

Eyepatch: Prototyping Camera-based
Interaction through Examples

Dan Maynes-Aminzade, Terry Winograd
Stanford University HCI Group
Computer Science Department

Stanford, CA 94305-9035, USA
[monzy | winograd]@cs.stanford.edu

Takeo Igarashi
University of Tokyo

Computer Science Department
7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 Japan

takeo@acm.org

ABSTRACT
Cameras are a useful source of input for many interactive
applications, but computer vision programming is difficult
and requires specialized knowledge that is out of reach for
many HCI practitioners. In an effort to learn what makes a
useful computer vision design tool, we created Eyepatch, a
tool for designing camera-based interactions, and evaluated
the Eyepatch prototype through deployment to students in
an HCI course. This paper describes the lessons we learned
about making computer vision more accessible, while
retaining enough power and flexibility to be useful in a
wide variety of interaction scenarios.
ACM Classification: H.1.2 [Information Systems]:
User/Machine Systems — Human factors; H.5.2
[Information Interfaces and Presentation]: User Interfaces
— interaction styles, prototyping, theory and methods;
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis — color, object recognition, tracking; I.4.9
[Image Processing and Computer Vision]: Applications.
General Terms: Algorithms, Design, Human Factors.
Keywords: Computer vision, image processing,
classification, interaction, machine learning.

INTRODUCTION
Many compelling systems have used cameras as an
interactive input medium, from the pioneering work by
Myron Krueger [22] to projects like Light Widgets [9],
EyePliances [29], and Gesture Pendant [30], tangible
interfaces such as Illuminating Light [31] and the
Designers’ Outpost [20], game interfaces [10] including
crowd interaction [26] and the Sony Eyetoy [23], and
platforms like PlayAnywhere [35], TouchLight [36], and
the camera-based SmartBoard. Today, the cost of a digital
camera is comparable to that of a traditional mass-market
input device like a keyboard or mouse, and cameras are
already integrated into many of our devices, such as cell
phones, PDAs, and laptop computers. While these cameras
are typically only used for video conferencing and taking

pictures, recent advances in computing power open the
door to their use as an additional channel of input in a wide
variety of applications, giving “eyes” to our everyday
devices and appliances.
Unfortunately, designing camera-based interfaces is still
quite difficult. There are a number of powerful tools for
computer vision such as MATLAB and OpenCV [4], but
these tools are designed by and for programmers. They
require a fairly advanced level of programming skill, and in
some cases a sophisticated understanding of the
mathematics of image processing and machine learning
techniques. Vision prototyping tools like Crayons [8] and
Papier-Mâché [19] are an inspiring step in the right
direction, but their frameworks place restrictive constraints
on the types of applications that can be built, as we shall
discuss.

RESEARCH GOALS
With the goal of simplifying the process of developing
computer vision applications, we built a tool called
Eyepatch that allows novice programmers to extract useful
data from live video and stream that data to other rapid
prototyping tools, such as Adobe Flash, d.tools [14], and
Microsoft Visual Basic. When designing Eyepatch, we
made the assumptions that our target community was
comfortable using a visual design tool and had some basic

Figure 1 Eyepatch in training mode. Here the user is
training a color classifier; the pane at the right shows the
examples she has chosen, and the internal state of the
classifier is represented by hue histogram in the lower pane.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

33

Figure 2 Eyepatch in composition mode, in which users
select classifiers to run on live video input. Two classifiers
are enabled in this example, and their outputs are shown in
the bottom right video pane, outlined in different colors.

Figure 3 Sample projects created by students at the
University of Tokyo using the first version of Eyepatch.

programming experience, but little or no knowledge of
computer vision, image processing, or machine learning
techniques. Our objective was to enable users to get the
information they needed from a camera without any
specialized computer vision programming.
Our goal was not to support highly complex, data-intensive
computer vision techniques such as 3-dimensional
reconstruction of object geometry or stereo range finding.
Instead, we wanted users to be able to use computer vision
techniques to answer simple questions based on video data:
Does my houseplant need watering? Is there any coffee left
in the coffeepot? What is the weather like outside? Are
there any eggs in my refrigerator? Who left those dirty
dishes in the sink? Has the mail been delivered yet? How
many police cars pass by my window on a typical day?
These sorts of simple questions can lead to compelling
application scenarios, and answering them does not require
detailed, high-level image understanding. Instead,
questions such as these can be answered using relatively
simple classifiers, provided the designer can train and
calibrate these classifiers for the context of the application.

