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ABSTRACT 
We propose the “ninja cursor” to improve the performance 
of target acquisition, particularly on large screens. This 
technique uses multiple distributed cursors to reduce the 
average distance to targets. Each cursor moves 
synchronously following mouse movement. We present the 
design and implementation of the proposed technique, 
including a method to resolve the ambiguity that results 
when multiple cursors indicate different targets 
simultaneously. We also conducted an experiment to assess 
the performance of the ninja cursor. The results indicate 
that it can generally reduce movement time. However, the 
performance is greatly affected by the number of cursors 
and target density. Based on these results, we discuss how 
our technique can be put into practical use. In addition to 
presenting a novel method to improve pointing performance, 
our study is the first to explore a variable number of cursors 
for performing pointing tasks. 
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INTRODUCTION 
Pointing is the most fundamental operation in windows, 
icons, menus, and pointers (WIMP) interfaces. For this 
reason, several techniques have been proposed to improve 
the performance of pointing tasks in various contexts. In 
general, these techniques have attempted to reduce the 
index of difficulty (ID) based on Fitts’ law [7]: 

⎟
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where D is the distance to the target and W is its width. A 

longer movement distance or a smaller target object reduces 
performance. 

Several approaches have been used to reduce the ID. One is 
to modify the cursor’s behavior to increase W and/or reduce 
D. For example, the bubble cursor [9] dynamically changes 
cursor size to increase the virtual W to exploit the void 
space around the target. This technique is very effective for 
pointing to a small target in otherwise empty space. 
However, it is not particularly effective for pointing to a 
distant target located beyond many obstructions, as the user 
must move the cursor all the way to the distant target. In a 
desktop configuration, the user is forced to repeatedly 
reposition the mouse to reach a distant target location, 
which reduces the performance of pointing and results in 
user frustration. In addition, the logarithmic relationship 
between D and movement time (MT) would likely be 
broken when pointing to a very distant target on a wall-
sized screen [3, 10]. Instead of enlarging W, the Delphian 
Desktop [2] reduces D by allowing the cursor to jump 
toward the target location. It uses a prediction algorithm to 
permit this long-distance movement with minimal mouse 
operation. This works as long as the algorithm can 
successfully determine the goal location. However, it is 
generally difficult to predict a distant target, and prediction 
errors can confuse the user. 

 
Figure 1: Multiple synchronous movement of cursors cover a 

large screen. 

We propose another method, called the “ninja cursor,” to 
reduce the ID by modifying cursor representation. It uses 
multiple cursors to reduce D without applying a prediction 
algorithm. The cursors move synchronously, following the 
physical movement of the mouse (Fig. 1). The user can 
point to a target with one of the cursors located nearest to it. 

 



 

We use a simple waiting queue algorithm to prevent two or 
more cursors from pointing to multiple targets 
simultaneously. 

In general, our technique aims to improve the performance 
of pointing operations by mapping the single mouse 
movement to the movement of multiple cursors. By 
allowing users to point to a target with less motion, the 
proposed technique should reduce the MT as long as the 
number of cursors is suitable for the target density. We 
conducted an experiment to determine how cursor number 
and target density affect performance. Cursor number is a 
parameter that so far has been explored only rarely, unlike 
cursor size, target number, and target size. The ninja cursor 
technique allows the investigation of this parameter. 

The remainder of this paper is organized as follows. First, 
we summarize related work. Second, we describe the design 
and implementation of the ninja cursor. Third, we evaluate 
our technique using different numbers of cursors and targets 
and compare the resulting performance to that of the normal 
single-point cursor. Fourth, we discuss the ninja cursor in 
more practical contexts. Finally, we present our conclusions. 

RELATED WORK 

Modifying Target Representation 
Two approaches have been used previously to modify target 
representation to reduce the ID: the actual or virtual W of 
the target is enlarged, and/or D is reduced by temporarily 
bringing the target toward the cursor. 

