
Apparent Layer Operations for the Manipulation of Deformable Objects

Takeo Igarashi∗

The University of Tokyo / JST ERATO
Jun Mitani†

University of Tsukuba / JST ERATO

Click! Click! Drag (shift-down) Drag (shift-up)

Figure 1: Apparent layer operations. Left: Layer swap allows the user to swap local layers under the clicked point. Right: Layer-aware
dragging allows the user to drag over (shift-up) or under (shift-down) a colliding object in the screen space.

Abstract

We introduce layer operations for single-view 3D deformable ob-
ject manipulation, in which the user can control the depth order
of layered 3D objects resting on a flat ground with simple clicks
and drags, as in 2D drawing systems. We present two interaction
techniques based on this idea and describe their implementation.
The first technique is explicit layer swap. The user clicks the target
layer, and the system swaps the layer with the one directly under-
neath it. The second technique is layer-aware dragging. As the user
drags the object, the system adjusts its depth automatically to pass
over or under a colliding object in the screen space, according to
user control. Although the user interface is 2.5D, all scene repre-
sentations are true 3D, and thus the system naturally supports local
layering, self-occlusions, and folds. Internally, the system dynami-
cally computes the apparent layer structure in the current configura-
tion and makes appropriate depth adjustments to obtain the desired
results. We demonstrate the effectiveness of this approach in cloth
and rope manipulation systems.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric Algo-
rithms

Keywords: Local layering, 3D user interfaces, deformable ob-
jects, physical simulation, modeling interfaces

1 Introduction

Three-dimensional object manipulation using a two-dimensional
input device is difficult. Depth information is not directly acces-
sible in a standard 2D view, and the user typically has to switch to

∗e-mail:takeo@acm.org
†e-mail:jmitani@gmail.com

another view for depth control. Three-dimensional input devices
are available, but depth control (positional control orthogonal to
viewing direction) is still difficult. However, in some applications,
precise depth is relatively unimportant, and only the relative depth
ordering of the objects is of interest. In this case, the user interface
can be significantly simplified by allowing the user to discretely
control depth ordering, as in 2.5D scene-editing systems (2D ob-
jects with layers).

In this paper, we introduce two interaction techniques based on this
idea and describe their implementation designed for clothes and
ropes resting on a flat ground. The first technique is an extension of
local layering [McCann and Pollard 2009] applied to 3D modeling.
The user clicks a layered object and changes the stacking order of
the layers underneath the mouse cursor (Figure 1, left). Our cur-
rent implementation swaps the depths of the two topmost layers
and adjusts the depths of other areas when necessary to maintain
consistency. Layer swapping is more difficult in 3D than in 2D be-
cause naive swaps can cause interpenetrations at fold lines. The
second technique is layer-aware dragging. As the user drags the
object, the system automatically adjusts its depth to pass over or
under a colliding object (Figure 1, right). In our system, pressing
the shift key toggles the dragging operations between the drag-over
and drag-under modes.

Unlike original local layering, our representation uses true 3D
models and supports layer operations even when there are self-
occlusions and folds. One can also apply various 3D effects that are
difficult in 2D representations, such as shading and physical simu-
lation. Layer operations are particularly useful for manipulating
interwoven deformable objects, and so we demonstrate the effec-
tiveness of this approach in cloth and rope manipulation systems.
It might be possible to develop similar layer operations for other
targets, such as stacked rigid objects or flexible objects with more
complicated geometries (such as an octopus or a squid). However,
the user interface and implementation details would vary with the
target application, and thus these are reserved for future research.

Internally, the system dynamically computes the apparent layer
structure and makes the necessary depth adjustments to obtain a
valid result. In the layer swap, the system swaps the depth order of
the layers under the mouse cursor and that of nearby areas (to pre-
vent penetration), as in local layering. The original local layering
algorithm uses a greedy algorithm to propagate swaps but is ineffec-
tive in our case because of folds and self-occlusions. We therefore
enumerate all possible depth orders globally and then search for
the valid combination with the minimum amount of change. In the
layer-aware drag, the system adjusts the depth of the dragged ob-
ject so that it becomes shallower (or deeper) than a colliding object

while maintaining consistency with the depth order at the previous
object position.