RESEARCH AGENDA
We base our overall research strategy on iterative
prototyping. After creating each version of Eyepatch, we
provide it to designers, and observe what they can achieve
with it and where they encounter problems. This gives us
insights that help us improve subsequent versions.
We wrote the first version of Eyepatch as a collection of
ActiveX Controls in Visual Basic, each control custom-
built to solve a particular computer vision problem, such as
tracking faces or finding laser pointer dots. We deployed
this first version to students in an HCI class [15] (Figure 3),
but found that the highly specific nature of the ActiveX
Controls constrained the students to a very narrow range of
possible applications, and the ActiveX architecture

prevented students from using the camera data in other
prototyping tools.
This paper describes our second version of Eyepatch,
which was designed to allow users more creativity in
developing their own computer vision algorithms. We
wanted to enable designers to attack a broader range of
problems, and use a wider variety of prototyping tools. At
the same time, we tried to keep things as clear-cut as
possible by making certain simplifying assumptions in our
framework. We assumed that the input came from a
camera or recorded video, the sequence of frames was
passed through one or more binary classifiers, and the only
output was the set of image regions yielded by each of the
active classifiers. Our expectation was that this framework
would still be too limited for some real-world applications.
However, by examining what our users could build and
what was out of their reach, we hoped to gain an
understanding of what features are needed in a camera-
based interaction design tool in order for it to achieve
widespread use.
We will begin our discussion of Eyepatch with an
overview of its framework. We will outline its capabilities
and our rationale for designing it as we did. We will then
describe our evaluation process, and recount the lessons we
learned in our class deployment. We will conclude by
framing our contributions in the context of related work.

EYEPATCH OVERVIEW
Eyepatch has two basic modes:

34

• A training mode, where users can train different
types of classifiers to recognize the object, region, or
parameter that they are interested in.

Figure 5 Eyepatch allows users to train a boosted classifier
cascade using examples from recorded videos, and
immediately observe its performance on live or recorded
video.

• A composition mode, where the classifiers are
composed in various ways and users specify where
the output of the classifiers should go.

Composition Mode
The Eyepatch composition mode is shown in Figure 2. Its
functionality is best explained through an example
scenario. Suppose a designer is prototyping an interactive
whiteboard system in Flash, and she wants to incorporate
input from a camera mounted above the whiteboard.
Assume she wants to know (a) when someone is standing
in front of the whiteboard and (b) whether or not that
person is looking at the whiteboard. The designer enters
composition mode and chooses two classifiers, one that
recognizes faces and another that performs adaptive
background subtraction to identify foreground regions in
the image, which in this case are assumed to be people. She
then specifies an output path to which this data should be
sent, in this case XML over TCP. She clicks “Run on Live
Video,” which activates the camera and begins running the
classifiers on the live video, streaming the data to the
specified output. She then returns to her Flash prototype
and adds a few lines of ActionScript to connect to a local
socket and read this XML data.
Note that although the process of building her application
did require some programming in order to read the camera
data and do something useful with it, it did not require
domain-specific knowledge about computer vision. She
could begin using camera input without knowing the
details of statistical background models or boosted
classifier cascades, and the ActionScript to read the
incoming XML data could be copied from one of our
toolkit examples.
In this scenario, only built-in classifiers were needed.

Eyepatch includes a number of these special-purpose
classifiers for common problems such as face detection,
background subtraction, and motion detection. However,
we expect it will be equally common for users to train their
own classifiers that are tailored to their application and its
context. The Eyepatch training mode allows users to create
their own classifiers using examples drawn from a recorded
video.

Training Mode
The Eyepatch training mode (Figure 1) uses an interactive
learning approach similar to that of Crayons [8], with
several key differences. First, Eyepatch operates on video
instead of still images. This is important for recognizing
dynamic motion sequences, and it also simplifies the
process of capturing large amounts of training data. The
user loads a video in any standard format, or records a
video from an attached webcam. The user can scroll
through the video, much like in a video editor. She can
then use the mouse to highlight regions of frames to use as
examples for training a classifier.

Figure 4 Shape classifiers in Eyepatch use Canny edge
detection followed by contour matching to identify the objects
of interest. Shape classifiers work best for objects with
distinctive outer contours.

Second, while the Crayons system requires Java, Eyepatch
allows formatted data to be exported over network sockets
to communicate with a wide variety of prototyping tools.
We felt that the ability to integrate with many different
prototyping tools was an important way to support the
common practices of designers.
Third, rather than a single type of classification algorithm,
Eyepatch supports a variety of classification strategies.
This is important if we wish to support a diverse array of
applications. For example, a boosted cascade of Haar
classifiers works well for identifying objects of a general
class, such as cars or faces, while SIFT features work better
for identifying a particular instance of a class, such as a
specific book cover or logo. Neither of these feature-based
classifiers performs well when attempting to identify
smooth, untextured objects like balloons or laser dots, since