The Dock in the Apple Mac OS X is a typical example of 
the first approach. It enlarges the actual size of the target 
dynamically, by predicting which item is the target 
according to the location of the mouse cursor. McGuffin 
and Balakrishnan [17] examined the performance of 
pointing operations with such a temporarily expanded target. 
They found that target expansion improved the performance 
even if the expansion occurred relatively late in the 
movement of the cursor toward the target. They also found 
that these tasks can be modeled with Fitts’ law using the 
expanded W. However, it seems that the target expansion 
technique would not work well with closely spaced targets. 
Manual target expansion techniques have also been 
proposed. For example, pointing lenses [18] provide a 
magnified view of the screen so that users can interact with 
enlarged targets. A user action such as pen pressure or time 
delay activates the lens. 

One of the studies that took the second approach utilized 
drag-and-pop [3]. This creates temporary proxies of 
possible targets and shows them near the pointing cursor 
when users start dragging an object so that they can easily 
drop it on the target. This technique improved performance 
for a large D. However, it can create erroneous distracting 
proxies because the prediction of distant targets is difficult, 
especially when many potential targets exist. Grossman and 
Balakrishnan [9] reported that this technique would work 
well only with a low-density target distribution. 

In contrast to these attempts at changing the visual 
representation of targets, Blanch et al. [6] proposed 
semantic pointing, which made the control-display (C-D) 
gain adaptive to improve both D and W virtually in the 
motor space; dynamically increasing the gain while outside 
a target and decreasing it while inside a target will virtually 
shorten D while virtually enlarging W. However, this 
technique would be less effective with multiple targets 
because intervening targets would slow down the cursor in 
its movement toward the distant target. 

Modifying Cursor Representation 
As described in the Introduction, two approaches have been 
used to improve pointing performance by modifying the 
behavior of the cursor: enlarging the size of the cursor’s 
hotspot to increase virtual W, and causing the cursor to 
jump toward the target to reduce D in motor space. 

The area cursor [13] is one of the earliest attempts using the 
former approach. Instead of a single pixel hotspot, it uses a 
rectangular activation region to enlarge the effective target 
width, which is determined by the width in motor space. 
This approach is effective for pointing to small targets. The 
performance of pointing tasks with an area cursor can be 
modeled with Fitts’ law using the effective width W. 
However, the larger activation region causes ambiguity 
because it is possible for there to be multiple targets inside 
the region at the same time. Worden et al. [19] proposed the 
combination of an area cursor and a point cursor to address 
this problem. This allows using the point cursor to 
determine the single target when multiple targets exist 
inside the area cursor. The bubble cursor [9] is a more 
sophisticated solution to the problem of ambiguity. This 
technique dynamically changes the cursor size so that it 
contains only a single target. 

One example of the latter approach is object pointing [11]. 
This technique makes the cursor jump across the void space 
between selectable targets, making it easier to point at 
distant ones. The Delphian Desktop [2] proposed more 
aggressive jumping based on a prediction algorithm. Using 
an online algorithm, it determined the goal location based 
on the direction of movement and peak velocity. Lank et al. 
[15] proposed a method based on the theory of motion 
kinematics to improve the precision of the prediction. 
However, these prediction-based interfaces all share a 
problem of uncertainty. Even using a high-precision 
prediction algorithm, the resulting behavior is still 
nondeterministic in nature, and unexpected results can 
confuse the user. The behavior of our ninja cursor, however, 
is completely deterministic and continuous, which makes it 
much less distracting. Another attempt to reduce D was the 
Multi-Monitor Mouse [5], which allowed users to move the 
cursor quickly across displays in a multi-display 
environment using hot keys. The ninja cursor does not 
require an explicit action to switch displays, and is 
applicable to a single large screen. 



