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ABSTRACT 
Cameras are a useful source of input for many interactive 
applications, but computer vision programming is difficult 
and requires specialized knowledge that is out of reach for 
many HCI practitioners. In an effort to learn what makes a 
useful computer vision design tool, we created Eyepatch, a 
tool for designing camera-based interactions, and evaluated 
the Eyepatch prototype through deployment to students in 
an HCI course. This paper describes the lessons we learned 
about making computer vision more accessible, while 
retaining enough power and flexibility to be useful in a 
wide variety of interaction scenarios. 
ACM Classification: H.1.2 [Information Systems]: 
User/Machine Systems — Human factors; H.5.2 
[Information Interfaces and Presentation]: User Interfaces 
— interaction styles, prototyping, theory and methods; 
I.4.8 [Image Processing and Computer Vision]: Scene 
Analysis — color, object recognition, tracking; I.4.9 
[Image Processing and Computer Vision]: Applications. 
General Terms: Algorithms, Design, Human Factors. 
Keywords: Computer vision, image processing, 
classification, interaction, machine learning. 

INTRODUCTION 
Many compelling systems have used cameras as an 
interactive input medium, from the pioneering work by 
Myron Krueger [22] to projects like Light Widgets [9], 
EyePliances [29], and Gesture Pendant [30], tangible 
interfaces such as Illuminating Light [31] and the 
Designers’ Outpost [20], game interfaces [10] including 
crowd interaction [26] and the Sony Eyetoy [23], and 
platforms like PlayAnywhere [35], TouchLight [36], and 
the camera-based SmartBoard. Today, the cost of a digital 
camera is comparable to that of a traditional mass-market 
input device like a keyboard or mouse, and cameras are 
already integrated into many of our devices, such as cell 
phones, PDAs, and laptop computers. While these cameras 
are typically only used for video conferencing and taking 

pictures, recent advances in computing power open the 
door to their use as an additional channel of input in a wide 
variety of applications, giving “eyes” to our everyday 
devices and appliances. 
Unfortunately, designing camera-based interfaces is still 
quite difficult. There are a number of powerful tools for 
computer vision such as MATLAB and OpenCV [4], but 
these tools are designed by and for programmers. They 
require a fairly advanced level of programming skill, and in 
some cases a sophisticated understanding of the 
mathematics of image processing and machine learning 
techniques. Vision prototyping tools like Crayons [8] and 
Papier-Mâché [19] are an inspiring step in the right 
direction, but their frameworks place restrictive constraints 
on the types of applications that can be built, as we shall 
discuss. 

RESEARCH GOALS 
With the goal of simplifying the process of developing 
computer vision applications, we built a tool called 
Eyepatch that allows novice programmers to extract useful 
data from live video and stream that data to other rapid 
prototyping tools, such as Adobe Flash, d.tools [14], and 
Microsoft Visual Basic. When designing Eyepatch, we 
made the assumptions that our target community was 
comfortable using a visual design tool and had some basic 

Figure 1  Eyepatch in training mode. Here the user is 
training a color classifier; the pane at the right shows the 
examples she has chosen, and the internal state of the 
classifier is represented by hue histogram in the lower pane.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA. 
Copyright 2007 ACM  978-1-59593-679-2/07/0010...$5.00. 

 
33



 

Figure 2  Eyepatch in composition mode, in which users
select classifiers to run on live video input. Two classifiers
are enabled in this example, and their outputs are shown in
the bottom right video pane, outlined in different colors. 