35

they have few distinguishable features; in this case a
classifier based on hue histograms or brightness
thresholding is more appropriate. When following a
moving object, sometimes the most important factor is the
change in the image over time; in this situation the most
appropriate approach is to use a technique like frame
differencing, motion templates, adaptive background
subtraction, or optical flow.
We do not expect our users to have a detailed
understanding of the underlying machinery behind each
classifier type, so they may not always select the
appropriate classification strategy on their first try. To
make it as painless as possible to find the appropriate
classification strategy for the problem at hand, our interface
was designed to facilitate rapid trial-and-error. In a matter
of seconds, the user can switch to a different classification
method, train it on the same set of examples, and observe
its output. This allows the user to quickly select the optimal
strategy.
After selecting some examples from the video feed, the
user selects a classification method and clicks “Learn from
Examples” to train a classifier. He can then check “Show
Guesses” to observe the output of the trained classifier on
the current frame. By scrolling through the frames in rapid
succession, he can quickly judge the performance of the
classifier, and if it is not satisfactory, he can provide more
examples or try a different classification method.
An alternate strategy might be to run all of the classifier
types and ask the computer select the most successful one.
At first this strategy seems much easier, but it introduces
two challenges. First, it would run much more slowly and
eliminate the opportunity for quick iteration, which would
violate the fast-and-focused UI principle used successfully
in the Crayons system. The advantage of the fast-and-
focused approach is that when the user sees an incorrect
classification, he can interactively add the misclassified

region to the training set for the next training iteration.
Since the misclassified regions are often edge cases, this
lets the user quickly select the most relevant examples as
input to the classifier. Second, training all of the classifiers
at once would ignore any of the knowledge that the user
could bring to the table about which classification
strategies he thought might be the most appropriate. In
practice we found that after enough learning through trial-
and-error, users began to develop helpful intuitions about
which classifier types worked best for which problems, and
this reduced the training time greatly.

Figure 6 SIFT produces classifiers with better invariance to
object pose, scale, and illumination. The colored dots in the
classifier viewing pane show the feature correspondences
found between the current frame and the training example.

ADVANTAGES OF MULTIPLE CLASSIFIER TYPES
One advantage provided by our approach is that users can
create several weak classifiers and combine their output
into a single classifier with a lower rate of false positives.
For example, a color classifier might do a good job of
extracting skin-colored regions, but if the user was trying
to recognize hand gestures, he would want to ignore faces.
By combining the color classifier with a motion classifier
that identifies moving regions of the image, he could find
only the moving skin-colored regions.
In addition to eliminating false positives, this composition
of simple classifiers can allow users to identify more
complex types of events. For example, users can train a car
classifier, a classifier that recognizes red objects, and a
classifier that recognizes objects moving left in the image.
They can then combine the outputs of these classifiers to
recognize red cars moving left.
Eyepatch currently supports seven classifier types:

1. Color, based on hue histograms and backprojection
(similar to CAMSHIFT [5]), for identifying
distinctively colored objects.

2. Brightness, for finding the brightest or darkest
regions of an image, such as laser dots or shadows.

Figure 7 To train a motion classifier, the user selects frames
or regions of frames that contain the desired type of motion,
and the motion history image is segmented to extract the
overall motion directions. These are compared against
motion in the current frame. Here, the user is looking for
skateboarders who are moving downward.

36

3. Shape, based on Canny edge detection followed by
contour matching using pair-wise geometrical
histograms [16], for finding objects with distinctive
outer contours (Figure 4).

4. Adaboost, a machine learning technique that uses a
boosted cascade of simple features [32], for
recognizing general classes of objects like faces,
animals, cars, or buildings (Figure 5).

5. Scale-Invariant Feature Transforms [24], for
recognizing specific objects with invariance to scale,
pose, and illumination (Figure 6).

6. Motion, based on segmentation of a motion history
image [6], for identifying the directions of moving
objects in the scene (Figure 7).

7. Gesture recognition, based on blob detection
followed by motion trajectory matching [3] using the
Condensation algorithm [17], for recognizing
particular patterns of motion (Figure 8).

This wide variety of classifier types allows users to tackle
problems that cannot be solved with simple pixel-based
classifiers, which do not incorporate global image data like
contour shapes or the relative positions of image features.
SIFT classifiers allow users to build recognizers that are
invariant to scale, rotation, and illumination, and Adaboost
classifiers let users train recognizers that operate on general
classes of objects. The motion and gesture classifiers allow
for applications that recognize directions and patterns of
motions across time, so that applications are not limited to
operating on static images.

SAMPLE PROJECTS
Describing a few projects we built with Eyepatch will
provide a sense of its capabilities. We completed each of
the following projects in a few hours, with the majority of
this time devoted to components of the projects unrelated
to computer vision.

