
Flexible Timeline User Interface using Constraints
Kazutaka Kurihara

Department of Computer Science
The University of Tokyo

7-3-1 Hongo, Bunkyoku Tokyo,
1130033, Japan

qurihara@ui.is.s.u-tokyo.ac.jp

David Vronay
Center for Interaction Design

Microsoft Research Asia
3F, Beijing Sigma Center No.49
Zhichun Road Haidian District

Beijing 100080, P.R. China
davevr@microsoft.com

Takeo Igarashi
Department of Computer Science

The University of Tokyo
/ JST PRESTO

7-3-1 Hongo, Bunkyoku Tokyo,
1130033, Japan.
takeo@acm.org

Abstract
Authoring tools routinely include a timeline representation to
allow the author to specify the sequence of animations and
interactions. However, traditional static timelines are best
suited for static, linear sequences (such MIDI sequencers)
and do not lend themselves to interactive content. This forces
authors to supplement their timelines with scripted actions
which are not represented. Timelines also force frame-
accuracy on the author, which interferes with rapid explora-
tion of different designs. We present a redesign of the time-
line in which users can specify the relative ordering and cau-
sality of events without specifying exact times or durations.
This effectively enables users to “work rough” in time. We
then implement a prototype and perform a user study to in-
vestigate its efficiency.

Categories & Subject Descriptors: H5.2. Information inter-
faces and presentation (e.g., HCI): User Interfaces.

General Terms: Design.

Keywords: Prototyping; Timeline; Constraint Solving.

INTRODUCTION
Software for working with temporal data, such as music or
animation, often employs a timeline as its central represen-
tation for sequencing and synchronizing events. For the
straightforward display of a small number of channels of
sequential events, this representation works quite well.
However, this metaphor which was originally designed for
straightforward animation is now being used to design
complex interactive applications. Under these conditions,
the timeline breaks down.

Our team was tasked with designing the user interface for a
new authoring tool targeted at rapid application prototyping.
Having experienced the limitation of current tools in our
own prototyping work, we set out to understand the short-
comings of the different representations and design an al-
ternative. Other teams were already working on the pro-
gramming language and graphics system, and so the redes-
ign of the timeline UI became our central focus.

Timeline Limitations
To understand the limitations, we interviewed six profes-
sional interaction designers who were self-described experts
with either Flash[1] or Director[2] or both. Four of the sub-
jects worked within our own company and two were unaf-
filiated. Subjects were not compensated for their participa-
tion beyond a refund of transportation costs and lunch. We
combined the results of these interviews with our own per-
sonal observations. We found that the timeline metaphor is
very easy for subjects to understand and begin working with.
The grid of frames makes it very easy to specify the exact
duration, sequence, and synchronization of animation
events. They can easily see exactly what is on the screen at
a given instant in time.

However, the timeline breaks down when asked to handle
the needs of interactive applications. There are three gen-
eral weaknesses: First and most obvious is that the timeline
is a line -- it is a linear representation, and interactions are
inherently non-linear. When it comes to the representations
of loops and conditions, the timeline cannot help. The de-
signer is forced to jump around the timeline, sticking se-
quences where they might fit and relying on embedded code
to control the playback of time.

The second weakness is that the timeline is global, always
showing the entire application. Combined with the sequen-
tial display, this results in the timeline quickly becoming
inefficient for large or complicated projects. As we saw in
point 1 above, interactive sequences force the user to arbi-
trarily cut up the timeline, inserting sequences wherever
they might fit and controlling the execution of them with
embedded jumps. As timelines stretch to tens of thousands
of frames, subjects forget where in time they placed differ-
ent animated sequences. This confusion also exists in the
vertical dimension. With potentially hundreds or even
thousands of objects in a complex application, there is no
straightforward way of knowing which channel contains a
particular object at a particular time. The author just has to
remember.

The third and final weakness is that the timeline enforces a
very literal and exact notion of time on the author. There is
no provision for specifying things loosely. The timeline
requires you to say things like “at 5:00, do this for exactly
13.5 seconds”. You cannot say loose expressions like “do
this after that” or “these have to last the same amount of

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2004, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1581

time, but I don't know how long that will be.” The inability
to “sketch” in time was a consistent complaint.

This exacting notion of time prevents the user from “work-
ing rough”. In [3], Wong discusses the importance of work-
ing at a rough level during the initial exploratory phases of
design. Storyboarding is a very common technique in the
design of both interactive applications and linear movies.
Tools like Denim[4] allow a designer to quickly and easily
sketch out both the user interface and simple causality. The
current timeline makes such exploration and sketching ex-
tremely difficult. The user trying different variations is con-
stantly wrestling with the timeline, inserting and deleting
frames, pushing things around, and generally rearranging
them to fit his needs. As the application develops and the
timeline becomes more complex and fragmented, the author
is increasingly discouraged from messing with it in the fear
that something will break.

The inability to specify actions in a loose and relative way
also makes many tasks overly complicated. Consider the
common task of playing an animation while the system is
processing some data. The literal timeline provides no way
to do this. The author instead has to create an animation
loop of a fixed duration and control it programmatically.