 
Figure 3  Sample projects created by students at the 
University of Tokyo using the first version of Eyepatch. 

programming experience, but little or no knowledge of 
computer vision, image processing, or machine learning 
techniques. Our objective was to enable users to get the 
information they needed from a camera without any 
specialized computer vision programming. 
Our goal was not to support highly complex, data-intensive 
computer vision techniques such as 3-dimensional 
reconstruction of object geometry or stereo range finding. 
Instead, we wanted users to be able to use computer vision 
techniques to answer simple questions based on video data: 
Does my houseplant need watering? Is there any coffee left 
in the coffeepot? What is the weather like outside? Are 
there any eggs in my refrigerator? Who left those dirty 
dishes in the sink? Has the mail been delivered yet? How 
many police cars pass by my window on a typical day? 
These sorts of simple questions can lead to compelling 
application scenarios, and answering them does not require 
detailed, high-level image understanding. Instead, 
questions such as these can be answered using relatively 
simple classifiers, provided the designer can train and 
calibrate these classifiers for the context of the application. 

RESEARCH AGENDA 
We base our overall research strategy on iterative 
prototyping. After creating each version of Eyepatch, we 
provide it to designers, and observe what they can achieve 
with it and where they encounter problems. This gives us 
insights that help us improve subsequent versions. 
We wrote the first version of Eyepatch as a collection of 
ActiveX Controls in Visual Basic, each control custom-
built to solve a particular computer vision problem, such as 
tracking faces or finding laser pointer dots. We deployed 
this first version to students in an HCI class [15] (Figure 3), 
but found that the highly specific nature of the ActiveX 
Controls constrained the students to a very narrow range of 
possible applications, and the ActiveX architecture 

prevented students from using the camera data in other 
prototyping tools. 
This paper describes our second version of Eyepatch, 
which was designed to allow users more creativity in 
developing their own computer vision algorithms. We 
wanted to enable designers to attack a broader range of 
problems, and use a wider variety of prototyping tools. At 
the same time, we tried to keep things as clear-cut as 
possible by making certain simplifying assumptions in our 
framework. We assumed that the input came from a 
camera or recorded video, the sequence of frames was 
passed through one or more binary classifiers, and the only 
output was the set of image regions yielded by each of the 
active classifiers. Our expectation was that this framework 
would still be too limited for some real-world applications. 
However, by examining what our users could build and 
what was out of their reach, we hoped to gain an 
understanding of what features are needed in a camera-
based interaction design tool in order for it to achieve 
widespread use. 
We will begin our discussion of Eyepatch with an 
overview of its framework. We will outline its capabilities 
and our rationale for designing it as we did. We will then 
describe our evaluation process, and recount the lessons we 
learned in our class deployment. We will conclude by 
framing our contributions in the context of related work. 

EYEPATCH OVERVIEW 
Eyepatch has two basic modes: 
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• A training mode, where users can train different 
types of classifiers to recognize the object, region, or 
parameter that they are interested in. 

Figure 5  Eyepatch allows users to train a boosted classifier 
cascade using examples from recorded videos, and 
immediately observe its performance on live or recorded 
video. 

• A composition mode, where the classifiers are 
composed in various ways and users specify where 
the output of the classifiers should go. 

Composition Mode 
The Eyepatch composition mode is shown in Figure 2.  Its 
functionality is best explained through an example 
scenario. Suppose a designer is prototyping an interactive 
whiteboard system in Flash, and she wants to incorporate 
input from a camera mounted above the whiteboard. 
Assume she wants to know (a) when someone is standing 
in front of the whiteboard and (b) whether or not that 
person is looking at the whiteboard. The designer enters 
composition mode and chooses two classifiers, one that 
recognizes faces and another that performs adaptive 
background subtraction to identify foreground regions in 
the image, which in this case are assumed to be people. She 
then specifies an output path to which this data should be 
sent, in this case XML over TCP. She clicks “Run on Live 
Video,” which activates the camera and begins running the 
classifiers on the live video, streaming the data to the 
specified output. She then returns to her Flash prototype 
and adds a few lines of ActionScript to connect to a local 
socket and read this XML data. 
Note that although the process of building her application 
did require some programming in order to read the camera 
data and do something useful with it, it did not require 
domain-specific knowledge about computer vision. She 
could begin using camera input without knowing the 
details of statistical background models or boosted 
classifier cascades, and the ActionScript to read the 
incoming XML data could be copied from one of our 
toolkit examples. 
In this scenario, only built-in classifiers were needed. 