BeiRobot
BeiRobot (Figure 9) is a Lego robot that uses computer
vision to play Beirut. Beirut is a party game in which
players attempt to throw ping-pong balls into cups.
BeiRobot uses a color classifier to detect cup positions in
the input image, and it rotates its swiveling base until one
of the cups is centered in the image. It then launches a
ping-pong ball at the cup, using the size of the detected cup
region to estimate the cup’s distance from the camera.

Stop Sign Warning Device
The stop sign warning device (Figure 10) warns drivers
when they are about to run through a stop sign. It uses an
Adaboost classifier to recognize stop signs, and a motion
classifier to detect when the car is moving. If a stop sign is
detected close to the camera, and the car continues forward
without stopping, the device emits a warning tone.

Logo Scoreboard
The logo scoreboard (Figure 11) uses SIFT classifiers to
recognize an assortment of five different corporate logos. It
watches live television and counts how many times each
logo appears. A system like this would allow marketers to
assess the brand penetration of their company or evaluate
the success of their product placement campaigns.

EVALUATION
Starting with this framework, we began evaluating
Eyepatch to see which types of applications it could
support, which it could not, and what capabilities were
needed for a tool of this nature to be useful to designers.
For the purpose of this evaluation, we offered a one-quarter
course on computer vision for HCI called “Designing
Applications that See” [25]. In a series of hands-on
workshop sessions, the students in the class were
introduced to a variety of computer vision tools, including
MATLAB, OpenCV, JMyron (an extension library for the
Processing [28] development environment), and Eyepatch.
They were also given a general introduction to the common
techniques used in computer vision and image processing,
without delving into any complex mathematical details (the
lecture notes did not include a single equation). After five
weeks of being introduced to the tools, we asked the
students to spend five weeks building working prototypes
of camera-based applications, using the tools of their
choice. Figure 8 In gesture training mode, the user selects the

intervals of video that contain examples of the motion
trajectories he wishes to recognize. Motion trails are shown
as overlays on the video frame. When run on live or
recorded video, a particle filtering technique is used for
motion matching, and the match probabilities for each
gesture are shown in the classifier viewing pane. In this
example, three gestures have been trained, a shaking
motion, a straight line, and a circular gesture; the circular
gesture is recognized in this frame.

Of the 19 students enrolled in the class, 17 were Masters
students in Computer Science or Electrical Engineering and
2 were Computer Science undergraduates. This collection
of students had more extensive programming experience
than our target community for Eyepatch, but this provided
us with a good stress test; because of their technical
expertise, the students tackled problems that novice

37

programmers might not have attempted. As the students hit
the limits of what Eyepatch allowed them to achieve, we
developed an understanding of what was needed in a
computer vision design tool for it to work well on real-
world problems.

Figure 9 The BeiRobot fires ping-pong balls at red cups,
which it finds using a color classifier.

LESSONS LEARNED
All of the student teams that began their projects using
Eyepatch eventually found its limitations. Of the eight
project teams, five began their project with Eyepatch, but
as their projects progressed, they encountered things that
they wanted to do with our framework but could not, and
switched to more complex, more general-purpose tools like
OpenCV and MATLAB. We shall discuss the specific
limitations that the students encountered in more detail, but
it is worth noting that many of the teams still found
Eyepatch useful in the initial prototyping phase. For
example, one group of students built a virtual ping-pong
game using real ping-pong paddles as controllers.
Although they eventually migrated to OpenCV so that they
could stream live video between game opponents, they
used Eyepatch to quickly experiment with different
strategies for tracking the position of a ping-pong paddle,
using shape, color, and feature-based classifiers. Once they
had settled on a strategy that worked well, they
incorporated it into their OpenCV code, which was more
laborious to modify.
Although Eyepatch is intended primarily as a tool for rapid
prototyping, ultimately we would like to make its ceiling
[27] as high as possible. The lessons we learned from the
class gave us many ideas for improving Eyepatch, not only
for raising its ceiling but also for advancing its interaction
model and simplifying the classifier training process. In
this section we will describe these lessons, illustrating them
with particular examples from the class.
Provide image data in addition to classifier output.
Many students wanted to display camera images to the end
users of their applications. For example, one group of
students built a game in which players moved their heads
around to hit targets. The students needed to display an
image of the players and overlay graphics on this image.
While Eyepatch was capable of detecting face positions, it
did not provide a way of exporting the image frames along
with the output of the active classifiers. By focusing on
translating image data into simple output parameters, we
neglected the importance of using the camera image itself
as output.
Allow data selection and filtering. One of our simplifying
assumptions was to discard data that we thought would not
be useful. Although the actual output of the trained
classifiers was a set of bounding polygons around the
detected regions, we sent only the region centers and areas
to the output stream. This is enough data for many
applications, but sometimes more detail is required. For
example, one group built an animation system using hand
tracking, and they wanted to use the shape of the hand

