

Ninja Cursors: Using Multiple Cursors to Assist
Target Acquisition on Large Screens

Masatomo Kobayashi
Department of Computer Science,

 The University of Tokyo
7-3-1 Hongo, Bunkyo, Tokyo, Japan

kobayash@is.s.u-tokyo.ac.jp

Takeo Igarashi
Department of Computer Science,

 The University of Tokyo / SORST, JST
7-3-1 Hongo, Bunkyo, Tokyo, Japan

takeo@acm.org

ABSTRACT
We propose the “ninja cursor” to improve the performance
of target acquisition, particularly on large screens. This
technique uses multiple distributed cursors to reduce the
average distance to targets. Each cursor moves
synchronously following mouse movement. We present the
design and implementation of the proposed technique,
including a method to resolve the ambiguity that results
when multiple cursors indicate different targets
simultaneously. We also conducted an experiment to assess
the performance of the ninja cursor. The results indicate
that it can generally reduce movement time. However, the
performance is greatly affected by the number of cursors
and target density. Based on these results, we discuss how
our technique can be put into practical use. In addition to
presenting a novel method to improve pointing performance,
our study is the first to explore a variable number of cursors
for performing pointing tasks.

Author Keywords
Pointing, Multiple Cursors, Large Screens, Fitts’ Law.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces. - Graphical user interfaces.

INTRODUCTION
Pointing is the most fundamental operation in windows,
icons, menus, and pointers (WIMP) interfaces. For this
reason, several techniques have been proposed to improve
the performance of pointing tasks in various contexts. In
general, these techniques have attempted to reduce the
index of difficulty (ID) based on Fitts’ law [7]:

⎟
⎠
⎞

⎜
⎝
⎛ += 12log
W
DID ,

where D is the distance to the target and W is its width. A

longer movement distance or a smaller target object reduces
performance.

Several approaches have been used to reduce the ID. One is
to modify the cursor’s behavior to increase W and/or reduce
D. For example, the bubble cursor [9] dynamically changes
cursor size to increase the virtual W to exploit the void
space around the target. This technique is very effective for
pointing to a small target in otherwise empty space.
However, it is not particularly effective for pointing to a
distant target located beyond many obstructions, as the user
must move the cursor all the way to the distant target. In a
desktop configuration, the user is forced to repeatedly
reposition the mouse to reach a distant target location,
which reduces the performance of pointing and results in
user frustration. In addition, the logarithmic relationship
between D and movement time (MT) would likely be
broken when pointing to a very distant target on a wall-
sized screen [3, 10]. Instead of enlarging W, the Delphian
Desktop [2] reduces D by allowing the cursor to jump
toward the target location. It uses a prediction algorithm to
permit this long-distance movement with minimal mouse
operation. This works as long as the algorithm can
successfully determine the goal location. However, it is
generally difficult to predict a distant target, and prediction
errors can confuse the user.

Figure 1: Multiple synchronous movement of cursors cover a

large screen.

We propose another method, called the “ninja cursor,” to
reduce the ID by modifying cursor representation. It uses
multiple cursors to reduce D without applying a prediction
algorithm. The cursors move synchronously, following the
physical movement of the mouse (Fig. 1). The user can
point to a target with one of the cursors located nearest to it.

We use a simple waiting queue algorithm to prevent two or
more cursors from pointing to multiple targets
simultaneously.

In general, our technique aims to improve the performance
of pointing operations by mapping the single mouse
movement to the movement of multiple cursors. By
allowing users to point to a target with less motion, the
proposed technique should reduce the MT as long as the
number of cursors is suitable for the target density. We
conducted an experiment to determine how cursor number
and target density affect performance. Cursor number is a
parameter that so far has been explored only rarely, unlike
cursor size, target number, and target size. The ninja cursor
technique allows the investigation of this parameter.

The remainder of this paper is organized as follows. First,
we summarize related work. Second, we describe the design
and implementation of the ninja cursor. Third, we evaluate
our technique using different numbers of cursors and targets
and compare the resulting performance to that of the normal
single-point cursor. Fourth, we discuss the ninja cursor in
more practical contexts. Finally, we present our conclusions.

RELATED WORK

Modifying Target Representation
Two approaches have been used previously to modify target
representation to reduce the ID: the actual or virtual W of
the target is enlarged, and/or D is reduced by temporarily
bringing the target toward the cursor.

The Dock in the Apple Mac OS X is a typical example of
the first approach. It enlarges the actual size of the target
dynamically, by predicting which item is the target
according to the location of the mouse cursor. McGuffin
and Balakrishnan [17] examined the performance of
pointing operations with such a temporarily expanded target.
They found that target expansion improved the performance
even if the expansion occurred relatively late in the
movement of the cursor toward the target. They also found
that these tasks can be modeled with Fitts’ law using the
expanded W. However, it seems that the target expansion
technique would not work well with closely spaced targets.
Manual target expansion techniques have also been
proposed. For example, pointing lenses [18] provide a
magnified view of the screen so that users can interact with
enlarged targets. A user action such as pen pressure or time
delay activates the lens.