These three weaknesses taken together render the current
timeline non-optimal for interactive multimedia authoring.

Related Work
Flash MX[1] supports the notion of hierarchical channels in
its timeline, where one layer can contain other layers. These
other layers have their own clock and can be hidden when
not used. This makes it very easy to script relative anima-
tions, such as a moon that orbits a planet while the planet
orbits the sun. While this helps somewhat to control clutter,
it does not address the more serious problem of hiding the
interaction.

Wolber in [6] extends the timeline metaphor to support
multiple synchronous streams. While this makes the author-
ing of simultaneous tasks easier and reduces timeline clutter,
it still does not address the difficulty of viewing interaction.

TIMELINE REDESIGN
The goal of our redesign was to preserve all of the positive
aspects of the old timeline while overcoming all of the
weaknesses. Our current design comes a long way towards
that goal, while also providing a number of new powerful
capabilities.

Key to achieve our goal was to support a “sketch” experi-
ence to the authoring task. By sketch, we do not mean liter-
ally sketching with a pen, but rather the general attitude that
the user need only specifies the information he or she de-
sires. The rest is inferred by the temporal constraint solver.
This gives users the maximum ability to explore, create
variations, make adjustments, and change their minds.

Design Concepts
Events happen in time -- our core metaphor is that of events
occurring in time. An event can be any sort of verb, from an
object being created to a property being changed to every-
thing on the screen turning blue. Events can also just be
simple text labels with no functionality, just serving as
comments, placeholders, or temporal reference points.

Figure 1: Timeline as a Query Viewer

Time is relative -- rather than a single uniform linear time-
line, we divide time into three broad sections -- past, pre-
sent, and future (Figure 1 left, center, and right). The pre-
sent area contains the subset of the application the user is
currently working on, while the past and future areas con-
tain simplified representations of events that happen before
or after the present action. The timeline, then, can be
thought of as a query viewer (Figure 1 overall). Rather than
showing every event in the entire system, the timeline nor-
mally displays a subset of the events that match a particular
query. Given any set of events, like “every event involving
a button on the main window”, the timeline can determine
their execution order and containment relationships and
render them to the screen. In this way, the user can easily
scope the view to just those events he or she currently cares
about.

Figure 2: Three Events

Events can be fuzzy -- when creating an event, the user does
not have to specify any information about its time at all. For
instance, in Figure 2 below, we can see three events. The
user has simply said “these three things happen”, and has
not said anything about their relative orders or durations.
The fuzzy edges indicate an unspecified time (for clarity,
we will use text label events in these images).

Events can also be specific -- if the user desires, the start,
end, and duration of events can be fixed. In Figure 3, we
see the user has said the tool bar is created after we begin
window creation, and that the preferences are read after the
toolbar creation has completed.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1582

Figure 3: Specific Events

Figure 4: Specific and Non-specific Durations Mixed

Figure 5: Hierarchical Timelines

The hard bold edges are used to indicate specific times. The
long vertical lines are guides that can be shown for empha-
sis or hidden at the user's request.

Thus, the user is really specifying temporal constraints
rather than exact literal time. Only the constraints the user
cares about (such as sequencing) are defined, and all other
actions (such as the duration of these events or the end time
of the window creation event) are left unconstrained.
Drapeau[5] and others have previously observed the impor-
tance of constraints in multimedia authoring.

Of course, the user can also specify exact durations, and can
even work with a combination of the two. In Figure 4, the
icon animation of exactly 16 frames is sync with two other
animations whose duration is not specified.

Events can contain their own timeline -- the timeline is hi-
erarchical and events themselves can have timelines inside
of them. Within an event, sub-events can always get a spe-
cific temporal reference to the start and end times of their
parent, even the times of the parent are unspecified. In Fig-
ure 5, we can see that the Handle Window Layout event has
been expanded to reveal four other events inside. At the
beginning of this event, the drawer slide-out animation and

the sound effect start at the same time. Once the drawers are
done sliding out, the handles are drawn. Also, at some point,
an event is written to an event log. All of these events must
be completed before the Handle Window Layout event is
considered done.

With its support of hierarchy, our timeline lends itself to
going from a quick sketch or storyboard directly into the
finished product. It also supports designers and program-
mers working together. A designer can lay down the larger
blocks and specify causality, sequence, and timing. Then,
without loosing any work, the programmer can add in the
details by adding code to the blocks. Highly specified code
can co-exist with very general sketchy behavior, and whole
chunks of interactions can be dragged and dropped from
place to place.

With its support of hierarchy and relative time, the timeline
also allows non-linear features such as loops, conditionals
and other control blocks.

IMPLEMENTATION
The improved timeline we have discussed was originally
designed for a new authoring tool called AfterThought
which is specifically designed to support rapid prototyping
of interactive applications. We implemented a prototype of
our new timeline interfaces using C#.NET. It can run on
today’s common computers. It has functions to create
events and edit constraints using clicks and drags. Nested
timelines are also supported.