region to recognize certain gestures. This was impossible if
they only knew the center and area of each hand.
In our next version, each classifier will allow the user to
select among all of its possible outputs. This way the user
can decide which data to keep and which to discard, by
choosing from a list of region parameters, such as position,
bounding box, area, perimeter, eccentricity, image
moments, and so on.
Provide a mechanism for data reduction. In other
situations, Eyepatch actually provided too much data. For
example, one group simply wanted to know whether or not
there was something moving in the image. They were
essentially trying to reduce the entire image to a single bit
of data. In this case, sending out a list of the moving
regions in the image was excessive.
We plan to address this problem by providing data reducers
that can be added to the output of each classifier. The most
commonly requested data reducers were:
• Simple binary output (0 if there are no detected

regions, 1 otherwise), to tell the user if a certain

38

condition has been met (for example, tell me when
there is someone at my front door).

• Number of detected regions, to tell the user how
many of the objects of interest are visible in the scene
(for example, to count the number of cars on the
freeway).

• Total area of all detected regions, to inform the user
how much of something is in the image (for example,
how much coffee is remaining in a coffee pot) or how
close an object is to the camera based on its size.

Allow users to combine multiple classifiers of the same
type into a single classifier that recognizes multiple
objects. One group built a system that recognized pills to
help verify correct dosages. They had a database that
contained the attributes of each pill, such as size, shape,
and color. With the existing framework, they needed to
train one classifier for each pill, and then run each of these
classifiers in sequence to see which classifiers detected a
pill. Since the classifiers were all looking at the same
attributes of the image, much better performance could
have been achieved in a single pass. What was needed was

a way to merge together the pill classifiers, producing a
single classifier that output the set of all positive matches
against the database, instead of running numerous
classifiers, one for each pill, with empty outputs from the
majority of the classifiers.
Provide the ability to adjust classifier thresholds. When
designing any computer vision-based application, there will
be some ambiguity in the input. This ambiguity results in a
design tradeoff: decrease the recognition threshold and you
get more false positives; increase the threshold and you
miss detecting valid events. It is important for the designer
to be able to adjust the threshold to a level that is
appropriate for his application. For example, a “free food
detector” that emails users when there is leftover food in
the common kitchen should have a high threshold, since an
inbox full of spurious food notifications is more annoying
than a few missed snacking opportunities. On the other
hand, a system that detects fires or warns people that they
are about to receive parking tickets deserves a lower
threshold, since the penalty of a missed detection is so
high.
Our next version will offer a simple slider that allows users
to set the detection threshold. While dragging this slider,
users will immediately see the detected instances appear
and disappear in the input video, allowing them to visualize
the effect of the threshold level on their application.

Figure 10 Eyepatch was used to prototype an in-car
warning device that used motion detection and Adaboost
classifiers to alert drivers to stop signs they might have
missed.

Support temporal filtering for object coherence across
frames. A common problem when using a classifier to
track an object through a scene is that the classifier will fail
on a single frame but then recover the object soon after.
Several groups needed to track objects reliably from frame-
to-frame, and they had to come up with custom solutions to
this problem. The simplest such solution was to assume
that the tracked object was in the same position as before if
it was not detected in the current frame; only when it was
not detected for several frames in a row was it actually
assumed to have left the camera view.
Objects being tracked will not generally blink in and out of
existence from one frame to the next, so most successful
tracking systems use adaptive techniques like Kalman
filtering that incorporate the previous positions of a tracked
object into the estimate of its current position. Our next
version will support this type of temporal filtering, to
preserve object coherence across frames and to smooth
detected motion paths.
Accelerate the example-collecting process. Eyepatch
users can train a cascade of boosted classifiers by selecting
examples from video frames. Although our students found
this method much simpler to use than the command-line
tool bundled with OpenCV (which requires users to type
the pixel coordinates of object bounding rectangles into a
text file), it can still be a tedious process to step through
frames highlighting the positions of the objects of interest.
Our students suggested a simpler way of adding multiple
examples in rapid succession by following an object with
the mouse as the video advanced automatically. In addition,