 

Performance Evaluation of Pointing Operations 
Many studies, including Fitts’ original work [7], have 
shown how the target size affects the pointing performance 
in diverse contexts. Generally, these demonstrated a 
positive relationship between the target size and the 
performance. Recent studies [9, 13, 19] have also examined 
the cursor size, as described above. An enlarged cursor 
could improve the performance, increasing the virtual width 
of targets. The number of targets has also been the subject 
of frequent study. For example, both target expansion [17] 
and object pointing [11] were evaluated with a high density 
of targets. The results showed that these techniques were 
less effective when distracting targets existed around the 
goal target. However, Grossman and Balakrishnan [9] 
experimented with a range of target densities to show that 
their bubble cursor technique was effective in the presence 
of many targets. The target density was also considered for 
specific input devices such as the touch screen [14]. 

Although the target size, the cursor size, and even the 
number of targets have been examined, few studies have 
explored how the number of cursors affects the 
performance of target acquisition tasks. Therefore, we 
focused on this aspect using our ninja cursor technique. 

Using Multiple Cursors 
Several applications have supported the use of multiple 
cursors for a specific purpose. One of them is a 
collaborative drawing tool [8]. Using n cursors that can be 
moved individually, this tool allows n users to interact with 
different objects on the same shared screen. 

Bimanual interfaces [12] might be considered multiple 
cursor systems because they give users an individual cursor 
for each hand. Exploiting two hotspots, the users could take 
advantage of two-handed manipulation, moving two points 
of action interactively on the screen. 

These techniques did not attempt to improve the basic 
performance of target pointing. However, they did inspire 
the concept of the ninja cursor. 

THE NINJA CURSOR TECHNIQUE 
To reduce the ID in target acquisition tasks, our ninja cursor 
technique uses multiple pointing cursors that move 
synchronously following the mouse movement (Fig. 2). A 
user can point to an object with minimal effort using the 
cursor that is nearest to the target object. If mouse cursors 
and target objects are both uniformly distributed on the 
two-dimensional (2-D) screen, the average minimum 
distance to a target is expected to be reduced to Dn as 
shown in this equation: 

n
D

Dn
1= , 

where n is the number of cursors and D1 is the mean 
distance with a normal single pointing cursor (Fig. 3). 

 

Figure 2: Each cursor follows the physical movement of the 
mouse. 

 

Figure 3: The arrows indicate the distances between each 
rectangular target and the nearest cursor. With a single cursor, 
the targets are far from the cursor (left). Using more cursors, 
on average, they become closer to at least one of the cursors 

(right). 

We must address the possibility that two or more cursors 
could point to different targets at the same time. To resolve 
this ambiguity, the ninja cursor modifies the spatial 
distribution of the cursors dynamically. We use a simple 
waiting queue algorithm to accomplish this. 

1. If multiple cursors are initially inside a target, the one 
that is closest to the center of the target is made active. 
The others are put outside the target. If only one 
cursor is inside a target, it is simply made active. In 
this context, the term “active” means currently 
pointing at a target. 

2. If cursor Ci is not the active cursor Cactive, and it is 
about to move into a target Ti, then Ci is appended to a 
queue, Q. As long as Ci is in Q, it never goes inside Ti 
even if the user moves the mouse toward Ti. The 
position of Ci does not change on the screen while the 
cursor is in this state. 

3. When the user moves the mouse in another direction, 
that is, away from Ti , then Ci is removed from Q. 

4. When Cactive leaves the target to which it is pointing, it 
becomes inactive. Then, the first element of Q, Cj, is 
removed from the queue. As it is no longer in Q, Cj 
can go inside the target, Tj, and become active 
following mouse movement. 

Using this algorithm, the ninja cursor guarantees the 
following four criteria: 

• No more than one cursor is active at any one time. 

Mouse movement 

Cursor movement 



 

• As long as a cursor does not attempt to enter any 
target, it moves freely following the movement of the 
mouse. 

• If no active cursor is on the screen, each cursor moves 
freely following the movement of the mouse. 

• Each cursor can point to any target as long as the user 
continues moving the mouse toward the target. 