Our technique might not be used very frequently, but it will save
a significant amount of labor those times when it is applicable. It
enables the simple operations shown in Figure 1 to be performed
with a few clicks. Performing these same operations using a stan-
dard modeling interface can be extremely tedious, because such an
interface requires the user to select appropriate vertices to move,
change viewing directions, adjust the depth, and then return to the
original view to verify the results.

2 Related Work

The traditional approach to 3D scene editing via a 2D interface is
to use three separate views. However, various single-view control
methods have been proposed. Interactive shadows [Herndon et al.
1992] uses shadows projected onto walls and a floor as a handle
for depth control. Through-the-Lens Camera Control [Gleicher and
Witkin 1992] uses constraints specified in the projected image to
control the camera position and orientation in a 3D scene. Two-
handed and multi-touch controls are also used to control additional
degrees of freedom [Zeleznik et al. 1997, Reisman et al. 2009].
The Sketch system [Zeleznik et al. 1996] determines the depth of
a newly created or dragged object based on the assumption that it
rests on top of another object in the scene. Our work builds on these
previous attempts and presents specialized depth control methods
for interwoven deformable objects.

Our work is inspired by recent progress in advanced representations
and operations for 2.5D drawings. Williams [1997] introduced an
algorithm for inferring the correct layer structures from contour vis-
ibility information. Asente [2007] presented an algorithm for pre-
serving apparent layer structures during the editing of a planar map.
Wiley [2006] presented a data structure and algorithm for represent-
ing self-intersecting boundary curves in vector graphics. McCann
and Pollard [2009] introduced a pixel-based representation and al-
gorithm for local stacking of 2D graphical objects. Our goal is to
enable richer expressions by using a 3D representation while pro-
viding a simple user interface similar to those of these 2.5D sys-
tems.

Automatic inference of 3D geometry from self-occluding 2D input
is discussed in some sketch-based modeling systems. Karpenko and
Hughes [2006] introduced an algorithm for inflating a 2D region
enclosed by a boundary curve that contains local self-intersections.
Cordier and Seo [2007] extended this algorithm to the inflation of
shapes that contain self-intersecting regions such as knots. The knot
plot system [Scharein 1998] provides a sketch mode in which a
new 3D knot can be designed by drawing a 2D knot with user-
specified depth ordering for each intersecting segment (left-button
click requests passing over and right-button click requests passing
under). Fabianowski and Dingliana [2008] used pen pressure to
control depth. Whereas these systems focus on the initial creation
of objects, we focus on the manipulation of existing 3D objects.

Computing layer structure (depth ordering) of objects in a 3D scene
has been discussed in a variety of contexts. Snyder and Lengyel
[1998] presented an algorithm for sorting geometric objects into
layers to accelerate the rendering process. Eiseman et al. [2009]
presented a method for converting a 3D scene to 2.5D vector graph-
ics by segmenting the surfaces of self-occluding objects. Our con-
tribution is a method of modifying the given layer structure and
reconstructing a new 3D scene from the updated layer structure.

Problems related to folding are a primary subject of study in the
field of origami [Demaine and Rourke 2007]. Origami foldability
is concerned with the possibility of folding a given crease pattern

into a flat shape, and origami design is concerned with how to fold
a single sheet of paper into a target shape. The difficulty of finding
a globally consistent stacking order of local layers is known to be
NP-complete [Bern and Hayes 1996]. Our contribution is the devel-
opment of an algorithm for making a valid change to the stacking
order and the packaging of that algorithm as a tool to assist in 3D
modeling tasks.

There are studies on folding a sheet of paper interactively in a vir-
tual space. Miyazaki et al. [1996] presented a geometric origami
folding system that maintains the consistency of the stacking order
during the user’s folding operations. Burgoon et al. [2006] intro-
duced a physical simulation based on a discrete shell model for in-
teractive origami folding. However, these authors did not provide
tools for directly changing the stacking order.