39

students did not see the need for providing negative
examples to train boosted classifiers, since the system
could simply take the inverse regions of their positive
examples and use them as negative examples. This would
work well provided that users always highlighted all of the
positive examples in a frame, and it would eliminate a lot
of the busywork involved in training a boosted classifier.
Allow direct manipulation of the classifier model.
Eyepatch displays a representation of the internal state of a
classifier, but there is no way to directly modify this
representation; instead, the user is forced to add or remove
examples to modify it indirectly. For example, the color
classifier displays a hue histogram of the colors in the
training examples. Some users wanted to drag the bars of
the histogram manually. This way they could, for example,
increase the amount of red in the histogram template
without having to find the reddest part of the image to use
as a new example. Some classifier types, such as Adaboost,
have no obvious directly manipulable representation, since
their internal state is a set of weights assigned to different
Haar features. Finding a better way to expose the state of
this type of complex machine learning algorithm to the user
would be an interesting area of future research; for
example, it may be useful to produce a visualization
indicating to the user which of the examples in the training
set were generally the same as the others, and which
examples stood out and did a better job of separating the
positive and negative elements of the training set.
Provide a plug-in architecture. Some of the students in
our class were skilled programmers, and they pointed out
that many of the restrictions of Eyepatch could be
overcome if more advanced users could simply program
their own classifier types. For example, one team of
students built a card game that relied on recognizing an
assortment of special glyphs, a common technique in
augmented reality applications. Although the students
could have used one of the standard classifier types in
Eyepatch, they would have had to train a separate classifier
for each glyph. The problem of recognizing specially-
designed glyphs is so specific that using a specialized
classifier is a more efficient approach, so the students
decided to use the ARToolkitPlus library [33]. If we gave
Eyepatch a plug-in architecture, users in a situation like
this could simply write a new classifier based on this
library. A plug-in architecture would allow Eyepatch to
mature and add new functionality as its user base added
new classifier types.

RELATED WORK
Our greatest inspiration for this work came from the
Crayons design tool for camera-based interaction [8], and
we based our interactive learning approach on its “paint,
view, and correct” process. Many of our ideas for
extending the Crayons model were based on the future
work proposed by its authors, such as supporting additional
feature types and taking motion into account.

We also drew inspiration from Exemplar [13], which
provides a similar example-based approach to training a
classifier. The data classified in Exemplar is multiple
channels of one-dimensional sensor input, but the approach
of building a model through examples, viewing the state of
the created model, and adjusting it for better results, is very
similar to the approach we adopted in Eyepatch.
The Papier-Mâché toolkit [19] provided a high-level
programming abstraction that allowed users to extract
certain events from a camera input without worrying about
the underlying details of the computer vision algorithms.
Its event model was designed to parallel an RFID reader,
and could trigger an event when particular objects were
added to or removed from the camera view. It also
provided the ability to extract certain basic parameters from
the objects, such as average color and image moments.
This made it very easy to program certain types of
computer vision applications, but its single classifier type
constrained the types of applications it could produce, and
its event model did not adapt well to applications that
required dynamic tracking at interactive frame rates.
The Cambience system [7] allowed users to select regions

Figure 11 The Logo Scoreboard watches live television and
measures the prevalence of some common corporate logos.

40

of a video frame in which they wanted to detect motion,
and then map the motion in each region to a different sound
effect. The system also incorporated certain types of
control over data flow and filtering, for example to map the
intensity of motion to the volume of a sound. We adopted a
similar dataflow model, and motion classifiers in Eyepatch
have approximately the same functionality. However,
Cambience focused on only one type of input (motion) and
one type of output (ambient soundscapes).
The Lego Mindstorms [2] “Vision Command” Kit was one
of the first systems to attempt to make computer vision
accessible to novice programmers. Its visual programming
interface allowed users to test for simple conditions in a
camera image: when a certain color or a certain brightness
threshold was seen in one of five regions of the frame, an
event could be triggered. This highly simplified model
worked well for certain tasks, like building a robot that
followed a white line, or sorted bricks based on their color.
Sensing brightness and color are much easier concepts to
understand than recognizing particular configurations of
image features, and indeed they were popular classifier
types in Eyepatch. However, we found that users
frequently wanted to detect events or objects that could not
be recognized by these simple classifier types alone.
Computer vision programming has been greatly simplified
by the many general-purpose software libraries that have
been developed over the years, including XVision [11],
Mimas [1], OpenCV [4], and the NASA Vision Workbench
[12]. There are also various libraries that are very effective
at solving particular problems in computer vision, such as
GT2K [34] for HMM-based gesture recognition, HandVu
[21] for detecting hand pose, and ARToolkit [18] for
determining the 3-dimensional position of glyph markers.
Although these libraries provide powerful shortcuts when
developing camera-based applications, they are designed
by and for programmers; they require fairly in-depth
programming knowledge to use, and their functionality is
generally couched in terms of the underlying mathematical
operations rather than the high-level goals. As such, they
do not lend themselves to quick iteration by designers, and
we believe that the visual, example-based approach used in
Eyepatch is better suited to rapid prototyping, especially at
the early stages of application development.