The order of the cursors becoming active simply depends 
on how long each cursor is in the waiting state because the 
method described above is based on a simple first-in, first-
out (FIFO) strategy. The behavior of the ninja cursor will 
thus be easily understood. In addition, we provide several 
visual feedback cues to help users understand the current 
state of each cursor. First, the cursor color indicates one of 
three states for each cursor. In Fig. 4, the gray cursor is the 
active cursor while the black ones are currently in the 
waiting queue. The remaining cursors are shown as normal 
white arrows. Second, once a cursor tries to enter a target 
and goes into the waiting state, a “wall” appears around the 
target (Fig. 5). The length of the wall indicates the position 
of the cursor in the waiting queue. A shorter (longer) wall 
shows that the cursor is closer to (farther from) the head of 
the queue. The dynamic change of wall length shows a user 
how much movement is required to point to the intended 
target. 

The transitions between the normal and waiting states may 
reduce the regularity of cursor distribution as shown in Fig. 
6, as some cursors stop moving while the others continue 
moving following the movement of the mouse. Once the 
regularity is perturbed, the average distance to targets will 
increase. This might reduce the performance of the ninja 
cursor. To rectify this, we provide a “reset” feature; shaking 
the mouse or pressing the F5 key moves the cursors to their 
original uniformly distributed locations. 

 

Figure 4: The user attempts to point to object A. The gray 
cursor currently points the highlighted object. The black 
cursors wait for the gray one to leave the object. Using 

multiple cursors would reduce the minimal distance to the 
target object. 

 

Figure 5: The length of the wall represents the position in the 
waiting queue. As the user continues to move toward the 

target, the wall length becomes shorter, indicating the amount 
of movement remaining to enter the target. 

 

Figure 6: A transition between the normal and waiting states 
may reduce the regularity of the cursor distribution. 

We anticipate that users of traditional pointing interfaces 
will quickly be able to start using the ninja cursor because 
its behavior is locally identical to a traditional one as long 
as the cursor that the user focuses on is not in the waiting 
queue. The behavior is completely the same as the 
traditional interface when the number of cursors is equal to 
1. This indicates the possibility of a seamless transition 
from traditional interfaces to ninja cursors. In addition, it is 
common for a cursor to follow mouse movement 
imperfectly because of small errors in the optical or 
physical sensor in the mouse. Although such poor behavior 
reduces the performance of target pointing operations, it 
does not confuse or surprise the user. This is one of the 
possible advantages of the ninja cursor over previous 
“cursor-jumping” techniques, which might occasionally 
cause the user to lose the cursor location. In the ninja cursor, 
every cursor is always visible and moves continuously. 

EXPERIMENT 
Although the ninja cursor theoretically reduces the ID of 
pointing tasks, some uncertainties still exist that might 
reduce its performance in practice. For example, how often 
each cursor enters into the waiting state affects the 
performance because the cursors in the waiting queue 
require extra mouse movement before becoming free again. 
Moreover, such a waiting event makes it difficult to assess 
the amount of movement accurately in advance. This could 
reduce the efficiency of pointing operations. We needed to 
determine empirically how the number of cursors and the 
frequency of waiting events affect the performance. In this 
section, we describe a study we conducted to determine the 
relationships among the number of cursors, the target 
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density, and the pointing performance. As a baseline 
condition, we also examined the performance of a 
traditional single cursor using the same test configuration. 
One of our main concerns was whether the ninja cursor 
could outperform the normal cursor even with a high target 
density. 

Participants 
Eight volunteers aged 23–28 participated in the experiment. 
All were frequent users of traditional WIMP interfaces, and 
used the mouse with their right hand. 

Equipment 
We use a 3.0 GHz Pentium 4 PC running Windows XP, 
connected to dual 19” displays with a resolution of 3200 × 
1200 pixels (1600 × 1200 for each) and a standard optical 
mouse. Figure 7 shows the experimental setup. The two 
displays were located side-by-side and worked as a single 
virtual screen. The left and right displays were the primary 
and secondary displays, respectively. The mouse speed and 
acceleration rate were set to the Windows XP default values 
(middle speed, no acceleration). We developed our 
experimental software using Java. In this experiment, 
distances were measured in pixels. 