One of the studies that took the second approach utilized
drag-and-pop [3]. This creates temporary proxies of
possible targets and shows them near the pointing cursor
when users start dragging an object so that they can easily
drop it on the target. This technique improved performance
for a large D. However, it can create erroneous distracting
proxies because the prediction of distant targets is difficult,
especially when many potential targets exist. Grossman and
Balakrishnan [9] reported that this technique would work
well only with a low-density target distribution.

In contrast to these attempts at changing the visual
representation of targets, Blanch et al. [6] proposed
semantic pointing, which made the control-display (C-D)
gain adaptive to improve both D and W virtually in the
motor space; dynamically increasing the gain while outside
a target and decreasing it while inside a target will virtually
shorten D while virtually enlarging W. However, this
technique would be less effective with multiple targets
because intervening targets would slow down the cursor in
its movement toward the distant target.

Modifying Cursor Representation
As described in the Introduction, two approaches have been
used to improve pointing performance by modifying the
behavior of the cursor: enlarging the size of the cursor’s
hotspot to increase virtual W, and causing the cursor to
jump toward the target to reduce D in motor space.

The area cursor [13] is one of the earliest attempts using the
former approach. Instead of a single pixel hotspot, it uses a
rectangular activation region to enlarge the effective target
width, which is determined by the width in motor space.
This approach is effective for pointing to small targets. The
performance of pointing tasks with an area cursor can be
modeled with Fitts’ law using the effective width W.
However, the larger activation region causes ambiguity
because it is possible for there to be multiple targets inside
the region at the same time. Worden et al. [19] proposed the
combination of an area cursor and a point cursor to address
this problem. This allows using the point cursor to
determine the single target when multiple targets exist
inside the area cursor. The bubble cursor [9] is a more
sophisticated solution to the problem of ambiguity. This
technique dynamically changes the cursor size so that it
contains only a single target.

One example of the latter approach is object pointing [11].
This technique makes the cursor jump across the void space
between selectable targets, making it easier to point at
distant ones. The Delphian Desktop [2] proposed more
aggressive jumping based on a prediction algorithm. Using
an online algorithm, it determined the goal location based
on the direction of movement and peak velocity. Lank et al.
[15] proposed a method based on the theory of motion
kinematics to improve the precision of the prediction.
However, these prediction-based interfaces all share a
problem of uncertainty. Even using a high-precision
prediction algorithm, the resulting behavior is still
nondeterministic in nature, and unexpected results can
confuse the user. The behavior of our ninja cursor, however,
is completely deterministic and continuous, which makes it
much less distracting. Another attempt to reduce D was the
Multi-Monitor Mouse [5], which allowed users to move the
cursor quickly across displays in a multi-display
environment using hot keys. The ninja cursor does not
require an explicit action to switch displays, and is
applicable to a single large screen.

Performance Evaluation of Pointing Operations
Many studies, including Fitts’ original work [7], have
shown how the target size affects the pointing performance
in diverse contexts. Generally, these demonstrated a
positive relationship between the target size and the
performance. Recent studies [9, 13, 19] have also examined
the cursor size, as described above. An enlarged cursor
could improve the performance, increasing the virtual width
of targets. The number of targets has also been the subject
of frequent study. For example, both target expansion [17]
and object pointing [11] were evaluated with a high density
of targets. The results showed that these techniques were
less effective when distracting targets existed around the
goal target. However, Grossman and Balakrishnan [9]
experimented with a range of target densities to show that
their bubble cursor technique was effective in the presence
of many targets. The target density was also considered for
specific input devices such as the touch screen [14].

Although the target size, the cursor size, and even the
number of targets have been examined, few studies have
explored how the number of cursors affects the
performance of target acquisition tasks. Therefore, we
focused on this aspect using our ninja cursor technique.

Using Multiple Cursors
Several applications have supported the use of multiple
cursors for a specific purpose. One of them is a
collaborative drawing tool [8]. Using n cursors that can be
moved individually, this tool allows n users to interact with
different objects on the same shared screen.

Bimanual interfaces [12] might be considered multiple
cursor systems because they give users an individual cursor
for each hand. Exploiting two hotspots, the users could take
advantage of two-handed manipulation, moving two points
of action interactively on the screen.

These techniques did not attempt to improve the basic
performance of target pointing. However, they did inspire
the concept of the ninja cursor.