Eyepatch includes a number of these special-purpose 
classifiers for common problems such as face detection, 
background subtraction, and motion detection. However, 
we expect it will be equally common for users to train their 
own classifiers that are tailored to their application and its 
context. The Eyepatch training mode allows users to create 
their own classifiers using examples drawn from a recorded 
video. 

Training Mode 
The Eyepatch training mode (Figure 1) uses an interactive 
learning approach similar to that of Crayons [8], with 
several key differences. First, Eyepatch operates on video 
instead of still images. This is important for recognizing 
dynamic motion sequences, and it also simplifies the 
process of capturing large amounts of training data. The 
user loads a video in any standard format, or records a 
video from an attached webcam. The user can scroll 
through the video, much like in a video editor. She can 
then use the mouse to highlight regions of frames to use as 
examples for training a classifier. 

Figure 4  Shape classifiers in Eyepatch use Canny edge 
detection followed by contour matching to identify the objects 
of interest. Shape classifiers work best for objects with
distinctive outer contours. 

Second, while the Crayons system requires Java, Eyepatch 
allows formatted data to be exported over network sockets 
to communicate with a wide variety of prototyping tools. 
We felt that the ability to integrate with many different 
prototyping tools was an important way to support the 
common practices of designers. 
Third, rather than a single type of classification algorithm, 
Eyepatch supports a variety of classification strategies. 
This is important if we wish to support a diverse array of 
applications. For example, a boosted cascade of Haar 
classifiers works well for identifying objects of a general 
class, such as cars or faces, while SIFT features work better 
for identifying a particular instance of a class, such as a 
specific book cover or logo. Neither of these feature-based 
classifiers performs well when attempting to identify 
smooth, untextured objects like balloons or laser dots, since 
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they have few distinguishable features; in this case a 
classifier based on hue histograms or brightness 
thresholding is more appropriate. When following a 
moving object, sometimes the most important factor is the 
change in the image over time; in this situation the most 
appropriate approach is to use a technique like frame 
differencing, motion templates, adaptive background 
subtraction, or optical flow. 
We do not expect our users to have a detailed 
understanding of the underlying machinery behind each 
classifier type, so they may not always select the 
appropriate classification strategy on their first try. To 
make it as painless as possible to find the appropriate 
classification strategy for the problem at hand, our interface 
was designed to facilitate rapid trial-and-error. In a matter 
of seconds, the user can switch to a different classification 
method, train it on the same set of examples, and observe 
its output. This allows the user to quickly select the optimal 
strategy. 
After selecting some examples from the video feed, the 
user selects a classification method and clicks “Learn from 
Examples” to train a classifier. He can then check “Show 
Guesses” to observe the output of the trained classifier on 
the current frame. By scrolling through the frames in rapid 
succession, he can quickly judge the performance of the 
classifier, and if it is not satisfactory, he can provide more 
examples or try a different classification method. 
An alternate strategy might be to run all of the classifier 
types and ask the computer select the most successful one.  
At first this strategy seems much easier, but it introduces 
two challenges. First, it would run much more slowly and 
eliminate the opportunity for quick iteration, which would 
violate the fast-and-focused UI principle used successfully 
in the Crayons system. The advantage of the fast-and-
focused approach is that when the user sees an incorrect 
classification, he can interactively add the misclassified 

region to the training set for the next training iteration. 
Since the misclassified regions are often edge cases, this 
lets the user quickly select the most relevant examples as 
input to the classifier. Second, training all of the classifiers 
at once would ignore any of the knowledge that the user 
could bring to the table about which classification 
strategies he thought might be the most appropriate. In 
practice we found that after enough learning through trial-
and-error, users began to develop helpful intuitions about 
which classifier types worked best for which problems, and 
this reduced the training time greatly. 