Interaction with deformable objects has most often been discussed
in the context of simulation systems, such as surgical simulations
[Brown et al. 2004]. In such instances, the goal is to faithfully
simulate physically realistic behavior for training purposes. How-
ever, our goal is to support the creative design process by adding
context-aware operations to a modeling system without being re-
stricted to physically realistic behavior. A seminal work by Igarashi
and Hughes [2001] addressed a similar objective, but they did not
consider the cloth-cloth interaction.

3 The User Interface

Our interaction techniques are designed mainly for the manipula-
tion of deformable objects in a 3D scene. We have implemented two
particular systems (cloth and rope manipulation systems) to demon-
strate our approach. These two examples show that our method can
handle typical 2D and 1D deformable objects in 3D space.

We use a single view for visualization and control of a 3D scene.
The user edits the 3D scene with a 2D pointing device by com-
bining clicking and dragging operations. Our technique can be ap-
plied from an arbitrary viewing direction in principle by consider-
ing the projections of the layers on the screen. However, for clothes
and ropes lying on the floor, the layers make the most sense when
viewed vertically from the top. We therefore focus on a vertical
view (camera pointing downward, screen parallel to the ground) to
simplify the explanation in this paper.

3.1 Layer swap

This method allows the user to directly modify the depth order by
clicking on a layered object in the 3D scene. The current imple-
mentation swaps the two topmost layers. It is not always possible to
swap only the first two layers, because penetration at a fold may oc-
cur. In this case, the system automatically applies additional swaps
to other layers under the clicked position. The system also propa-
gates swaps to the area around the clicked position when necessary
to prevent interpenetration. When multiple possibilities exist, the
system selects the one that causes the minimum amount of change
to the current configuration.

Our current technique of swapping the first two layers is not the
only approach, and many other implementations are possible (e.g.,
pushing the topmost layer to the bottom, popping the bottom layer
to the top, or showing all layers in a list and asking the user to spec-
ify the desired operation [McCann and Pollard 2009]). We chose
the current implementation for several reasons. First, a single click
is simple and fast, allowing for fluent interaction. Second, the user
can obtain various configurations by successively clicking on dif-
ferent locations (see our user study in the Results section). Finally,
deep layers are not immediately visible, so they will probably be

manipulated less frequently. Manipulation of deep layers requires
additional operations (such as temporarily hiding top layers), the
discussion of which is outside the scope of this paper.

Figure 2ab shows a simple example of a layer swap. Figure 2cf
shows an example in which propagation is necessary to prevent
penetration. There are three possibilities (d, e, f), and the system
returns (d) because it produces the minimum amount of change (see
the Algorithm section for a definition). It is sometimes difficult to
predict which result will be returned, but the user can quickly ex-
plore the other possibilities by clicking on other locations in the
returned result until the desired configuration is obtained. Figure
2gh shows an example in which it is not possible to swap the first
two layers only because of a fold, and here the system applies an
additional swap.

a b

c

g h

d e f

Figure 2: Basic layer swap operations.

Figure 3 (top) shows an extreme case (a square napkin folded
twice). In this case, two valid configurations satisfy the user request
(swap the two layers under the cursor), and the system returns the
configuration with the fewest swaps (center). The user can easily
obtain the other result (right) by clicking the center of the returned
result (center). Figure 3 (bottom) shows another extreme case (a
spiral). In this case, the system reverses the order of all the local
layers, which is the only valid configuration. Figure 4 shows layer-
swap operations applied to a knot.

User operation

Swap result Another possibility

Valid configurations

Figure 3: Complicated layer swaps (napkin and spiral).

3.2 Layer-aware dragging

In our method, depth is adjusted automatically during the drag-
ging operation to make it easier to control the depth order. If the

Click! Click! Click!

Figure 4: Layer swap for a rope.

dragged object is already over or under another object, the system
tries to maintain the depth order by adjusting the depth to prevent
unexpected penetration. When the dragged object collides with an-
other object in the screen space, the system automatically adjusts
the depth of the dragged object so that the object passes over or un-
der the colliding object (shift-down is associated with passing under
in our current implementation).