THE NINJA CURSOR TECHNIQUE
To reduce the ID in target acquisition tasks, our ninja cursor
technique uses multiple pointing cursors that move
synchronously following the mouse movement (Fig. 2). A
user can point to an object with minimal effort using the
cursor that is nearest to the target object. If mouse cursors
and target objects are both uniformly distributed on the
two-dimensional (2-D) screen, the average minimum
distance to a target is expected to be reduced to Dn as
shown in this equation:

n
D

Dn
1= ,

where n is the number of cursors and D1 is the mean
distance with a normal single pointing cursor (Fig. 3).

Figure 2: Each cursor follows the physical movement of the
mouse.

Figure 3: The arrows indicate the distances between each
rectangular target and the nearest cursor. With a single cursor,
the targets are far from the cursor (left). Using more cursors,
on average, they become closer to at least one of the cursors

(right).

We must address the possibility that two or more cursors
could point to different targets at the same time. To resolve
this ambiguity, the ninja cursor modifies the spatial
distribution of the cursors dynamically. We use a simple
waiting queue algorithm to accomplish this.

1. If multiple cursors are initially inside a target, the one
that is closest to the center of the target is made active.
The others are put outside the target. If only one
cursor is inside a target, it is simply made active. In
this context, the term “active” means currently
pointing at a target.

2. If cursor Ci is not the active cursor Cactive, and it is
about to move into a target Ti, then Ci is appended to a
queue, Q. As long as Ci is in Q, it never goes inside Ti
even if the user moves the mouse toward Ti. The
position of Ci does not change on the screen while the
cursor is in this state.

3. When the user moves the mouse in another direction,
that is, away from Ti , then Ci is removed from Q.

4. When Cactive leaves the target to which it is pointing, it
becomes inactive. Then, the first element of Q, Cj, is
removed from the queue. As it is no longer in Q, Cj
can go inside the target, Tj, and become active
following mouse movement.

Using this algorithm, the ninja cursor guarantees the
following four criteria:

• No more than one cursor is active at any one time.

Mouse movement

Cursor movement

• As long as a cursor does not attempt to enter any
target, it moves freely following the movement of the
mouse.

• If no active cursor is on the screen, each cursor moves
freely following the movement of the mouse.

• Each cursor can point to any target as long as the user
continues moving the mouse toward the target.

The order of the cursors becoming active simply depends
on how long each cursor is in the waiting state because the
method described above is based on a simple first-in, first-
out (FIFO) strategy. The behavior of the ninja cursor will
thus be easily understood. In addition, we provide several
visual feedback cues to help users understand the current
state of each cursor. First, the cursor color indicates one of
three states for each cursor. In Fig. 4, the gray cursor is the
active cursor while the black ones are currently in the
waiting queue. The remaining cursors are shown as normal
white arrows. Second, once a cursor tries to enter a target
and goes into the waiting state, a “wall” appears around the
target (Fig. 5). The length of the wall indicates the position
of the cursor in the waiting queue. A shorter (longer) wall
shows that the cursor is closer to (farther from) the head of
the queue. The dynamic change of wall length shows a user
how much movement is required to point to the intended
target.

The transitions between the normal and waiting states may
reduce the regularity of cursor distribution as shown in Fig.
6, as some cursors stop moving while the others continue
moving following the movement of the mouse. Once the
regularity is perturbed, the average distance to targets will
increase. This might reduce the performance of the ninja
cursor. To rectify this, we provide a “reset” feature; shaking
the mouse or pressing the F5 key moves the cursors to their
original uniformly distributed locations.

Figure 4: The user attempts to point to object A. The gray
cursor currently points the highlighted object. The black
cursors wait for the gray one to leave the object. Using

multiple cursors would reduce the minimal distance to the
target object.

Figure 5: The length of the wall represents the position in the
waiting queue. As the user continues to move toward the

target, the wall length becomes shorter, indicating the amount
of movement remaining to enter the target.

Figure 6: A transition between the normal and waiting states
may reduce the regularity of the cursor distribution.

We anticipate that users of traditional pointing interfaces
will quickly be able to start using the ninja cursor because
its behavior is locally identical to a traditional one as long
as the cursor that the user focuses on is not in the waiting
queue. The behavior is completely the same as the
traditional interface when the number of cursors is equal to
1. This indicates the possibility of a seamless transition
from traditional interfaces to ninja cursors. In addition, it is
common for a cursor to follow mouse movement
imperfectly because of small errors in the optical or
physical sensor in the mouse. Although such poor behavior
reduces the performance of target pointing operations, it
does not confuse or surprise the user. This is one of the
possible advantages of the ninja cursor over previous
“cursor-jumping” techniques, which might occasionally
cause the user to lose the cursor location. In the ninja cursor,
every cursor is always visible and moves continuously.