Figure 6  SIFT produces classifiers with better invariance to
object pose, scale, and illumination. The colored dots in the
classifier viewing pane show the feature correspondences
found between the current frame and the training example. 

ADVANTAGES OF MULTIPLE CLASSIFIER TYPES 
One advantage provided by our approach is that users can 
create several weak classifiers and combine their output 
into a single classifier with a lower rate of false positives. 
For example, a color classifier might do a good job of 
extracting skin-colored regions, but if the user was trying 
to recognize hand gestures, he would want to ignore faces. 
By combining the color classifier with a motion classifier 
that identifies moving regions of the image, he could find 
only the moving skin-colored regions. 
In addition to eliminating false positives, this composition 
of simple classifiers can allow users to identify more 
complex types of events. For example, users can train a car 
classifier, a classifier that recognizes red objects, and a 
classifier that recognizes objects moving left in the image. 
They can then combine the outputs of these classifiers to 
recognize red cars moving left. 
Eyepatch currently supports seven classifier types: 

1. Color, based on hue histograms and backprojection 
(similar to CAMSHIFT [5]), for identifying 
distinctively colored objects. 

2. Brightness, for finding the brightest or darkest 
regions of an image, such as laser dots or shadows. 

Figure 7  To train a motion classifier, the user selects frames
or regions of frames that contain the desired type of motion, 
and the motion history image is segmented to extract the 
overall motion directions. These are compared against 
motion in the current frame. Here, the user is looking for 
skateboarders who are moving downward. 
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3. Shape, based on Canny edge detection followed by 
contour matching using pair-wise geometrical 
histograms [16], for finding objects with distinctive 
outer contours (Figure 4). 

4. Adaboost, a machine learning technique that uses a 
boosted cascade of simple features [32], for 
recognizing general classes of objects like faces, 
animals, cars, or buildings (Figure 5). 

5. Scale-Invariant Feature Transforms [24], for 
recognizing specific objects with invariance to scale, 
pose, and illumination (Figure 6). 

6. Motion, based on segmentation of a motion history 
image [6], for identifying the directions of moving 
objects in the scene (Figure 7). 

7. Gesture recognition, based on blob detection 
followed by motion trajectory matching [3] using the 
Condensation algorithm [17], for recognizing 
particular patterns of motion (Figure 8). 

This wide variety of classifier types allows users to tackle 
problems that cannot be solved with simple pixel-based 
classifiers, which do not incorporate global image data like 
contour shapes or the relative positions of image features. 
SIFT classifiers allow users to build recognizers that are 
invariant to scale, rotation, and illumination, and Adaboost 
classifiers let users train recognizers that operate on general 
classes of objects. The motion and gesture classifiers allow 
for applications that recognize directions and patterns of 
motions across time, so that applications are not limited to 
operating on static images. 

SAMPLE PROJECTS 
Describing a few projects we built with Eyepatch will 
provide a sense of its capabilities. We completed each of 
the following projects in a few hours, with the majority of 
this time devoted to components of the projects unrelated 
to computer vision. 

BeiRobot 
BeiRobot (Figure 9) is a Lego robot that uses computer 
vision to play Beirut. Beirut is a party game in which 
players attempt to throw ping-pong balls into cups. 
BeiRobot uses a color classifier to detect cup positions in 
the input image, and it rotates its swiveling base until one 
of the cups is centered in the image. It then launches a 
ping-pong ball at the cup, using the size of the detected cup 
region to estimate the cup’s distance from the camera. 

Stop Sign Warning Device 
The stop sign warning device (Figure 10) warns drivers 
when they are about to run through a stop sign. It uses an 
Adaboost classifier to recognize stop signs, and a motion 
classifier to detect when the car is moving. If a stop sign is 
detected close to the camera, and the car continues forward 
without stopping, the device emits a warning tone. 