We currently support two types of drag. One is boundary drag, in
which the user drags a boundary vertex, and the rest of the object
follows the dragged vertex according to the physical simulation.
This is useful for rotating, bending, and folding an object. The
other is intact drag, in which the user drags an internal vertex, and
all of the other vertices of the object move together with the dragged
vertex. This is useful for translating the entire object in one direc-
tion. In a boundary drag, the system adjusts the depth of the area
around the dragged vertex. In an intact drag, the system adjusts the
depth of the area around the advancing front of the object (boundary
edges whose direction of motion is outside the object). The physi-
cal simulation adjusts the depth of the remaining area and resolves
collisions.

Figure 5 (top) shows an example of a boundary drag. The user
first drags A over B (in pass-over mode). The user then drags A
under C (in pass-under mode). The depth order of A, D, and E
is preserved during this procedure. This operation is particularly
useful for showing the process of tying a knot (Figure 5, bottom).

Drag over (shift-up) Drag under (shift-down)

AA

B CB C

D

E

Drag (shift-up) Drag (shift-up)Drag (shift-down)

Figure 5: Layer aware dragging.

4 Algorithm

We use standard representations for deformable 3D objects. Cloth
is represented as a single-layer triangular mesh, and rope is repre-
sented as a linear chain of spherical primitives. We use a simple
physical simulation based on shape matching [Müller et al. 2005,
Rivers and James 2007] with basic collision handling to maintain
the integrity of deformable objects during manipulation. We tem-
porarily compute a special data structure (apparent layers) to ap-
ply our layer-based operations and discard them once they have
been completed. We assume that any interpenetration is resolved
by physical simulation before applying the layer operations.

4.1 Layer swap

The layer swap algorithm is an extension of the algorithm used in
local layering [McCann and Pollard 2009]. Original local layering
uses single-pass propagation of flip-up (-down) operations but does
not work for objects containing folds and self-occlusions. Figure 6
shows examples. Suppose that the user wanted to swap A and B at
screen location p in Figure 6 left. The system would initially move
A under B and then try to move A under C because C is above B.
However, this would cause interpenetration at location q. To re-
solve this interpenetration, the system has to backtrack and move A
under D. Figure 6 right is a simplified view of the spiral shown in
Figure 3. If the user tried to swap A and B, the system would first
move A directly underneath B. However, as propagation proceeded,
the system would eventually move B underneath C, nullifying the
previous swap of A and B. This example shows that naive propaga-
tion of layer swaps may not work even with backtracking. We must
therefore examine layer order combinations more globally to find
a valid result. The detailed process is described in the following
subsection.

A

B

D

C

p

q

A

B

C

p

Ground plane

Figure 6: Cases in which simple propagation does not work. Fold
(left) and spiral (right).

4.1.1 Constructing a list graph

The system first identifies local layer structures by examining over-
laps among object fractions. In the case of cloth, the system first di-
vides the folded meshes at silhouette edges as a preprocessing step.
The system then projects all fold lines and boundary edges onto the
screen, thereby constructing a planar map (Figure 7 b). Each area
in the planar map is called a region, and in every region, each con-
nected fraction of a mesh is considered to be a layer. Two separate
fractions are generated along a fold line. Each region contains mul-
tiple layers sorted according to their depth if meshes overlap inside
the region. A layer is associated with a set of mesh vertices inside
a region.

In the case of rope, we project the silhouette of the rope(s) onto the
screen and obtain a 2D planar map. Each area of the map is called
a region (Figure 7 d), and in every region, a connected rope fraction
becomes a layer. A layer is associated with spherical primitives
whose screen projections intersect the region. A spherical primitive
can be associated with multiple layers.

1

1

12

22

3

1

1

1
1

1

1

1
1

1

1

1

2
2

2

2
2

2
3

a b c d

Figure 7: Examples of planar maps. Numbers indicate the number
of layers in each region.

We then construct a list graph (Figure 8) to represent a global layer
structure, as in original local layering [McCann and Pollard 2009].
Each node of the list graph corresponds to a region and contains an
ordered list of layers. Each edge of the list graph corresponds to
an adjacency relation between regions. If any layer pair between

one region and another is connected in the original object represen-
tation, the two regions are connected in the list graph. We remove
regions that contain only one layer and then remove regions that are
not connected to the clicked region. The entries of a list graph in
original local layering are the IDs of the original images while they
are object fractions in our system for handling self-occlusion.