The temporal relations among events in the timeline are
automatically handled by a constraint solver. There are
number of well-known constraint solvers such as Borning’s
[7] (constraint hierarchy) and Gleicher’s [8] (solving dy-
namics), and Yamane’s [9](also solving dynamics). We
currently use Yamane’s method but any other solvers would
work as well.

USER STUDY
We performed a study to investigate the usability of the
prototype timeline user interface for AfterThought, compar-
ing it with Macromedia Flash MX and Adobe Premiere
Pro[10]. Eighteen college students who had previous ex-
pertise with Flash or Premiere or both participated in the
study.

Procedure and Design
First, we instructed them how to use the three tools for edit-
ing timelines. Once they were comfortable, we showed
them 3 timelines for their tasks (Figure 6). They were told
to insert 5 new events at a point for each timeline (shown by
“Here” in Figure 6) using the 3 tools. The orders in which
each participant used the tools were counterbalanced. An
important point was that they had to maintain all the prede-
fined constraints such as “These events end at the same
time” (represented by dotted lines in Figure 6). The initial
timeline was constructed in each tool. However, the partici-

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1583

pants were required to set proper causality constraints on
the events they newly inserted. After they finished each
task, they evaluated how easily they were able to achieve
the task by choosing a number from 1 (most difficult) to 5
(easiest). We also measured the consuming times for all the
tasks. However, it was not very useful because it varied too
much depending on each participant’s skill and experience.

Figure 6: Timelines for Task #1, Task #2, and Task #3

Results and Findings
Figure 7 shows the averages of the evaluations for each task
and each tool. A Scheffe multiple-comparison test showed
that AfterThought scored significantly better than the other
2 tools did in task #1 (p=0.036 against Premiere, p=0.003
against Flash) and task #2 (p=0.045 against Premiere,
p=0.000 against Flash). We observed that the participants
had difficulty in recovering the predefined constraints they
broke when they inserted new events in Flash and Premiere.
It was not the case with AfterThought, which preserved all
the predefined constraints automatically.

Meanwhile, one-way analysis of variance showed that there
was no significant difference among 3 tools in only task #3
(F2,51=2.25, p=0.115). Our observations indicated that this
was due to the lack of some needed functionality in our
timeline design. Many participants commented that it was
that there was not enough visual feedback for indicating
what was and was not constrained.

Figure 7: Evaluations of Easiness

Improvements
Based on our results, we revised the timeline design. The
next version will feature:

• More visualization for existing constraints.
• A mode or a shortcut button for explicit invalidation of

all the existing constraints.
• Implicit relaxation of constraints when the user wishes

to change the situation.

CONCLUSION
In this paper, we proposed a new “relative” timeline and
user interfaces for it, considering the existing problems of
timeline editing for multimedia authoring. We implemented
a prototype and performed a user study that supported their
effectiveness and versatility.

User interfaces involving constraints generally have two
problems. One is how to set or remove constraints easily,
and the other is how to show the user active constraints.
Our interfaces solved these problems by hiring simple in-
teraction of “clicking on the edges of events” and its visu-
alization. We observed that it works well when the number
of events is relatively small. Our future work is to investi-
gate other interfaces and visualizations by which the user
can deal with complicated constraints.

ACKNOWLEDGMENTS
The authors would like to thank Harry Shum for management
support, Alexander Stojanovic and Matthew MacLaurin for
AfterThought development, Shuo Wang, Fei Zhang and
Jingbo Dong for assistance with user studies and prototyping,
and Hiroshi Hosobe for technical comments.

REFERENCES
1. Flash MX, software by Macromedia, Inc.
2. Director, software by Macromedia, Inc.
3. Wong, Y.Y. Rough and ready prototypes: Lessons

from graphic design. In Short Talks Proceedings of
CHI '92: Human Factors in Computing Systems, Mon-
terey, CA, May 1992, pp. 83-84.

4. Mark W. Newman, James Lin, Jason I. Hong, and
James A. Landay, “DENIM: An Informal Web Site
Design Tool Inspired by Observations of Practice.” In
Human-Computer Interaction, 2003. 18(3): pp. 259-
324.

5. Drapeau, George D. Synchronization in the MAEstro
multimedia authoring environment, Proc. First ACM
international conference on Multimedia, 1993, 331-
339.

6. Wolber, D. A Multiple Timeline Editor for Developing
Multi-Threaded Animated Interfaces. UIST 1998,
ACM Press, 117-118.

7. Borning, A., Marriott, K., Stuckey, P., and Xiao,
Y.:Solving Linear Arithmetic Constraints for User In-
terface Applications, Proc. ACM UIST, 1997, pp.87-
96.

8. Gleicher, M.: A Differential Approach to Graphical In-
teraction, Technical Report CMU-CS-94-217, School of
Computer Science, Carnegie Mellon University, 1994.

9. Katsu YAMANE and Yoshihiko NAKAMURA:“
Synergetic CG Choreography through Constraining and
Deconstraining at Will,” Proc. IEEE ICRA2002, Vol.1,
pp.855-862, Washington D.C., U.S.A., May, 2002.

10. Premiere Pro, software by Adobe Systems, Inc.

CHI 2005 | Late Breaking Results: Posters April 2-7 | Portland, Oregon, USA

1584