EXPERIMENT
Although the ninja cursor theoretically reduces the ID of
pointing tasks, some uncertainties still exist that might
reduce its performance in practice. For example, how often
each cursor enters into the waiting state affects the
performance because the cursors in the waiting queue
require extra mouse movement before becoming free again.
Moreover, such a waiting event makes it difficult to assess
the amount of movement accurately in advance. This could
reduce the efficiency of pointing operations. We needed to
determine empirically how the number of cursors and the
frequency of waiting events affect the performance. In this
section, we describe a study we conducted to determine the
relationships among the number of cursors, the target

Waiting

Pointing

Wall

Pointing Waiting

A

Pointing
(blocking others)

Waiting Waiting

The direction of
mouse movement

density, and the pointing performance. As a baseline
condition, we also examined the performance of a
traditional single cursor using the same test configuration.
One of our main concerns was whether the ninja cursor
could outperform the normal cursor even with a high target
density.

Participants
Eight volunteers aged 23–28 participated in the experiment.
All were frequent users of traditional WIMP interfaces, and
used the mouse with their right hand.

Equipment
We use a 3.0 GHz Pentium 4 PC running Windows XP,
connected to dual 19” displays with a resolution of 3200 ×
1200 pixels (1600 × 1200 for each) and a standard optical
mouse. Figure 7 shows the experimental setup. The two
displays were located side-by-side and worked as a single
virtual screen. The left and right displays were the primary
and secondary displays, respectively. The mouse speed and
acceleration rate were set to the Windows XP default values
(middle speed, no acceleration). We developed our
experimental software using Java. In this experiment,
distances were measured in pixels.

Figure 7: The experimental setup consisted of a Windows PC,
dual displays forming a 3200 × 1200 virtual screen, and a

standard optical mouse.

Cursor Arrangement
We tested four cursor configurations: a traditional point
cursor (Point), 2 cursors (Ninja-2), 8 cursors (Ninja-8), and
18 cursors (Ninja-18). The latter might not be practical
because too many cursors would be visually distracting.
However, we studied all these configurations to analyze the
characteristics of the ninja cursor in detail. For each ninja
cursor configuration, the cursors were located in an evenly
distributed regular grid pattern, as shown in Fig. 8. In Point
(single-cursor configuration), the cursor was initially
located in the center of the primary screen to emulate
common cursor movement within and between screens.

Figure 8: (a)–(d) show the initial cursor distributions in Ninja-
2, Ninja-8, Ninja-18, and Point, respectively.

Design
We used a within-participant design. The independent
variables were cursor type, CT (Point, Ninja-2, Ninja-8, and
Ninja-18), the number of targets, N (1, 100, and 400), and
the target width W (32, 48, and 64 pixels). We tested 36
combinations in total. A combination of N and W
determined the target density, where N = 100 corresponds
roughly to the density of a typical desktop and N = 400
corresponds roughly to the density of a desktop filled with
icons. Thirty-six combinations of CT, N, and W were used.
Each participant performed 10 trials of each combination
presented in a pseudorandom order.

The aim of the ninja cursor is to reduce the ID on average
rather than for each trial. Thus, we did not control the
distance, D, for each cursor–target pair. Instead, we
evaluated the mean ID through repeated trials, using targets
distributed pseudorandomly. For each trial, the ID was
calculated as follows:

⎟
⎠

⎞
⎜
⎝

⎛ += 12log min

W
D

ID ,

where Dmin is the distance between the goal target and the
nearest cursor, and W is the target width. Note that this
definition represents the lower limit of the ID for each trial.
Once the cursor falls into the waiting state, the actual value
of ID would increase.

Procedure
Figure 9 shows a screenshot of the experimental software
(CT = Ninja-8, N = 100, and W = 48). We used circular
targets to control the target width in all directions. Previous
research [16] showed that the acquisition of a circular target
can be modeled similar to that of a rectangular target of the
same width. The highlighted target is the goal target, and
the others are distracting targets. All targets are distributed
pseudorandomly across the screen, avoiding overlap. In
each trial, each participant was required to click on the goal
target with any cursor as quickly as possible.

Primary Secondary

(a) (b)

(c) (d)

Figure 9: The highlighted target is a goal target while the
others are distracting targets.

We explained the purpose of the experiment and the use of
the experimental software to each participant prior to an
experimental session. The participants were allowed to
familiarize themselves with the system and practice each
task before testing. They were also allowed to take a break
between blocks. Each session took approximately 30
minutes including practice trials.

All cursors and targets were shown on the screen before
each trial started. This allowed the participants to know in
advance where the goal target was and how the cursors and
targets were distributed. We did not test the time to decide
which cursor to use because decision time could not be
examined properly in this experiment. As each cursor was
initially placed on a simple grid layout for each trial, the
participants could easily determine which cursor was
nearest regardless of whether they could see the cursors in
advance. Although decision time could possibly affect the
performance of the ninja cursor, we decided to address this
issue in future studies.