Figure 8: List graph.

4.1.2 Updating the list graph

The next task is to apply a valid change to the current list graph.
We formulate this as a search problem, in which we examine all
valid layer order combinations and return the one that causes the
least amount of change to the original configuration while satisfying
the user request (the topmost layer at the clicked position moves
underneath the layer that was immediately beneath it).

A list graph (a layer order combination) is valid if none of the fol-
lowing violations are present (Figure 9). A type I violation is an in-
consistency between adjacent regions. This violation occurs when
the layer order is swapped in adjacent regions. In other words, layer
A is above layer B in one region, whereas a layer connected to A
is underneath a layer connected B in an adjacent region. Connec-
tion here means adjacency in the original object representation. A
type II violation is an inconsistency inside of a region. This vio-
lation occurs when two layers sharing a fold (silhouette edges) are
not adjacent in the layer order of the region. This corresponds to a
situation in which there is a penetration at a fold, and it occurs only
in cloth systems. Type I violations have previously been considered
in original local layering, but type II violations are introduced here
for the first time.

Figure 9: Type I violation (left) and Type II violation (right).

We solve this search problem by explicitly enumerating all possible
layer order combinations and returning the best one. An alternative
approach would be to use a heuristic beam search to save time, but a
beam search can miss good solutions. We found that an exhaustive
search is fast enough for our examples (see the Results section) and
is more reliable in terms of obtaining plausible results. We do accel-
erate the process by culling unnecessary branches, but this problem
is combinatorial in nature [Bern and Hayes 1996], and there is no
easy solution.

We first explicitly enumerate all valid layer orders in each region,
independently considering type II violations. We enumerate all the
permutations and then remove those that contain a type II violation.
For the starting region chosen (clicked) by the user, we also remove
permutations that do not satisfy the user request (namely that the

first layer is to be moved underneath the second layer). The system
sorts the layer orders in each region according to the number of
swaps (with 0 swap being the original layer ordering). Figure 10
shows the results of this permutation enumeration process when the
user clicks the bottom left region in Figure 9.

0 1 1 2 2 3

0 1 1 2 2 3
1

1
0

10

10

0

Click!

Figure 10: Valid permutations in each group.

We then enumerate the valid combinations of these permutations
(layer orders) by visiting the regions one by one. We start the
search at the clicked region and propagate it to nearby regions in
a breadth-first manner. The system first collects valid layer orders
in the starting region and retains them as a tentative solution set.
The system then visits the next region and examines all combina-
tions between the layer orders in that region and the layer orders in
the tentative solution set. Combinations without type I violations
are added to the tentative solution set. Figure 11 shows the valid
layer order combinations in our example.

click!
0 swaps 4 swaps 6 swaps

6 swaps 8 swaps

8 swaps

10 swaps

Figure 11: Enumeration of all valid combinations.

Finally, the system computes the score of each combination, mea-
suring the amount of change from the original configuration. We
currently compute the score as the number of swaps weighted with
the size of each region. A swap is a pair of layers whose depth or-
der in the updated layer order is the reverse of what it was in the
original layer order. (Thus there are a maximum of n(n − 1)/2
possible swaps in a region with n layers.) The combination with
the lowest score is returned as a result, and all other candidates
are discarded. We prototyped and tested an approach that exhibits
other candidates to the user as thumbnails [Igarashi and Hughes
2002], but we found that it is difficult to understand the configura-
tions from small thumbnails and tedious to examine them one by
one. The user can quickly explore other possibilities by applying
layer swap (clicking) at other locations, and this is much faster than
selecting a configuration from multiple candidates. Another possi-
bility is to cycle though the multiple candidates with repeated clicks
on the same region, but we have not tested this approach yet.

This scoring scheme is an initial experiment, and many other pos-
sibilities exist. One possible extension would be to add extra score
when the folding direction is changed (from valley fold to moun-
tain fold and vice versa), because this is a perceptually significant
change. It might also be worthwhile to consider the distance of
each region from the clicked position, because it is better to keep

the changes near the clicked position. The precise details will de-
pend on the application and are reserved for future research.

