it derives
high-level semantic event sequences by applying three
conversion processes, as shown in Figure 9.
Paint events and windows events are notification events
generated for the internal processing of applications (i.e.,
not in response to user interactions). Therefore, we consider
these events a result of the last user interaction (trigger
event) and cluster them with the trigger event into a single
“basic operation event” (Figure 9a).

Figure 9: Extraction process of schematic events.

The next process is to identify iterative events. Many com-
ponents of event sequences are successive basic operation
events of the same type. Therefore, we convert such se-
quences into an “iterative operation event” (Figure 9b).
Finally, we derive semantic operations from event se-
quences that are converted by the two processes described
above (Figure 9c). For example, a semantic operation of a
mouse click is the result of sequential operations where the
user first presses the button and then releases it. Another
example is the semantic operation of a mouse drag ex-
pressed as follows: the user presses the button, moves the
mouse pointer without releasing the button, and then re-
leases the button. We convert a sequence of such meaning-
ful operations into a “semantic operation event”.

Our system assumes no interactions overlap. That is, the
system cannot handle a right mouse click with the left
mouse button pressed. The appropriate treatment of multi-
ple overlapping user interactions requires further work.
Filtering and Clustering
We further refine semantic event sequences by filtering and
clustering. Filtering removes unnecessary operations for
visualization and clustering groups operations into a single
static image.
In general, these processes depend on the application or the
intentions of the user, so it is impossible to prepare pre-
defined rules. For example, in nearly all applications, it is
unnecessary to visualize mouse movements; exceptions are
applications that invoke processes when the mouse pointer
crosses the boundary of GUI components. Another example
is the double-click operation. For files or folders in a stan-
dard desktop environment, the double-click operation is
different from plain consecutive clicks so double-clicks
should be clustered. However, if double-click is not associ-
ated with specific operation, individual click should be
treated separately.
Therefore, in our system, the filtering and clustering mod-
ules can be set per application. In the current implementa-
tion, the settings of these modules are specified manually.
The user makes the modules and inserts them into the code.
It is not too difficult to write clustering rules: simply spec-
ify what kinds of interactions should be clustered together.
For example, in Figure 12, the given rules are to cluster a
left-button click after a right-button click (pop-up menu),
consecutive clicks (double click), and multiple drags in the
same window. It took 10-30 minutes for us to write rules
for each application. In the future, we would like to incor-
porate support for specifying or changing these modules
dynamically via Programming by Demonstration.
Clustering does fail when the rule is not appropriate, e.g.,
when semantically un-related operations are clustered, the
snapshot fails to represent the application state appropri-
ately. However, such failures only slightly degrade the
quality and are not fatal.
Scene Composition
This process takes a semantic operation and snapshot se-
quence as input and returns annotated scene images. Ini-
tially, the system generates a background image of the
scene, by combining multiple snapshot sequences captured
during interactions. Our current implementation provides
the following three visualization styles:
• Normal Style: The simplest style, it represents each

background image with a single thumbnail, typically
using the scene’s first snapshot.

• Strobe Style: This style represents the visual transition
during an interaction. We use a simple background
subtraction method with a posterior probability to ex-
tract moving objects and paste them onto the back-
ground with increasing opacity.

• Inset Style: This style represents the final result of a
visual transition. We use a temporal differencing

method and a nearest-neighbor method to detect
changing regions and highlight them in the scene’s
last snapshot. The result is provided as a sub-image
inserted in the scene’s first snapshot.

After generating the background image for each scene, the
system adds annotations corresponding to user operations.
Newer annotations are stacked on top of older ones. If an-
notations become covered by the sub-image, the system
repositions the latter to avoid overlap.
EXAMPLES
The previous sections provided a few preliminary results of
our annotated history approach. This section presents sev-
eral more examples applied to actual applications.
Figure 10 shows images selected from an annotated history
for a sketch-based modeling system used in the user study.
The left image illustrates a cutting operation, and the mid-
dle image illustrates an extrusion operation. (Both are exe-
cuted by drawing a free-form stroke via a left drag.) The
right image illustrates a rotation operation (via right drag).