Each trial consisted of two clicks with a mouse movement
between them. The first click indicated the beginning of a
trial. The participant then moved the cursors to click on the
goal target with one of them. The trial ended when the
second click occurred regardless of whether the goal target
was successfully clicked. If no cursor pointed to the goal
target when the second click occurred, the trial was counted
as a failure. Distinctive sound effects indicated the success
or failure of each trial. Note that participants could not
move any cursor until they clicked the mouse button to start
a trial. When the trial was complete, the cursors returned to
their original locations shown in Fig. 8.

Results

Movement Time
Analysis of variance showed significant main effects of CT
(F3,2764 = 63.67, p < .001), N (F2,2764 = 397.2, p < .001), and
W (F2,2764 = 40.97, p < .001) on MT. The overall MTs were
1.48 s for Point, 1.16 s for Ninja-2, 1.14 s for Ninja-8, and
1.38 s for Ninja-18. There were interaction effects of CT ×
N, CT × W, and N × W. A post hoc analysis indicated that
Ninja-2 and Ninja-8 significantly outperformed Point and
Ninja-18. In addition, there were significant positive effects
of target number and size. In contrast to Fitts’ law, target
size had a positive effect on MT. This indicates that the

negative effect of cursor blocking was greater than the
positive effect observed in Fitts’ law.

As shown in Fig. 10, the ninja cursor generally
outperformed the traditional point cursor except under a
few high-density conditions. In addition, the different types
of cursor were affected differently by the target density. In
Point, the MT was affected less by the number of targets.
This is natural as a single cursor never causes cursor
blocking regardless of the target density. The target size
generally had a negative effect, which is also a natural
result predicted by Fitts’ law. Under lower-density target
conditions, increasing the number of cursors reduced MT
monotonically as expected based on the assumption of
average ID reduction. However, this effect was smaller
under higher-density conditions. In particular, Ninja-8 and
Ninja-18 had positive effects on MT under the highest-
density conditions used, while Ninja-2 outperformed or was
at least as efficient as the traditional point cursor under all
test conditions.

0

0.5

1

1.5

2

2.5

3

3.5

4

1,32 1,48 1,64 100,32 100,48 100,64 400,32 400,48 400,64
Number of Targets, Target Size (pixels)

M
ov

em
en

t T
im

e
(s

ec
on

ds
)

Point Ninja-2
Ninja-8 Ninja-18

Figure 10: Movement time for each cursor type with standard
errors.

To clarify the results in detail, we considered the amount of
movement as well as the MT. This value is defined as the
amount of mouse movement in the motor space. It would be
larger than the amount of cursor movement on the screen if
the cursor had fallen into the waiting state because the
cursor required extra mouse movement to make it leave the
waiting queue.

Analysis of variance showed significant main effects of CT
(F3,2764 = 760.4, p < .001), N (F2,2764 = 23.30, p < .001), and
W (F2,2764 = 4.87, p < .01) on the amount of movement. The
overall amounts of movement were 1.21 × 103 pixels for
Point, 5.80 × 102 pixels for Ninja-2, 3.66 × 102 pixels for
Ninja-8, and 3.15 × 102 pixels for Ninja-18. We observed
interaction effects of CT × N, CT × W, and N × W. A post
hoc analysis indicated significant negative effects of cursor
number and significant positive effects of target number
and size.

Target

Figure 11 shows that the target density did not affect the
amount of movement in Ninja-2 and Point. This indicates
that Ninja-2 put few cursors into the waiting state, whereas
the MT for Ninja-2 increased for higher-density targets. A
possible explanation for this paradox is that participants
moved the mouse carefully under higher-density conditions,
being wary of cursor blocking, regardless of whether the
cursor was actually blocked. For Ninja-8 and Ninja-18, the
increase in the amount of movement under higher-density
conditions indicates that cursors frequently entered the
waiting state, requiring extra mouse motion to leave that
state. Note that the rate increase of MT was higher than that
for the amount of movement. This is because mouse
movement during the waiting phase cannot be modeled
using Fitts’ law, forcing users to move the mouse
continuously toward the intended target. The movement in
the motor space seems to be a tunnel steering task of the
width W. Thus, we could model the operation using the
steering law [1] rather than Fitts’ law.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1,32 1,48 1,64 100,32 100,48 100,64 400,32 400,48 400,64
Number of Targets, Target Width (pixels)

M
ov

em
en

t A
m

ou
nt

 (k
ilo

pi
xe

ls
)

Point Ninja-2
Ninja-8 Ninja-18

Figure 11: Movement amount for each cursor type with
standard errors.