4.1.3 Computing the updated geometry

The result of the search is a collection of valid layer orders in each
region. The system must then compute the actual depth of each
layer. We accomplish this by solving a least-squares problem, in
which the system tries to make the depth differences between adja-
cent layers in a region equal to the thickness of the object primitives,
and the depth differences between connected layers in different re-
gions equal to zero. We also add a positional constraint to fix the
center. The system then updates the vertex depths based on the
computed layer depths. The depth of a vertex along a fold line in
a cloth model is given as the average of the two corresponding ver-
tices in the separated layers. Figure 12 (middle) shows the result of
this computation. The system applies the physical simulation based
on shape matching to obtain the final result (Figure 12, right). The
depth of a primitive in a rope is given as the average of the associ-
ated layer depths.

Click!

Least-square Simulation

Figure 12: Updating the geometry.

4.2 Layer-aware dragging

In this subsection we describe the algorithm for computing the
depth of the dragged vertex in a boundary drag (deformable drag).
For an intact drag (non-deformable drag), the same algorithm is ap-
plied one by one to all vertices along the advancing front. The layer
computation described here is based on the fraction of the objects.
A fraction is a face in a cloth system and a spherical primitive in a
rope system. The dragged fraction consists of multiple faces con-
nected to the dragged vertex in a cloth system.

The system first computes the layer structure (depth-ordered list of
fractions) at the current location of the dragged fraction (Figure 13
a). The system projects all fractions in the scene onto the screen,
identifies fractions that intersect the dragged fraction in the screen
space, and sorts fractions according to their depths. The system
then similarly computes the layer structure at the target screen space
location of the dragged fraction (Figure 13 b).

L L'

Target position of

the dragged primitive

Current position of

the dragged primitive

a) Layers at

current position

b) Layers at

target position

Upper bound

Drag-over

Lower bound

Drag-under

Figure 13: Layer analysis for layer aware dragging.

The system makes a list L by collecting fractions lower than the
dragged fraction at the current position. The system then makes

a list L′ by identifying fractions at the target position that are in-
cluded in or connected to a fraction in L. The topmost fraction in
L′ is defined as a lower bound fraction. The system also identifies
an upper bound fraction.

If the system is in drag-over mode, it identifies the highest fraction
below the upper bound and sets it as a new lower bound. Similarly,
if the system is in drag-under mode, the lowest fraction above the
lower bound becomes a new upper bound.

Finally, the system determines the depth of the dragged fraction at
the target location. The default value is the depth at the previous
location. If the default depth is outside the range between the new
lower and upper bounds, the system adjusts the depth so that it lies
within those bounds.

Objects have a certain thickness, so the system offsets the lower and
upper bounds with an appropriate thickness. If the depth difference
between the upper and lower bound is less than twice the offset, the
system sets the target depth to the middle of the two bounds. We ex-
pect that the simulation process subsequently pushes the primitives
apart.

5 Results

Figure 14 shows textured examples. These examples represent the
complexity of our target scenarios (mostly one or two layers, and
no more than five or six layers). We also invited three test users to
try our system. We provided them with textured mesh models, and
after roughly 5 minutes of tutorial and practice, they were able to
compose each scene in a few minutes. For the most part, they used
layer-aware dragging in these examples, but they did occasionally
use layer swap.

Figure 14: Textured Examples.

Figure 15 shows some relatively elaborate examples. These results
indicate that our algorithm is reliable in fairly complicated cases.
Table 1 displays the statistics for these examples as well as for those
shown in Figure 3. The prototype system is implemented using
Java on a laptop with 1.2 GHz CPU, 2GB RAM. All operations
were completed within a few seconds, which is sufficiently fast for
interactive operations. We also tested beam search with backtrack-
ing and found that exhaustive search is comparable to beam search
except in the most complicated cases.