CONCLUSION
Deploying Eyepatch to a project class in a longitudinal
study was an excellent way to gain insight into its strengths
and weaknesses. We will continue to refine and evaluate
Eyepatch using our iterative prototyping process. Because
the majority of our testing was on Computer Science
graduate students, our evaluation was more effective at
finding the ceiling of Eyepatch that at measuring its
threshold. We hope to learn another set of valuable lessons
when we test Eyepatch on undergraduate artists and
designers.
Our evaluation process revealed a need for many new
features. In incorporating these features into the next

version of Eyepatch, we face a design challenge: we must
strive to preserve the simplicity of the original design for
first-time users, while providing experienced users the
advanced functionality they need to develop complex
applications. We hope that by providing several levels of
progressive disclosure, we can offer this functionality
while managing the complexity of the system and adhering
to our initial design goals.
Although we learned that Eyepatch still has much room for
improvement, we believe that it represents an important
step towards making camera input accessible to interaction
designers. Eyepatch allows designers to create, test, and
refine their own customized classifiers, without writing any
specialized code. Its diversity of classification strategies
makes it adaptable to a wide variety of applications, and
the fluidity of its classifier training interface illustrates how
interactive machine learning can allow designers to tailor a
recognition algorithm to their application without any
specialized knowledge of computer vision.

Software Availability
Eyepatch is open source software licensed under the GPL.
A Windows installer for Eyepatch is available for
download at http://eyepatch.stanford.edu/.

ACKNOWLEDGMENTS
We thank the students of CS377S for their creative project
ideas, their valuable design suggestions, and their helpful
bug reports.

REFERENCES
 1 Amavasai, B. P. Principles of Vision Systems. IEEE

Systems, Man, and Cybernetics: Principles and
Applications Workshop, 2002.

 2 Bagnall, B., Core LEGO MINDSTORMS
Programming: Prentice Hall PTR Upper Saddle River,
NJ, USApp. 2002.

 3 Black, M. J. and A. D. Jepson. A probabilistic
framework for matching temporal trajectories:
Condensation-based recognition of gestures and
expressions. European Conference on Computer Vision
1. pp. 909–24, 1998.

 4 Bradski, G. The OpenCV Library. Dr. Dobb’s Journal
November 2000, Computer Security, 2000.

 5 Bradski, G. R. Computer vision face tracking for use in
a perceptual user interface. Intel Technology Journal
2(2). pp. 12-21, 1998.

 6 Bradski, G. R. and J. W. Davis. Motion segmentation
and pose recognition with motion history gradients.
Machine Vision and Applications 13(3). pp. 174-84,
2002.

 7 Diaz-Marino, R. and S. Greenberg. CAMBIENCE: A
Video-Driven Sonic Ecology for Media Spaces. Video
Proceedings of ACM CSCW'06 Conference on
Computer Supported Cooperative Work, 2006.

 8 Fails, J. and D. Olsen. A design tool for camera-based
interaction. CHI: ACM Conference on Human Factors
in Computing Systems. pp. 449-56, 2003.

41

http://eyepatch.stanford.edu/

 9 Fails, J. A. and D. R. Olsen. Light widgets: interacting
in every-day spaces. Proceedings of IUI’02, 2002.

 10 Freeman, W. T., et al. Computer vision for interactive
computer graphics. Computer Graphics and
Applications, IEEE 18(3). pp. 42-53, 1998.

 11 Hager, G. D. and K. Toyama. X Vision: A portable
substrate for real-time vision applications. Computer
Vision and Image Understanding 69(1). pp. 23-37,
1998.

 12 Hancher, M. D., M. J. Broxton, and L. J. Edwards. A
User’s Guide to the NASA Vision Workbench.
Intelligent Systems Division, NASA Ames Research
Center, 2006.

 13 Hartmann, B., L. Abdulla, M. Mittal, and S. R.
Klemmer. Authoring Sensor Based Interactions
Through Direct Manipulation and Pattern Matching.
CHI: ACM Conference on Human Factors in
Computing Systems, 2007.

 14 Hartmann, B., et al. Reflective physical prototyping
through integrated design, test, and analysis.
Proceedings of the 19th annual ACM symposium on
User interface software and technology. pp. 299-308,
2006.

 15 Igarashi, T., Student projects in the "Media
Informatics" course at the University of Tokyo, 2005.
http://www-ui.is.s.u-
tokyo.ac.jp/~kwsk/media2005/projects.html

 16 Iivarinen, J., M. Peura, J. Sarela, and A. Visa.
Comparison of combined shape descriptors for irregular
objects. Proceedings of the 8th British Machine Vision
Conference 2. pp. 430–39, 1997.

 17 Isard, M. and A. Blake. Contour Tracking by Stochastic
Propagation of Conditional Density. Proceedings of the
4th European Conference on Computer Vision-Volume
I-Volume I. pp. 343-56, 1996.

 18 Kato, H. and M. Billinghurst. Marker Tracking and
HMD Calibration for a Video-based Augmented
Reality Conferencing System. Proceedings of the 2nd
IEEE and ACM International Workshop on Augmented
Reality 99. pp. 85-94, 1999.