Figure 12 shows the regression lines of MT as a function of
the estimated ID, averaged for each ID interval [n, n+1).
Point and Ninja-2 showed good fits with the equation of
Fitts’ law (R2 = 0.964 for Point and 0.985 for Ninja-2).
Ninja-8 and Ninja-18 did not fit the equation (R2 = 0.597
for Ninja-8 and 0.004 for Ninja-18) because of outliers
caused by cursor blocking, particularly when the ID was
low.

In summary, Ninja-2 outperformed the traditional pointing
cursor even when the targets were as dense as a desktop
filled with icons. Ninja-8 outperformed Ninja-2 only when
the target density was less than or equal to a normal desktop.
Ninja-18 often reduced the performance. We conclude that
we can use two to eight cursors to improve the performance
of pointing depending on the target density. Since the
frequency of cursor blocking depends only on the number
of cursors and the target density, this guideline is also
expected to apply to screens larger or smaller than those
used in the experiment.

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
ID (bits)

M
ov

em
en

t T
im

e
(s

ec
on

ds
)

Point Ninja-2
Ninja-8 Ninja-18
Point Ninja-2
Ninja-8 Ninja-18

Figure 12: Movement time for each cursor type by ID.

Error Rate
Figure 13 shows the error rates for each cursor. The rates
averaged over all N and W values were 1.39% for Point,
2.5% for Ninja-2, 3.19% for Ninja-8, 4.03% for Ninja-18,
and 2.78% in total. However, as shown in the figure, the
error rate distribution is almost random and the difference is
not statistically significant. We require further investigation
of error rates to determine the detailed characteristics of the
ninja cursor.

0

1

2

3

4

5

6

7

8

1,32 1,48 1,64 100,32 100,48 100,64 400,32 400,48 400,64
Number of Targets, Target Size (pixels)

Er
ro

r R
at

e
(%

)

Point Ninja-2
Ninja-8 Ninja-18

Figure 13: Error rates for each cursor type by N and W.

Feedback and Observation
All of the participants indicated that they preferred the ninja
cursor as long as the cursor on which they focused rarely
entered the waiting state; they disliked the cursor becoming
stuck repeatedly in the waiting queue. It is interesting that
the participants often used the second- or third-nearest
cursor to avoid passing through a cluster of distracting
targets. They preferred to move the cursor, bypassing
distracting targets, to prevent the cursor from becoming
stuck in the waiting state. It is also interesting that the
participants sometimes used the cursor that they had used in
the previous trial instead of the nearest one.

DISCUSSION

Realistic Target Distribution
In the experiment, we examined the ninja cursor with
pseudorandomly distributed targets to determine the
statistically average performance. However, most WIMP
interfaces locate clickable targets in a regular pattern. The
regularity might have a negative effect on the performance
of the ninja cursor; multiple cursors likely fall into the
waiting state simultaneously when both cursors and targets
are distributed in a regular pattern (Fig. 14). However, this
problem should be alleviated once the first transitions
between the normal and waiting states occur and the
regularity of the cursor distribution is slightly reduced (Fig.
15). A small reduction in regularity is enough to avoid
target ambiguity, at least for equally spaced, discrete targets
like desktop icons. This means we can add small amounts
of randomness to the initial locations of cursors to avoid an
initial ambiguous state. The expected gain in pointing
performance would be mostly preserved as long as the
amount randomness is small.

Figure 14: If both cursors and targets are located in a grid
pattern, multiple cursors will likely fall into the waiting state

simultaneously.

Figure 15: Once the regularity of the cursor distribution is
reduced slightly, the problem described in Fig. 14 will be

alleviated.

In addition to the regularity of their distribution, targets
tend to form semantic clusters as shown in Fig. 16. This
could decrease the cursor speed locally around the clusters
and reduce the uniformity of cursor arrangement. Further
investigations are required to determine how the regular and
clustered distributions of targets affect the performance of
the ninja cursor.

Figure 16: Several semantic clusters of clickable objects, for
example, desktop icons, toolbar buttons, and navigation links

exist.

Adaptive Cursor Relocation
In the experiment, we located the cursors in a regular
pattern because we were interested in the general
performance with pseudorandomly distributed targets. In a
common WIMP interface, however, the target distribution
is more specific as described in the previous subsection.
Moreover, the distribution often changes in response to user
input. Thus, dynamic adjustment of cursor locations could
make it easy to point to the most likely target. For example,
when a dialog box pops up, it is likely that the user will
click on one of the buttons in the box. Thus, the system
could provide an extra cursor inside the dialog box to help
users point to a button with minimal effort (Fig. 17). Unlike
cursor-jumping techniques such as object pointing [11],
targets outside the dialog box are still easy to select with the
remaining cursors.