Logo Scoreboard 
The logo scoreboard (Figure 11) uses SIFT classifiers to 
recognize an assortment of five different corporate logos. It 
watches live television and counts how many times each 
logo appears. A system like this would allow marketers to 
assess the brand penetration of their company or evaluate 
the success of their product placement campaigns. 

EVALUATION 
Starting with this framework, we began evaluating 
Eyepatch to see which types of applications it could 
support, which it could not, and what capabilities were 
needed for a tool of this nature to be useful to designers. 
For the purpose of this evaluation, we offered a one-quarter 
course on computer vision for HCI called “Designing 
Applications that See” [25]. In a series of hands-on 
workshop sessions, the students in the class were 
introduced to a variety of computer vision tools, including 
MATLAB, OpenCV, JMyron (an extension library for the 
Processing [28] development environment), and Eyepatch. 
They were also given a general introduction to the common 
techniques used in computer vision and image processing, 
without delving into any complex mathematical details (the 
lecture notes did not include a single equation). After five 
weeks of being introduced to the tools, we asked the 
students to spend five weeks building working prototypes 
of camera-based applications, using the tools of their 
choice. Figure 8  In gesture training mode, the user selects the

intervals of video that contain examples of the motion
trajectories he wishes to recognize. Motion trails are shown
as overlays on the video frame. When run on live or
recorded video, a particle filtering technique is used for
motion matching, and the match probabilities for each
gesture are shown in the classifier viewing pane. In this
example, three gestures have been trained, a shaking
motion, a straight line, and a circular gesture; the circular
gesture is recognized in this frame. 

Of the 19 students enrolled in the class, 17 were Masters 
students in Computer Science or Electrical Engineering and 
2 were Computer Science undergraduates. This collection 
of students had more extensive programming experience 
than our target community for Eyepatch, but this provided 
us with a good stress test; because of their technical 
expertise, the students tackled problems that novice 
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programmers might not have attempted. As the students hit 
the limits of what Eyepatch allowed them to achieve, we 
developed an understanding of what was needed in a 
computer vision design tool for it to work well on real-
world problems. 

 

 
Figure 9  The BeiRobot fires ping-pong balls at red cups, 
which it finds using a color classifier. 

LESSONS LEARNED 
All of the student teams that began their projects using 
Eyepatch eventually found its limitations. Of the eight 
project teams, five began their project with Eyepatch, but 
as their projects progressed, they encountered things that 
they wanted to do with our framework but could not, and 
switched to more complex, more general-purpose tools like 
OpenCV and MATLAB. We shall discuss the specific 
limitations that the students encountered in more detail, but 
it is worth noting that many of the teams still found 
Eyepatch useful in the initial prototyping phase. For 
example, one group of students built a virtual ping-pong 
game using real ping-pong paddles as controllers.  
Although they eventually migrated to OpenCV so that they 
could stream live video between game opponents, they 
used Eyepatch to quickly experiment with different 
strategies for tracking the position of a ping-pong paddle, 
using shape, color, and feature-based classifiers. Once they 
had settled on a strategy that worked well, they 
incorporated it into their OpenCV code, which was more 
laborious to modify. 
Although Eyepatch is intended primarily as a tool for rapid 
prototyping, ultimately we would like to make its ceiling 
[27] as high as possible. The lessons we learned from the 
class gave us many ideas for improving Eyepatch, not only 
for raising its ceiling but also for advancing its interaction 
model and simplifying the classifier training process. In 
this section we will describe these lessons, illustrating them 
with particular examples from the class. 
Provide image data in addition to classifier output. 
Many students wanted to display camera images to the end 
users of their applications. For example, one group of 
students built a game in which players moved their heads 
around to hit targets. The students needed to display an 
image of the players and overlay graphics on this image. 
While Eyepatch was capable of detecting face positions, it 
did not provide a way of exporting the image frames along 
with the output of the active classifiers. By focusing on 
translating image data into simple output parameters, we 
neglected the importance of using the camera image itself 
as output. 
Allow data selection and filtering. One of our simplifying 
assumptions was to discard data that we thought would not 
be useful. Although the actual output of the trained 
classifiers was a set of bounding polygons around the 
detected regions, we sent only the region centers and areas 
to the output stream. This is enough data for many 
applications, but sometimes more detail is required. For 
example, one group built an animation system using hand 
tracking, and they wanted to use the shape of the hand 