Figure 10: Three operation scenes from an anno-
tated history for a sketch-based modeling system.

Figure 11 shows an annotated history (in inset and strobe
styles) for a control panel composed of standard GUI wid-
gets. The left image represents changing a combo box by
clicking, and the right image represents adjusting a slider
by dragging. This way the user can quickly identify which
widget was modified by the operation, as previously dem-
onstrated in Phosphor [5].

Figure 11: Two operation scenes from an annotated
history for standard GUI widgets.

Additional examples are shown in Figure 12. They are suc-
cessive operation scenes for a desktop environment, and
describe how the user creates a new folder to group files,
then moves green files into it, and finally changes its name
to “Green.” In this example, we used a customized cluster
module to handle double-click operations as a single opera-
tion and integrate multiple related operations into a single
image. The annotation for double clicking is denoted by a
click mark and click count. In addition, these annotations

are numbered to provide the operation order in each scene
that includes multiple operations.

Figure 12: Part of an annotated history for a desk-
top environment. It includes eleven sequential user
interactions. A background image for each scene
uses a carefully selected normal style image.

We also applied our system to publicly available programs
that were not developed by the authors. Figure 5 shows the
result of applying our method to a publicly available
spreadsheet program. It is a little bit difficult to directly
apply our current system to arbitrary real world applica-
tions, because the operation history of such applications
may be dependent on various non-GUI factors, such as
multi-threading, networking, database and file access. We
believe that our method can work for text editing by using
an appropriate representation (e.g. the balloon in Figure 5).
We have not yet worked on algorithms to segment and
cluster long typing sequences; this remains as future work.
PROTOTYPE SYSTEM
To demonstrate and evaluate the usability of this annotation
approach, we developed a prototype browser system using
the annotated history. This section describes the features of
the system.

Figure 13: Prototype system for browsing the
annotated history: (1) storyboard, (2) event list, (3)
thumbnail list, (4) preview, and (5) search results.

Figure 13 shows a screenshot of the annotated history
browser. The system consists mainly of two working spac-
es. The lower part is a storyboard area for visualizing the
annotated user operation history, and the upper part has
areas for surveying details and focusing on a scene in the
annotated history. To the left is an event list and a thumb-
nail list that display recorded events and snapshots. In the
middle is a preview area that shows a scene using anima-
tion. To the right is an area that displays search results,
described later.
Reviewing an Annotated History
In the storyboard, elements of an annotated history are ar-
ranged chronologically to make it easier to understand the
location of the scene in the history. Users can right-click on
a scene to switch between two display formats: one
displaying the entire targeted window and the other
displaying only the region of interaction (Figure 14).

Figure 14: Two display formats of an annotated his-
tory. A view of the entire targeted window (left) or
only an operation-related region (right).

In the preview area, users can preview a scene by manipu-
lating a slider and several buttons. Interactions executed in
the scene are simulated by a pseudo mouse cursor, word
balloon, and other features. During previewing, the opera-
tion-targeted GUI component is highlighted.
Searching an Annotated History
The preview area also works as a query area for searching.
To search for specific interactions, users select the target
component regions by directly clicking or rubber-banding
the preview image. The system displays only the scenes
that include user interactions related to the selected compo-
nents in the result area. The focus of the storyboard area
moves to the corresponding location when users click a
scene in the search results.
This feature is designed to improve the efficiency of re-
viewing enormous numbers of user interactions in an anno-
tated history. It is particularly useful when users know
where the events occur but do not explicitly remember the
details of user interactions or visual states at that point in
time.
Restoring Previous Execution States
As with previous systems that record and visualize opera-
tion histories [17], our system also provides a function that
can actually restore the execution states of each scene. To
use this function, users click the menu command and select
the scene to restore. Then the system automatically restores
the execution state of the scene. After restoration, users can
continue to interact with the target application and restore
other execution states.