 19 Klemmer, S. R. Papier-Mâché: Toolkit support for
tangible interaction. CHI: ACM Conference on Human
Factors in Computing Systems, 2004.

 20 Klemmer, S. R., M. W. Newman, R. Farrell, M.
Bilezikjian, and J. A. Landay. The Designers’ Outpost:
A Tangible Interface for Collaborative Web Site
Design. The 14th Annual ACM Symposium on User
Interface Software and Technology: UIST2001, CHI
Letters 3(2). pp. 1-10, 2001.

 21 Kolsch, M., M. Turk, and T. Hollerer. Vision-based
interfaces for mobility. Mobile and Ubiquitous Systems:
Networking and Services, 2004. MOBIQUITOUS 2004.
The First Annual International Conference on. pp. 86-
94, 2004.

 22 Krueger, M. W., T. Gionfriddo, and K. Hinrichsen.
VIDEOPLACE—an artificial reality. ACM SIGCHI
Bulletin 16(4). pp. 35-40, 1985.

 23 Larssen, A. T., L. Loke, T. Robertson, and J. Edwards.
Understanding Movement as Input for Interaction–A
Study of Two EyeToy™ Games. Proceedings of
OZCHI 2004, 2004.

 24 Lowe, D. G. Object recognition from local scale-
invariant features. Computer Vision, 1999. The
Proceedings of the Seventh IEEE International
Conference on 2, 1999.

 25 Maynes-Aminzade, D., Website for the course
"Designing Applications that See" at Stanford
University, 2007. http://cs377s.stanford.edu/

 26 Maynes-Aminzade, D., R. Pausch, and S. Seitz.
Techniques for interactive audience participation.
Fourth IEEE International Conference on Multimodal
Interfaces. pp. 15-20, 2002.

 27 Myers, B., S. E. Hudson, and R. Pausch. Past, present,
and future of user interface software tools. ACM
Transactions on Computer-Human Interaction
(TOCHI) 7(1). pp. 3-28, 2000.

 28 Reas, C. and B. Fry. Processing: a learning environment
for creating interactive Web graphics. Proceedings of
the SIGGRAPH 2003 conference on Web graphics: in
conjunction with the 30th annual conference on
Computer graphics and interactive techniques. pp. 1-1,
2003.

 29 Shell, J. S., R. Vertegaal, and A. W. Skaburskis.
EyePliances: attention-seeking devices that respond to
visual attention. Conference on Human Factors in
Computing Systems. pp. 770-71, 2003.

 30 Starner, T., J. Auxier, D. Ashbrook, and M. Gandy. The
Gesture Pendant: A Self-illuminating, Wearable,
Infrared Computer Vision System for Home
Automation Control and Medical Monitoring.
International Symposium on Wearable Computing,
2000.

 31 Underkoffler, J. and H. Ishii. Illuminating light: an
optical design tool with a luminous-tangible interface.
CHI: ACM Conference on Human Factors in
Computing Systems. pp. 542-49, 1998.

 32 Viola, P. and M. Jones. Rapid object detection using a
boosted cascade of simple features. Proc. CVPR 1. pp.
511-18, 2001.

 33 Wagner, D. and D. Schmalstieg. Handheld Augmented
Reality Displays. Proceedings of the IEEE Virtual
Reality Conference (VR 2006)-Volume 00, 2006.

 34 Westeyn, T., H. Brashear, A. Atrash, and T. Starner.
Georgia tech gesture toolkit: supporting experiments in
gesture recognition. Proceedings of the 5th
international conference on Multimodal interfaces. pp.
85-92, 2003.

 35 Wilson, A. D. PlayAnywhere: a compact interactive
tabletop projection-vision system. Proceedings of the
18th annual ACM symposium on User interface
software and technology. pp. 83-92, 2005.

 36 Wilson, A. D. TouchLight: an imaging touch screen
and display for gesture-based interaction. Proceedings
of the 6th international conference on Multimodal
interfaces. pp. 69-76, 2004.

42

http://www-ui.is.s.u-tokyo.ac.jp/%7Ekwsk/media2005/projects.html
http://www-ui.is.s.u-tokyo.ac.jp/%7Ekwsk/media2005/projects.html
http://cs377s.stanford.edu/

	ABSTRACT
	INTRODUCTION
	RESEARCH GOALS
	RESEARCH AGENDA
	EYEPATCH OVERVIEW
	Composition Mode
	Training Mode

	ADVANTAGES OF MULTIPLE CLASSIFIER TYPES
	SAMPLE PROJECTS
	BeiRobot
	Stop Sign Warning Device
	Logo Scoreboard

	EVALUATION
	LESSONS LEARNED
	RELATED WORK
	CONCLUSION
	Software Availability

	ACKNOWLEDGMENTS
	REFERENCES