region to recognize certain gestures. This was impossible if 
they only knew the center and area of each hand. 
In our next version, each classifier will allow the user to 
select among all of its possible outputs. This way the user 
can decide which data to keep and which to discard, by 
choosing from a list of region parameters, such as position, 
bounding box, area, perimeter, eccentricity, image 
moments, and so on. 
Provide a mechanism for data reduction. In other 
situations, Eyepatch actually provided too much data. For 
example, one group simply wanted to know whether or not 
there was something moving in the image. They were 
essentially trying to reduce the entire image to a single bit 
of data. In this case, sending out a list of the moving 
regions in the image was excessive. 
We plan to address this problem by providing data reducers 
that can be added to the output of each classifier. The most 
commonly requested data reducers were: 
• Simple binary output (0 if there are no detected 

regions, 1 otherwise), to tell the user if a certain 
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condition has been met (for example, tell me when 
there is someone at my front door). 

• Number of detected regions, to tell the user how 
many of the objects of interest are visible in the scene 
(for example, to count the number of cars on the 
freeway). 

• Total area of all detected regions, to inform the user 
how much of something is in the image (for example, 
how much coffee is remaining in a coffee pot) or how 
close an object is to the camera based on its size. 

Allow users to combine multiple classifiers of the same 
type into a single classifier that recognizes multiple 
objects. One group built a system that recognized pills to 
help verify correct dosages. They had a database that 
contained the attributes of each pill, such as size, shape, 
and color. With the existing framework, they needed to 
train one classifier for each pill, and then run each of these 
classifiers in sequence to see which classifiers detected a 
pill. Since the classifiers were all looking at the same 
attributes of the image, much better performance could 
have been achieved in a single pass. What was needed was 

a way to merge together the pill classifiers, producing a 
single classifier that output the set of all positive matches 
against the database, instead of running numerous 
classifiers, one for each pill, with empty outputs from the 
majority of the classifiers. 
Provide the ability to adjust classifier thresholds. When 
designing any computer vision-based application, there will 
be some ambiguity in the input. This ambiguity results in a 
design tradeoff: decrease the recognition threshold and you 
get more false positives; increase the threshold and you 
miss detecting valid events. It is important for the designer 
to be able to adjust the threshold to a level that is 
appropriate for his application. For example, a “free food 
detector” that emails users when there is leftover food in 
the common kitchen should have a high threshold, since an 
inbox full of spurious food notifications is more annoying 
than a few missed snacking opportunities. On the other 
hand, a system that detects fires or warns people that they 
are about to receive parking tickets deserves a lower 
threshold, since the penalty of a missed detection is so 
high. 
Our next version will offer a simple slider that allows users 
to set the detection threshold. While dragging this slider, 
users will immediately see the detected instances appear 
and disappear in the input video, allowing them to visualize 
the effect of the threshold level on their application. 

Figure 10  Eyepatch was used to prototype an in-car 
warning device that used motion detection and Adaboost
classifiers to alert drivers to stop signs they might have
missed. 