This is particularly useful for debugging tasks. Even if the
target application does not provide undo/redo functionality,
it makes rollback of application execution possible by re-
playing all recorded events from the beginning [17]. This
helps users investigate application execution previous to
the point of failure.
USER STUDY
We conducted a user study to evaluate the performance of
our visualization technique applied to several different ap-
plications. Our aims were to examine whether users could
successfully understand the annotated history, and whether
visualizing user interactions as annotations would improve
user performance. Participants had to locate specific user
interactions or application states in the operation history.
Our main hypothesis was that the annotated history would
lead to a better understanding of user activities, and outper-
form conventional visualization techniques in visual search.
We did not apply manual clustering in this study and each
snapshot corresponded to an individual low-level event.
Apparatus
The experiment was run on a laptop computer with a 1.20
GHz Pentium M processor and 1024 MB of memory. The
resolution of the screen was 1024×768 pixels. The interface
used in this experiment was implemented using Java TM 6.0
running on Windows XP SP2 Professional. Participants
interacted with the system using a standard mouse and key-
board.
Participants
Twelve university students ranging in age from 18 to 27
years old participated. Six of them were graduate students
in computer science and user interface researchers (expert
users). The other six were undergraduate students non in
computer science who rarely used computers (inexperi-
enced users). None of them had previous experience with
visualization using an annotated history. Each participant
worked on the task individually.
Task
The task was to find a figure that represented user interac-
tions or visual states in the target application, based on cer-
tain questions. Each task proceeded as follows. (1) Users
viewed a video showing how the target application operates,
and visual states were changed accordingly. The length of
the video was about 150 seconds. Users were allowed to
control the playback of the video freely and watch it as
many times as they wished. (2) The system provided an
operation history explaining an operation sequence (Figure
15). Each operation was displayed as a single still image
and the history consisted of approximately 50 operations.
(3) Users clicked a Start button, and a dialog appeared. The
dialog contained text and an image describing an operation
(Figure 16). The descriptive images were drawn manually
to illustrate the target operations and were not system-
generated snapshots. This may have added a bias in favor
of our system, but we chose this because images seem to be
the best lightweight way to specify an operation. Users
clicked an OK button to close the dialog and began to
search for the corresponding image in the operation history.
Users clicked a Find button after selecting the image, and

then a sound was played and another question appeared if
the selected image was correct. If a mistake was made, an
error message and warning beep were displayed, and the
same question was repeated. (4) After answering ten ques-
tions, the search task was complete.

Figure 15: Screen snapshot of the searching task
using the annotated history.

Figure 16: The question dialog for each task.

Interface
Two interfaces were presented, annotated history and snap-
shot history. They were identical, except that each user
interaction in the former was depicted as an annotation on a
static thumbnail image. Users could zoom in on regions of
user interactions by right clicking.
Design
Each participant worked within both interfaces. Participants
were divided into two groups of six (each with three expert
and three inexperienced users). One group used the anno-
tated history first and the other group used the snapshot
history first. In addition, each participant worked with three
different applications with each interface, for a total of six
trials (3 applications × 2 interfaces). The first target appli-
cation was a sketch-based three-dimensional (3D) modeling
system named Teddy [12] (Figure 17a). The second was an
icon manipulation system that mimicked a standard desktop
workspace in a modern window system (Figure 17b). The
last was a window containing a mix of standard GUI wid-
gets: check boxes, combo boxes, and sliders organized in a
regular 4×4 grid (Figure 17c). All participants worked on
the tasks in this order.

Figure 17: Three target applications in the user
study: (a) 3D modeling system, (b) icon manipula-
tion system, and (c) standard GUI widgets system.