Table 1: Statistics (Figure 3 and 15).

spiral napkin scarf ribbon tie

number of vertices 213 184 90 165 122

4 12 25 33 45

7 24 45 77 107

number of valid combinations 1 2 12 40 294

time (msec) planar map & list graph 719 453 218 422 407

search exhaustive 1.3 34 10 76 1453

beam 1.3 32 0.5 4.5 5.3

number of groups

number of layers

One issue with layer swap is that it sometimes performs compli-
cated swaps to maintain consistency, which might confuse the user.
We conducted another informal user study with 10 different test

tie
ribbon

scarf

Figure 15: Examples of layer swap operations.

users to verify that this is not a problem in practice. We first pre-
sented a brief tutorial using the example shown in Figure 2g. Drag
and camera control were disabled. We then provided the scene
shown in Figure 16 (left; equivalent to Figure 8) and asked the users
to create all 12 possible configurations using layer swap (Task 1) as
a part of their training. Finally, we asked the users to perform the
task shown in Figure 16 (center and right) using layer swap (Tasks
2 and 3). Table 2 displays the results. The tutorial took less than
2 minutes. Most of the users quickly grasped the fundamentals of
layer swap and completed all tasks without much difficulty. A few
test users found some of the swap results confusing but still suc-
cessfully completed the tasks after some trial and error.

start goal

Task 2 Task 3

start goal

Task 1

Figure 16: Configurations used in the user study

Table 2: Results of the user study.

average stdev average stdev average stdev

time (sec) 121.3 41.3 47.5 22.0 39.2 12.5

of clicks 24.2 8.7 10.0 7.2 9.4 4.6

of undos 0.0 0.0 0.4 1.3 0.0 0.0

task1 task2 task3

Figure 17 shows sample knots created using our knot design tool.
Although similar results can be found in previous research (e.g.,
[Fabianowski and Dingliana 2008]), our contribution lies in our
technique of making local changes to a given knot with simple click
and drag operations. This enables quick exploration of alternative
configurations, which is essential to the creative authoring process.

6 Limitations and Future Work

We only tested our algorithm with relatively small models and it can
be too slow for more complicated models. The main bottleneck is
the exhaustive enumeration part of the algorithm. Its computational
complexity is O(Πi∈regions(Ni!)), where Ni is the number of lay-
ers in the i-th region. This part depends on the number of regions
and layers in each region. So, the resolution of the model (number
of faces) itself is not critical. It only affects the construction of the
planar map, whose complexity is linear in the number of faces. One
possible solution to the scalability issue is to use a beam search with
exhaustive culling. This might miss good solutions, so we need to
carefully examine how serious the problem is. Another approach
is to have the user limit the search space manually by deactivating
irrelevant objects in the scene. Manual intervention is important for

Figure 17: Knots.

the user to reliably obtain a desired result because even a computa-
tionally optimal solution can be counter-intuitive for the user if the
search space is too large.

Another important future line of research will be to provide a more
theoretical analysis of our layering problem. Our current swap
interface allows the two topmost layers under the cursor to be
swapped, but this does not guarantee that the user can obtain any
arbitrary configuration. What, then, is the minimum set of opera-
tions? Most 2.5D systems support a limited number of operations,
but it is not immediately clear that this would be sufficient in our
case, because each swap can have unexpected side effects. Like-
wise, our current interface returns only one result at a time and
requires the user to apply multiple swaps at different locations to
obtain the desired end result. However, there is no guarantee that
the user can reach an arbitrary target configuration.

We have focused on deformable objects in our current work be-
cause these objects can undergo local layer changes without it af-
fecting distant locations. However, a small displacement at one end
of a rigid object can cause a large displacement at the other end,
resulting in unpredictable changes to the scene. The system must
analyze the global structure to handle interlocked rigid objects and
must also provide an interface that helps the user understand and
control this global structure.

Our current system is designed for use with deformable objects rest-
ing on a flat surface, but the algorithm should work for general man-
ifold surface as long as all layers in a given region are continuously
and uniquely mapped to a topologically equivalent region on the
base surface. For example, our algorithm can be applied to toroidal
cloth on a toroid, but not spherical cloth on a toroid. We are es-
pecially interested in cloth and rope manipulation on body surfaces
for application to garment design.