Support temporal filtering for object coherence across 
frames. A common problem when using a classifier to 
track an object through a scene is that the classifier will fail 
on a single frame but then recover the object soon after. 
Several groups needed to track objects reliably from frame-
to-frame, and they had to come up with custom solutions to 
this problem. The simplest such solution was to assume 
that the tracked object was in the same position as before if 
it was not detected in the current frame; only when it was 
not detected for several frames in a row was it actually 
assumed to have left the camera view. 
Objects being tracked will not generally blink in and out of 
existence from one frame to the next, so most successful 
tracking systems use adaptive techniques like Kalman 
filtering that incorporate the previous positions of a tracked 
object into the estimate of its current position. Our next 
version will support this type of temporal filtering, to 
preserve object coherence across frames and to smooth 
detected motion paths. 
Accelerate the example-collecting process. Eyepatch 
users can train a cascade of boosted classifiers by selecting 
examples from video frames. Although our students found 
this method much simpler to use than the command-line 
tool bundled with OpenCV (which requires users to type 
the pixel coordinates of object bounding rectangles into a 
text file), it can still be a tedious process to step through 
frames highlighting the positions of the objects of interest. 
Our students suggested a simpler way of adding multiple 
examples in rapid succession by following an object with 
the mouse as the video advanced automatically. In addition, 
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students did not see the need for providing negative 
examples to train boosted classifiers, since the system 
could simply take the inverse regions of their positive 
examples and use them as negative examples. This would 
work well provided that users always highlighted all of the 
positive examples in a frame, and it would eliminate a lot 
of the busywork involved in training a boosted classifier. 
Allow direct manipulation of the classifier model. 
Eyepatch displays a representation of the internal state of a 
classifier, but there is no way to directly modify this 
representation; instead, the user is forced to add or remove 
examples to modify it indirectly. For example, the color 
classifier displays a hue histogram of the colors in the 
training examples. Some users wanted to drag the bars of 
the histogram manually. This way they could, for example, 
increase the amount of red in the histogram template 
without having to find the reddest part of the image to use 
as a new example. Some classifier types, such as Adaboost, 
have no obvious directly manipulable representation, since 
their internal state is a set of weights assigned to different 
Haar features. Finding a better way to expose the state of 
this type of complex machine learning algorithm to the user 
would be an interesting area of future research; for 
example, it may be useful to produce a visualization 
indicating to the user which of the examples in the training 
set were generally the same as the others, and which 
examples stood out and did a better job of separating the 
positive and negative elements of the training set. 
Provide a plug-in architecture. Some of the students in 
our class were skilled programmers, and they pointed out 
that many of the restrictions of Eyepatch could be 
overcome if more advanced users could simply program 
their own classifier types. For example, one team of 
students built a card game that relied on recognizing an 
assortment of special glyphs, a common technique in 
augmented reality applications. Although the students 
could have used one of the standard classifier types in 
Eyepatch, they would have had to train a separate classifier 
for each glyph. The problem of recognizing specially-
designed glyphs is so specific that using a specialized 
classifier is a more efficient approach, so the students 
decided to use the ARToolkitPlus library [33]. If we gave 
Eyepatch a plug-in architecture, users in a situation like 
this could simply write a new classifier based on this 
library. A plug-in architecture would allow Eyepatch to 
mature and add new functionality as its user base added 
new classifier types. 

RELATED WORK 
Our greatest inspiration for this work came from the 
Crayons design tool for camera-based interaction [8], and 
we based our interactive learning approach on its “paint, 
view, and correct” process. Many of our ideas for 
extending the Crayons model were based on the future 
work proposed by its authors, such as supporting additional 
feature types and taking motion into account. 

We also drew inspiration from Exemplar [13], which 
provides a similar example-based approach to training a 
classifier. The data classified in Exemplar is multiple 
channels of one-dimensional sensor input, but the approach 
of building a model through examples, viewing the state of 
the created model, and adjusting it for better results, is very 
similar to the approach we adopted in Eyepatch. 
The Papier-Mâché toolkit [19] provided a high-level 
programming abstraction that allowed users to extract 
certain events from a camera input without worrying about 
the underlying details of the computer vision algorithms. 
Its event model was designed to parallel an RFID reader, 
and could trigger an event when particular objects were 
added to or removed from the camera view. It also 
provided the ability to extract certain basic parameters from 
the objects, such as average color and image moments. 
This made it very easy to program certain types of 
computer vision applications, but its single classifier type 
constrained the types of applications it could produce, and 
its event model did not adapt well to applications that 
required dynamic tracking at interactive frame rates. 
The Cambience system [7] allowed users to select regions 