 

Figure 7: The experimental setup consisted of a Windows PC, 
dual displays forming a 3200 × 1200 virtual screen, and a 

standard optical mouse. 

Cursor Arrangement 
We tested four cursor configurations: a traditional point 
cursor (Point), 2 cursors (Ninja-2), 8 cursors (Ninja-8), and 
18 cursors (Ninja-18). The latter might not be practical 
because too many cursors would be visually distracting. 
However, we studied all these configurations to analyze the 
characteristics of the ninja cursor in detail. For each ninja 
cursor configuration, the cursors were located in an evenly 
distributed regular grid pattern, as shown in Fig. 8. In Point 
(single-cursor configuration), the cursor was initially 
located in the center of the primary screen to emulate 
common cursor movement within and between screens. 

 

Figure 8: (a)–(d) show the initial cursor distributions in Ninja-
2, Ninja-8, Ninja-18, and Point, respectively. 

Design 
We used a within-participant design. The independent 
variables were cursor type, CT (Point, Ninja-2, Ninja-8, and 
Ninja-18), the number of targets, N (1, 100, and 400), and 
the target width W (32, 48, and 64 pixels). We tested 36 
combinations in total. A combination of N and W 
determined the target density, where N = 100 corresponds 
roughly to the density of a typical desktop and N = 400 
corresponds roughly to the density of a desktop filled with 
icons. Thirty-six combinations of CT, N, and W were used. 
Each participant performed 10 trials of each combination 
presented in a pseudorandom order. 

The aim of the ninja cursor is to reduce the ID on average 
rather than for each trial. Thus, we did not control the 
distance, D, for each cursor–target pair. Instead, we 
evaluated the mean ID through repeated trials, using targets 
distributed pseudorandomly. For each trial, the ID was 
calculated as follows: 

⎟
⎠
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⎜
⎝
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W
D

ID , 

where Dmin is the distance between the goal target and the 
nearest cursor, and W is the target width. Note that this 
definition represents the lower limit of the ID for each trial. 
Once the cursor falls into the waiting state, the actual value 
of ID would increase. 

Procedure 
Figure 9 shows a screenshot of the experimental software 
(CT = Ninja-8, N = 100, and W = 48). We used circular 
targets to control the target width in all directions. Previous 
research [16] showed that the acquisition of a circular target 
can be modeled similar to that of a rectangular target of the 
same width. The highlighted target is the goal target, and 
the others are distracting targets. All targets are distributed 
pseudorandomly across the screen, avoiding overlap. In 
each trial, each participant was required to click on the goal 
target with any cursor as quickly as possible. 

Primary Secondary

(a) (b) 

(c) (d) 



 

 

Figure 9: The highlighted target is a goal target while the 
others are distracting targets.  

We explained the purpose of the experiment and the use of 
the experimental software to each participant prior to an 
experimental session. The participants were allowed to 
familiarize themselves with the system and practice each 
task before testing. They were also allowed to take a break 
between blocks. Each session took approximately 30 
minutes including practice trials. 

All cursors and targets were shown on the screen before 
each trial started. This allowed the participants to know in 
advance where the goal target was and how the cursors and 
targets were distributed. We did not test the time to decide 
which cursor to use because decision time could not be 
examined properly in this experiment. As each cursor was 
initially placed on a simple grid layout for each trial, the 
participants could easily determine which cursor was 
nearest regardless of whether they could see the cursors in 
advance. Although decision time could possibly affect the 
performance of the ninja cursor, we decided to address this 
issue in future studies. 