Figure 17: A dialog box invocation presents new clickable
targets such as dialog buttons. An extra cursor can help users

point to them.

Selecting Multiple Objects
As with most previous techniques that modified the cursor
behavior to reduce the ID, the ninja cursor is less applicable
to high-density targets such as characters in a text editor
and pixels in a paint tool. To work well, the ninja cursor
requires a certain void space around each target in which
nothing is clickable.

Specifying a region to select multiple targets is another
operation in which the ninja cursor has difficulty because
void space surrounding the targets must be clickable to use

Dialog box

Extra cursor

Pointing

Waiting

Pointing

Desktop Icons Buttons

Links Form Elements

standard region selection methods, such as rectangular
rubber band or lasso tools. However, region selection is one
of the most essential features for object manipulation
systems. Thus, we present two methods for region selection
with the ninja cursor.

The first method allows using the single point cursor to
specify a region. Pressing a shortcut key temporarily
reduces the number of cursors to 1. Once the system enters
single-cursor mode, the user can specify a region using a
common rectangular selection tool. The appearance of the
ninja cursor is identical to the traditional point cursor while
it is in the single-cursor mode. Pressing the key again
restores the multiple cursors. One of the drawbacks of this
method is that it requires explicitly pressing a key to change
modes. However, we can apply this pointing method for
very dense targets.

Figure 18 describes the second method, which allows the
use of a lasso tool without changing modes. Once the user
presses the mouse button, each cursor in the void space
starts drawing a lasso while the active cursor starts dragging
the pointed target if it is draggable. Note that two or more
cursors may simultaneously draw a lasso. This introduces
the question of which is the intended lasso and whether the
user is attempting to draw a lasso or drag an object. To
reduce these ambiguities, we introduce the following three
criteria:

• Any lasso stroke must be closed.
• No lasso stroke ever intersects with targets.
• Any lasso must contain at least one target.

The first criterion distinguishes a lasso gesture from a drag
gesture. The other two omit less likely lassoes from the
screen. If multiple lassoes still meet these criteria when a
lasso gesture is completed, then multiple regions are
presented. The user can resolve this final ambiguity simply
by starting interaction with one of them, such as clicking
with the right mouse button to open a pop-up menu.

Figure 18: All the cursors start drawing a lasso (left). Unlikely
lassoes are canceled dynamically and the user obtains a single

lasso (right).

Integration with Other Techniques
The concept of the ninja cursor, increasing the number of
cursors, is orthogonal to previous cursor-enhancing
techniques, and various combinations are possible. For

example, the bubble cursor [9] might be improved by
increasing the number of cursors (Fig. 19). Using multiple
bubble cursors, a user could point to any target with the
nearest cursor just like the ninja cursor. A user could point
to a small target with the expanded virtual width just like
the bubble cursor. Another possible application is semantic
pointing [6]. The performance of pointing to distant targets
might be improved by adjusting the C-D gain for each
cursor independently. One possible future direction of this
research would be to examine the properties of these
integrations of the ninja cursor and other cursor-enhancing
techniques.

Figure 19: Each bubble cursor moves synchronously following
the physical mouse movement. Users can point to a target with

one of several bubble cursors.

Limitations
As with other techniques that change the mapping of
physical mouse movement to cursor motion, the ninja
cursor can be used only with indirect input devices such as
mice, touch pads, and trackballs. It does not work well with
direct input devices such as pen tablets and touch panels.
This is one of the known limitations of the ninja cursor.

The performance of the ninja cursor becomes worse with
large numbers of cursors and targets because the cursors
frequently enter the waiting state. This problem is expected
to be reduced by using a priority queue as the waiting queue,
and by assigning appropriate priorities to each cursor. In the
current implementation, each cursor in the waiting queue is
handled equally without considering the movement
direction. However, the cursors moving toward the center
of targets would be more likely than those just intersecting
the edge of targets (Fig. 20). The total waiting time is
expected to be reduced by giving a higher priority to the
former.

Figure 20: C1 moves towards the center of T1 while C2 is about
to intersect the edge of T2.

T2 T1

C1

C2

If the user fails to click on the intended target, a very distant
and incorrect target may be selected erroneously by a
distant cursor. This will confuse users because this type of
problem cannot occur in traditional single-cursor systems.
To help users understand what happens in the case of failed
target acquisition, we recommend providing visual
feedback, such as animations and afterglow effects [4], to
indicate which object is selected.