First, we gave a tutorial explaining the task and how each
operation was denoted as an annotation. Then participants
were given time to learn how to use each target application.
Then the trials began, and participants were asked to com-
plete the trials as quickly and accurately as possible. For
each trial, we recorded the completion time and number of
errors. Completion time was measured from the moment
the user pressed the dialog’s OK button until the moment
the user hit the Find button. The error was the number of
times the user clicked the Find button with the wrong an-
swer. At the end of the experiment, participants completed
a questionnaire assessing their performance. The experi-
ment lasted approximately 90 minutes per participant.
Results
We summarized and analyzed the data, taking the means of
completion time and error over the ten questions for each
trial. We used a 2 (Interface) × 3 (Application) × 2 (User
Type) analysis of variance (ANOVA) on each of the de-
pendent variables, completion time and error rate.
There was a significant main effect of interface type on
completion time (F1, 648 = 13.41, p < .001), with partici-
pants completing the task significantly faster with the anno-
tation interface than with the snapshot interface. The mean
completion times for all applications and user types were
15.73 seconds for the annotation interface and 24.70 sec-
onds for the snapshot interface. There was also a significant
effect of user type on completion time (F1, 648 = 4.94, p
< .028), as expected. The overall completion times were
17.49 seconds for expert users and 22.94 seconds for inex-
perienced users. In addition, there was an interaction be-
tween interface type and application type. There were no
significant differences among applications.
Figure 18 shows the average completion time and standard
deviation of the two interfaces for each application. The
annotated history generally outperformed the snapshot his-
tory. Especially in the 3D modeling system, task comple-
tion time was influenced more by annotation (approxi-
mately 35% completion time) regardless of the level of
computer skill. These results show that an annotated history
can be very useful for applications that require operations
such as sketches and gestures. In contrast, the GUI widgets
system, which mainly requires click operations and has
local visual transitions for operations, was less affected by
annotation. To determine the detailed characteristics of
annotated histories would require further larger-scale inves-
tigations (e.g., GUI widgets in a 10×10 grid).

Figure 18: Average trial time under each interface
condition (time in seconds, +/- standard error of the
mean).

The error rate metric also revealed interesting effects of all
factors, including interface (F1, 648 = 4.14, p < .043), user
type (F1, 648 = 5.96, p < .016), and application (F2, 648 = 4.17,
p < .017). The mean error rates for all applications and user
types were 14% for the annotation interface and 20% for
the snapshot interface. Moreover, the overall error rates for
applications were 15% for the 3D modeling system, 23%
for the icon manipulation system, and 14% for the GUI
widgets system. For user types, the mean error rates were
14% for expert users and 20% for inexperienced users.
There were also interactions between interface and applica-
tion, and application and user type.

Figure 19: Mean error rate under each interface
condition with standard error.

The error rate and standard deviation by interface and ap-
plication are shown in Figure 19. The annotated history led
to lower error rates for the 3D modeling system and the
GUI widgets system. This indicates that annotation pro-
vides more user-friendly and precise depictions, which re-
duce user mistakes. Interestingly, the interface with annota-
tion led to a higher error rate for the icon manipulation sys-
tem, whereas the mean completion time for the icon ma-
nipulation system was reduced by using annotation. User
behavior during the study and the post-test interview re-
vealed that several users, mainly inexperienced users, unin-
tentionally executed simple click operations such as menu
open and icon select in the standard desktop environment
without consciously knowing the correspondence between
buttons and operations. Thus, they first treated the annota-
tions for right and left click equally and made mistakes.

There was also a case where the annotations overlapped
with the objects in the scene and the user did not notice
these hidden objects and then made a mistake. It might be
possible to reduce such mistakes by using a semitransparent
depiction.
According to the questionnaires, all participants preferred
the annotation interface over the snapshot interface. Fur-
thermore, they all answered “yes” to the question, “Was the
concept of annotated history easy to understand?” On a
five-point Likert scale, participants agreed that annotations
were more intuitive depictions for user interactions (mean
value: 4.67) and that annotations helped users recognize
interactions and application states (mean value: 4.75). In
addition, some participants requested combinations with
textual command lists.
Discussion
The user study indicated that annotation made it easier to
track and review user interactions and visual transitions. In
particular, the use of the annotated history in the gesture-
based 3D modeling system resulted in higher performance
for both trial time and error rate. On the other hand, in the
traditional GUI widgets system, the annotated history was
only as efficient as snapshot history for task completion
time despite the superior error rate.
These differences among applications suggest that the per-
formance of annotated history in visual comprehension
largely depends on two factors, namely, the complexity of
user operations and the scale of visual transition caused by
the operations. The 3D modeling system used in this ex-
periment required sketch-based expressive operations and
changes in visual states for the operations. In contrast, the
GUI widgets system used in this experiment required sim-
ple click or drag operations, and the visual transitions were
very local. Therefore, we conclude that the annotated his-
tory method is well-suited for applications in which the
operations are expressive and the visual transitions caused
by the operations are large.
CONCLUSIONS AND FUTURE WORK
We presented a method to capture and visualize the opera-
tion history of an arbitrary target application by observing
its event queue. Our visualization method combines a
comic strip metaphor that shows the operation sequence
with annotations that illustrate the details of individual op-
erations. We implemented a prototype system for Java
Awt/Swing applications and applied it to several example
applications. Our user study demonstrated that using an
annotated history can improve user performance in a
searching task compared to standard static snapshots. Al-
though our results do not guarantee the superiority of our
technique in more complex cases or in other types of appli-
cations, the results show that an annotated history helps
users recognize the order of operations and how visual
transitions occur.
There are many possible directions for further exploration.
One is to improve the visual quality of our results. Our cur-
rent system eliminates unnecessary operations for
visualization and groups multiple operations together.
Other systems treat only low-level operation types, such as