References

ASENTE, P., SCHUSTER, M., AND PETTIT, T. 2007. Dynamic
planar map illustration. ACM Trans. Graph. 26, 3, 30.

BAUDELAIRE, P., AND GANGNET, M. 1989. Planar maps: an
interaction paradigm for graphic design. In Proceedings of CHI
’89, 313–318.

BERN, M., AND HAYES, B. 1996. The complexity of flat origami.
In Proceedings of SODA ’96, 175–183.

BROWN, J., LATOMBE, J.-C., AND MONTGOMERY, K. 2004.
Real-time knot-tying simulation. Vis. Comput. 20, 2, 165–179.

BURGOON, R., GRINSPUN, E., AND WOOD, Z. 2006. Discrete
Shells Origami. In Proceedings of Computers And Their Appli-
cations, 180–187.

CORDIER, F., AND SEO, H. 2007. Free-form sketching of self-
occluding objects. IEEE Comput. Graph. Appl. 27, 1, 50–59.

DEMAINE, E. D., AND O’ROURKE, J. 2007. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge Univer-
sity Press, New York, NY, USA.

EISEMANN, E., PARIS, S., AND DURAND, F. 2009. A visibil-
ity algorithm for converting 3D meshes into editable 2D vector
graphics. ACM Trans. Graph. 28 (July), 83:1–83:8.

FABIANOWSKI, B., AND DINGLIANA, J. 2008. Sketching com-
plex generalized cylinder spines. In Computer Graphics Inter-
national 2008, 270–276.

GLEICHER, M., AND WITKIN, A. 1992. Through-the-lens camera
control. Computer Graphics (Proceedings of SIGGRAPH 92).
26, 331–340.

HERNDON, K. P., ZELEZNIK, R. C., ROBBINS, D. C., CONNER,
D. B., SNIBBE, S. S., AND VAN DAM, A. 1992. Interactive
shadows. In Proceedings of UIST ’92, 1–6.

IGARASHI, T., AND HUGHES, J. F. 2001. A suggestive interface
for 3D drawing. In Proceedings of UIST ’01, 173–181.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24
(July), 1134–1141.

KARPENKO, O. A., AND HUGHES, J. F. 2006. Smoothsketch: 3D
free-form shapes from complex sketches. ACM Trans. Graph.
25, 3 (July), 589–598.

MCCANN, J., AND POLLARD, N. 2009. Local layering. ACM
Trans. Graph. 28 (July), 84:1–84:7.

MIYAZAKI, S., YASUDA, T., YOKOI, S., AND TORIWAKI, J.
1996. An origami playing simulator in the virtual space. The
Journal of Visualization and Computer Animation 7, 1, 25–42.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. Graph. 24 (July), 471–478.

REISMAN, J. L., DAVIDSON, P. L., AND HAN, J. Y. 2009. A
screen-space formulation for 2D and 3D direct manipulation. In
Proceedings of UIST ’09, 69–78.

RIVERS, A. R., AND JAMES, D. L. 2007. FastLSM: fast lattice
shape matching for robust real-time deformation. ACM Trans.
Graph. 26 (July).

SCHAREIN, R. G. 1998. Interactive topological drawing. PhD
thesis. Adviser-Booth, K. S. and Adviser-Little, J. J.

SNYDER, J., AND LENGYEL, J. 1998. Visibility sorting and com-
positing without splitting for image layer decompositions. In
Proceedings of SIGGRAPH 1998, 219–230.

WILEY, K., AND WILLIAMS, L. R. 2006. Representation of inter-
woven surfaces in 2 1/2 d drawing. In Proceedings of CHI ’06,
65–74.

WILLIAMS, L. R. 1997. Topological reconstruction of a smooth
manifold-solid from its occluding contour. Int. J. Comput. Vision
23, 1, 93–108.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
Sketch: an interface for sketching 3D scenes. In Proceedings of
SIGGRAPH 1996, 163–170.

ZELEZNIK, R. C., FORSBERG, A. S., AND STRAUSS, P. S. 1997.
Two pointer input for 3D interaction. In Proceedings of SI3D
’97, 115–120.