Each trial consisted of two clicks with a mouse movement 
between them. The first click indicated the beginning of a 
trial. The participant then moved the cursors to click on the 
goal target with one of them. The trial ended when the 
second click occurred regardless of whether the goal target 
was successfully clicked. If no cursor pointed to the goal 
target when the second click occurred, the trial was counted 
as a failure. Distinctive sound effects indicated the success 
or failure of each trial. Note that participants could not 
move any cursor until they clicked the mouse button to start 
a trial. When the trial was complete, the cursors returned to 
their original locations shown in Fig. 8. 

Results 

Movement Time 
Analysis of variance showed significant main effects of CT 
(F3,2764 = 63.67, p < .001), N (F2,2764 = 397.2, p < .001), and 
W (F2,2764 = 40.97, p < .001) on MT. The overall MTs were 
1.48 s for Point, 1.16 s for Ninja-2, 1.14 s for Ninja-8, and 
1.38 s for Ninja-18. There were interaction effects of CT × 
N, CT × W, and N × W. A post hoc analysis indicated that 
Ninja-2 and Ninja-8 significantly outperformed Point and 
Ninja-18. In addition, there were significant positive effects 
of target number and size. In contrast to Fitts’ law, target 
size had a positive effect on MT. This indicates that the 

negative effect of cursor blocking was greater than the 
positive effect observed in Fitts’ law. 

As shown in Fig. 10, the ninja cursor generally 
outperformed the traditional point cursor except under a 
few high-density conditions. In addition, the different types 
of cursor were affected differently by the target density. In 
Point, the MT was affected less by the number of targets. 
This is natural as a single cursor never causes cursor 
blocking regardless of the target density. The target size 
generally had a negative effect, which is also a natural 
result predicted by Fitts’ law. Under lower-density target 
conditions, increasing the number of cursors reduced MT 
monotonically as expected based on the assumption of 
average ID reduction. However, this effect was smaller 
under higher-density conditions. In particular, Ninja-8 and 
Ninja-18 had positive effects on MT under the highest-
density conditions used, while Ninja-2 outperformed or was 
at least as efficient as the traditional point cursor under all 
test conditions. 
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Figure 10: Movement time for each cursor type with standard 
errors. 

To clarify the results in detail, we considered the amount of 
movement as well as the MT. This value is defined as the 
amount of mouse movement in the motor space. It would be 
larger than the amount of cursor movement on the screen if 
the cursor had fallen into the waiting state because the 
cursor required extra mouse movement to make it leave the 
waiting queue. 

Analysis of variance showed significant main effects of CT 
(F3,2764 = 760.4, p < .001), N (F2,2764 = 23.30, p < .001), and 
W (F2,2764 = 4.87, p < .01) on the amount of movement. The 
overall amounts of movement were 1.21 × 103 pixels for 
Point, 5.80 × 102 pixels for Ninja-2, 3.66 × 102 pixels for 
Ninja-8, and 3.15 × 102 pixels for Ninja-18. We observed 
interaction effects of CT × N, CT × W, and N × W. A post 
hoc analysis indicated significant negative effects of cursor 
number and significant positive effects of target number 
and size. 

Target



 

Figure 11 shows that the target density did not affect the 
amount of movement in Ninja-2 and Point. This indicates 
that Ninja-2 put few cursors into the waiting state, whereas 
the MT for Ninja-2 increased for higher-density targets. A 
possible explanation for this paradox is that participants 
moved the mouse carefully under higher-density conditions, 
being wary of cursor blocking, regardless of whether the 
cursor was actually blocked. For Ninja-8 and Ninja-18, the 
increase in the amount of movement under higher-density 
conditions indicates that cursors frequently entered the 
waiting state, requiring extra mouse motion to leave that 
state. Note that the rate increase of MT was higher than that 
for the amount of movement. This is because mouse 
movement during the waiting phase cannot be modeled 
using Fitts’ law, forcing users to move the mouse 
continuously toward the intended target. The movement in 
the motor space seems to be a tunnel steering task of the 
width W. Thus, we could model the operation using the 
steering law [1] rather than Fitts’ law. 
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Figure 11: Movement amount for each cursor type with 
standard errors.  