tems treat only low-level operation types, such as click and
drag, and lack the quality most users seek. One interesting
future direction is to consider the behavior specific to each
GUI component. Almost all GUI components have specific
actions for each operation. For example, pressing or click-
ing a button are significant operations while dragging is
meaningless. In contrast, dragging the slider or scroll bar is
significant. By considering these aspects, more meaningful
operations and some filtering and clustering tasks per-
formed by users may be easily automated.
Some test users said that they wanted to see more abstract
summarized images. The level of abstraction in our proto-
type implementation is the same for each element of anno-
tated history, and users must view the entire previous anno-
tated history sequence step-by-step to obtain prior informa-
tion. We would like to extend the annotated history toward
adaptive entities that change their abstraction level dynami-
cally according to focus, context, size, and so on. For in-
stance, the image in focus depicts a short span of operation
history and the image out of focus visualizes a long span of
operation history. Extensions of this sort would allow users
to recognize both details and an overview of the operation
history without reviewing many images.
ACKNOWLEDGEMENTS
We would like to thank participants of the user study. We
would also like to thank the UIST reviewers and committee
members for detailed feedback which improved the paper.
REFERENCES
1. Agrawala, M., Phan, D., Heiser, J., Haymaker, J.,

Klingner, J., Hanrahan, P., and Tversky, B. Designing
Effective Step-By-Step Assembly Instructions. In Pro-
ceedings of SIGGRAPH, pp. 828-837, 2003.

2. Agrawala, M., and Stolte, C. Rendering Effective Route
Maps: Improving Usability Through Generalization. In
Proceedings of SIGGRAPH, pp. 241-249, 2001.

3. Assa, J., Caspi, Y., and Cohen-Or, D. Action Synopsis:
Pose Selection and Illustration. In Proceedings of
SIGGRAPH, pp. 667-676, 2005.

4. Baudisch, P., Cutrell, E., and Robertson, G. High-
Density Cursor: A Visualization Technique that Helps
Users Keep Track of Fast-Moving Mouse Cursors. In
Proceedings of INTERACT, pp. 236-243, 2003.

5. Baudisch, P., Tan, D., Collomb, M., Robbins, D.,
Hinckley, K., Agrawala, M., Zhao, S., and Ramos, G.
Phosphor: Explaining Transitions in the User Interface
Using Afterglow Effects. In Proceedings of UIST,
pp.169-178, 2006.

6. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.
DocWizards: a system for authoring follow-me docu-
mentation wizards. In Proceedings of UIST, pp. 191-
200, 2005.

7. Berlage, T. A Selective Undo Mechanism for Graphical
User Interfaces Based On Command Objects. In Pro-
ceedings of CHI, pp. 269-294, 1994.

8. Bezerianos, A., Dragicevic, P., and Balakrishnan, R.
Mnemonic Rendering: An Image-Based Approach for
Exposing Hidden Changes in Dynamic Displays. In
Proceedings of UIST, pp. 159-168, 2006.