Figure 11  The Logo Scoreboard watches live television and 
measures the prevalence of some common corporate logos.
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of a video frame in which they wanted to detect motion, 
and then map the motion in each region to a different sound 
effect. The system also incorporated certain types of 
control over data flow and filtering, for example to map the 
intensity of motion to the volume of a sound. We adopted a 
similar dataflow model, and motion classifiers in Eyepatch 
have approximately the same functionality. However, 
Cambience focused on only one type of input (motion) and 
one type of output (ambient soundscapes). 
The Lego Mindstorms [2] “Vision Command” Kit was one 
of the first systems to attempt to make computer vision 
accessible to novice programmers. Its visual programming 
interface allowed users to test for simple conditions in a 
camera image: when a certain color or a certain brightness 
threshold was seen in one of five regions of the frame, an 
event could be triggered. This highly simplified model 
worked well for certain tasks, like building a robot that 
followed a white line, or sorted bricks based on their color. 
Sensing brightness and color are much easier concepts to 
understand than recognizing particular configurations of 
image features, and indeed they were popular classifier 
types in Eyepatch. However, we found that users 
frequently wanted to detect events or objects that could not 
be recognized by these simple classifier types alone. 
Computer vision programming has been greatly simplified 
by the many general-purpose software libraries that have 
been developed over the years, including XVision [11], 
Mimas [1], OpenCV [4], and the NASA Vision Workbench 
[12]. There are also various libraries that are very effective 
at solving particular problems in computer vision, such as 
GT2K [34] for HMM-based gesture recognition, HandVu 
[21] for detecting hand pose, and ARToolkit [18] for 
determining the 3-dimensional position of glyph markers. 
Although these libraries provide powerful shortcuts when 
developing camera-based applications, they are designed 
by and for programmers; they require fairly in-depth 
programming knowledge to use, and their functionality is 
generally couched in terms of the underlying mathematical 
operations rather than the high-level goals. As such, they 
do not lend themselves to quick iteration by designers, and 
we believe that the visual, example-based approach used in 
Eyepatch is better suited to rapid prototyping, especially at 
the early stages of application development. 

CONCLUSION 
Deploying Eyepatch to a project class in a longitudinal 
study was an excellent way to gain insight into its strengths 
and weaknesses. We will continue to refine and evaluate 
Eyepatch using our iterative prototyping process. Because 
the majority of our testing was on Computer Science 
graduate students, our evaluation was more effective at 
finding the ceiling of Eyepatch that at measuring its 
threshold. We hope to learn another set of valuable lessons 
when we test Eyepatch on undergraduate artists and 
designers. 
Our evaluation process revealed a need for many new 
features. In incorporating these features into the next 

version of Eyepatch, we face a design challenge: we must 
strive to preserve the simplicity of the original design for 
first-time users, while providing experienced users the 
advanced functionality they need to develop complex 
applications. We hope that by providing several levels of 
progressive disclosure, we can offer this functionality 
while managing the complexity of the system and adhering 
to our initial design goals. 
Although we learned that Eyepatch still has much room for 
improvement, we believe that it represents an important 
step towards making camera input accessible to interaction 
designers. Eyepatch allows designers to create, test, and 
refine their own customized classifiers, without writing any 
specialized code. Its diversity of classification strategies 
makes it adaptable to a wide variety of applications, and 
the fluidity of its classifier training interface illustrates how 
interactive machine learning can allow designers to tailor a 
recognition algorithm to their application without any 
specialized knowledge of computer vision. 

Software Availability 
Eyepatch is open source software licensed under the GPL. 
A Windows installer for Eyepatch is available for 
download at http://eyepatch.stanford.edu/. 
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