CONCLUSION
We presented the design, implementation, and performance
evaluation of our ninja cursor technique. With multiple,
synchronously moving cursors, the ninja cursor technique
was designed to reduce the expected ID, especially in a
large screen such as the dual displays used in this study. A
simple waiting queue algorithm was used to prevent
multiple cursors from pointing to different targets
simultaneously. Our experimental results showed that both
the number of cursors and the target density significantly
affect pointing performance. The ninja cursor generally
outperformed the traditional point cursor. However, it
resulted in low performance when both the number of
cursors and the target density were relatively high. We also
discussed several issues to be addressed before putting our
technique into practice, including the support of realistic
target distributions and region selection methods. We hope
that our study will encourage the investigation of usability
issues related to the number of cursors, a subject that has
received little attention to date.

ACKNOWLEDGMENTS
We thank Patrick Baudisch for helpful suggestions. We also
thank all who participated in our experiment.

REFERENCES
1. Accot, J. and Zhai, S. Beyond Fitts’ Law: Models for

Trajectory-Based HCI Tasks. In Proceedings of CHI'97,
1997, pp.295–302.

2. Asano, T., Sharlin, E., Kitamura, Y., Takashima, K, and
Kishino, F. Predictive Interaction Using the Delphian
Desktop. In Proceedings of UIST'05, 2005, pp.133–141.

3. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P., Bederson, B., and Zierlinger, A. Drag-and-
Pop and Drag-and-Pick: Techniques for Accessing
Remote Screen Content on Touch- and Pen-Operated
Systems. In Proceedings of INTERACT'03, 2003, pp.57-
64.

4. Baudisch, P., Tan, D., Collomb, M., Robbins, D.,
Hinckley, K., Agrawala, M., Zhao, S., and Ramos, G.
Phosphor: Explaining Transitions in the User Interface
Using Afterglow Effects. In Proceedings of UIST'06,
2006, pp.169–178.

5. Benko, H. and Feiner, S. Pointer Warping in
Heterogeneous Multi-Monitor Environments. In
Proceedings of Graphics Interface 2007, 2007, pp.111–
117.

6. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M.
Semantic Pointing: Improving Target Acquisition with
Control-Display Ratio Adaptation. In Proceedings of
CHI'04, 2004, pp.519–525.

7. Fitts, P.M. The Information Capacity of the Human
Motor System in Controlling the Amplitude of
Movement. Journal of Experimental Psychology,
Volume 47, 1954, pp.381–391.

8. Greenberg, S., Roseman, M., Webster, D., and Bohnet,
R. Issues and Experiences Designing and Implementing
Two Group Drawing Tools. In Proceedings of Hawaii
International Conference on System Sciences, 4, 1992,
pp.138–150.

9. Grossman, T. and Balakrishnan, R. The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of
the Cursor’s Activation Area. In Proceedings of CHI'05,
2005, pp.281–290.

10. Guiard, Y., Bourgeois, F., Mottet, D., and Beaudouin-
Lafon, M. Beyond the 10-bit Barrier: Fitts’ Law in
Multiscale Electronic Worlds. In Proceedings of IHM-
HCI 2001, 2001, pp.573–587.

11. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M.
Object Pointing: A Complement to Bitmap Pointing in
GUIs. In Proceedings of Graphics Interface 2004, 2004,
pp.9–16.

12. Hinckley, K., Czerwinski, M., and Sinclair, M.
Interaction and Modeling Techniques for Desktop Two-
Handed Input. In Proceedings of UIST'98, 1998, pp.49–
58.

13. Kabbash, P. and Buxton, W. The “Prince” Technique:
Fitts’ Law and Selection Using Area Cursors. In
Proceedings of CHI'95, 1995, pp.273–279.

14. Karlson, A.K. and Bederson, B.B. ThumbSpace:
Generalized One Handed Input for Touchscreen-Based
Mobile Devices. In Proceedings of INTERACT 2007,
2007, pp.324–338.

15. Lank, E., Cheng, Y.N., and Ruiz, J. Endpoint Prediction
Using Motion Kinematics. In Proceedings of CHI'07,
2007, pp.637–646.

16. MacKenzie, S. and Buxton, W. Extending Fitts’ Law to
Two-Dimensional Tasks. In Proceedings of CHI'92,
1992, pp.219–226.

17. McGuffin, M. and Balakrishnan, R. Acquisition of
Expanding Targets. In Proceedings of CHI'02, 2002,
pp.57–64.

18. Ramos, G., Cockburn, A., Balakrishnan, R., and
Beaudouin-Lafon, M. Pointing Lenses: Facilitating
Stylus Input through Visual- and Motor-Space
Magnification. In Proceedings of CHI'07, 2007, pp.757–
766.

19. Worden, A., Walker, N., Bharat, K., and Hudson, S.
Making Computers Easier for Older Adults to Use: Area
Cursors and Sticky Icons. In Proceedings of CHI'97,
1997, pp.266–271.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF8ad6658700630061006d0065007200610020007200650061006400794f5c6210306e305f3081306e8a2d5b9a306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