9. Freeman, W.T., and Zhang, H. Shape-Time Photogra-
phy. In Proceedings of CVPR, pp. 151-157, 2003.

10. Goldman, D.B., Curless, B., Salesin, D., and Seitz, S.M.
Schematic Storyboarding for Video Visualization and
Editing. In Proceedings of SIGGRAPH, pp. 862-871,
2006.

11. Guimbretie're, F., Dixon, M., and Hinckley, K. Experi-
Scope: an analysis tool for interaction data. In Proceed-
ings of CHI, pp.1333-1342, 2007.

12. Igarashi, T., Matsuoka, S., and Tanaka, T. Teddy: A
Sketching Interface for 3D Freeform Design. In Pro-
ceedings of SIGGRAPH, pp. 409-416, 1999.

13. Irani, M., and Anandan, P. Video Indexing Based on
Mosaic Representations. IEEE Transaction on Pattern
Analysis and Machine Intelligence, Vol. 86, No. 5, pp.
905-921, 1998.

14. Kaptelinin, V., Mantyla, T., and Astrom, J. Transient
Visual Cues for Scrolling: An Empirical Study. In
CHI ’02 Extended Abstracts, pp. 620-621, 2002.

15. Kawagishi, Y., Hatsuyama, K., and Kondo, K. Cartoon
Blur: Non-Photorealistic Motion Blur. In Proceedings
of CGI, pp. 276-281, 2003.

16. Kim, B., and Essa, I. Video-based Nonphotorealistic
and Expressive Illustration of Motion. In Proceedings of
the CGI, pp. 32-35, 2005.

17. Kurlander, D. and Feiner, S. A history-based macro by
example system. In Proceedings of UIST, pages 99-106,
1992.

18. Lieberman, H. Mondrian: A Teachable Graphical Editor.
In Watch What I Do: Programming by Demonstration,
pp. 341-358, 1993.

19. Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M.,
and Kandogan, E., Koala: capture, share, automate, per-

sonalize business processes on the web, In Proceedings
of CHI, pp. 943-946, 2007.

20. Massey, M., and Bender, W. Salient Stills: Process and
Practice. IBM Systems Journal, Vol. 35, No.3-4, pp.
557-573, 1996.

21. Masuch, M., Schlechtweg, S., and Schulz, R. Speedli-
nes: Depicting Motion in Motionless Pictures. In
SIGGRAPH ’99 Conference Abstracts and Applications,
pp. 277, 1999.

22. Meng, C., Yasue, M., Imamiya, A., and Mao, X. Visual-
izing Histories for Selective Undo and Redo. In Pro-
ceedings of APCHI, pp. 459, 1998.

23. Modugno, F. and Myers, B. A. Pursuit: graphically rep-
resenting programs in a demonstrational visual shell. In
Conference Companion of CHI, pp.455-456, 1994.

24. Myers, B.A., McDaniel, R.G., Miller, R.C., Ferrency,
A.S., Faulring, A., Kyle, B.D., Mickish, A., Klimovitski,
A., and Doane, P. The Amulet Environment: New Mod-
els for Effective User Interface Software Development.
IEEE Transaction on Software Engineering, Vol. 23,
No. 6, pp. 347-365, 1997.

25. Mynatt, E.D., Igarashi, T., Edwards, W.K., and La-
Marca, A. Flatland: new dimensions in office white-
boards. In Proceedings of CHI, pp. 346-353, 1999.

26. Rekimoto, J. Time-Machine Computing: A Time-
Centric Approach for the Information Environment. In
Proceedings of UIST, pp. 45-54, 1999.

27. Su, S. Visualizing, Editing, and Inferring Structure in
2D Graphics, UIST 2007 Doctoral Symposium, 2007.

28. Taniguchi, Y., Akutsu, A., and Tonomura, Y. Pano-
ramaExcerpts: Extracting and Packing Panoramas for
Video Browsing. In Proceedings of MULTIMEDIA, pp.
427-436, 1997.

29. Teodosio, L., and Bender, W. Salient Video Stills: Con-
tent and Context Preserved. In Proceedings of
MULTIMEDIA, pp. 39-46, 1993.