Figure 12 shows the regression lines of MT as a function of 
the estimated ID, averaged for each ID interval [n, n+1). 
Point and Ninja-2 showed good fits with the equation of 
Fitts’ law (R2 = 0.964 for Point and 0.985 for Ninja-2). 
Ninja-8 and Ninja-18 did not fit the equation (R2 = 0.597 
for Ninja-8 and 0.004 for Ninja-18) because of outliers 
caused by cursor blocking, particularly when the ID was 
low. 

In summary, Ninja-2 outperformed the traditional pointing 
cursor even when the targets were as dense as a desktop 
filled with icons. Ninja-8 outperformed Ninja-2 only when 
the target density was less than or equal to a normal desktop. 
Ninja-18 often reduced the performance. We conclude that 
we can use two to eight cursors to improve the performance 
of pointing depending on the target density. Since the 
frequency of cursor blocking depends only on the number 
of cursors and the target density, this guideline is also 
expected to apply to screens larger or smaller than those 
used in the experiment. 
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Figure 12: Movement time for each cursor type by ID.  

Error Rate 
Figure 13 shows the error rates for each cursor. The rates 
averaged over all N and W values were 1.39% for Point, 
2.5% for Ninja-2, 3.19% for Ninja-8, 4.03% for Ninja-18, 
and 2.78% in total. However, as shown in the figure, the 
error rate distribution is almost random and the difference is 
not statistically significant. We require further investigation 
of error rates to determine the detailed characteristics of the 
ninja cursor. 
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Figure 13: Error rates for each cursor type by N and W.  

Feedback and Observation 
All of the participants indicated that they preferred the ninja 
cursor as long as the cursor on which they focused rarely 
entered the waiting state; they disliked the cursor becoming 
stuck repeatedly in the waiting queue. It is interesting that 
the participants often used the second- or third-nearest 
cursor to avoid passing through a cluster of distracting 
targets. They preferred to move the cursor, bypassing 
distracting targets, to prevent the cursor from becoming 
stuck in the waiting state. It is also interesting that the 
participants sometimes used the cursor that they had used in 
the previous trial instead of the nearest one. 



 

DISCUSSION 

Realistic Target Distribution 
In the experiment, we examined the ninja cursor with 
pseudorandomly distributed targets to determine the 
statistically average performance. However, most WIMP 
interfaces locate clickable targets in a regular pattern. The 
regularity might have a negative effect on the performance 
of the ninja cursor; multiple cursors likely fall into the 
waiting state simultaneously when both cursors and targets 
are distributed in a regular pattern (Fig. 14). However, this 
problem should be alleviated once the first transitions 
between the normal and waiting states occur and the 
regularity of the cursor distribution is slightly reduced (Fig. 
15). A small reduction in regularity is enough to avoid 
target ambiguity, at least for equally spaced, discrete targets 
like desktop icons. This means we can add small amounts 
of randomness to the initial locations of cursors to avoid an 
initial ambiguous state. The expected gain in pointing 
performance would be mostly preserved as long as the 
amount randomness is small. 

 

Figure 14: If both cursors and targets are located in a grid 
pattern, multiple cursors will likely fall into the waiting state 

simultaneously. 

 

Figure 15: Once the regularity of the cursor distribution is 
reduced slightly, the problem described in Fig. 14 will be 

alleviated. 

In addition to the regularity of their distribution, targets 
tend to form semantic clusters as shown in Fig. 16. This 
could decrease the cursor speed locally around the clusters 
and reduce the uniformity of cursor arrangement. Further 
investigations are required to determine how the regular and 
clustered distributions of targets affect the performance of 
the ninja cursor. 

 

Figure 16: Several semantic clusters of clickable objects, for 
example, desktop icons, toolbar buttons, and navigation links 

exist. 

Adaptive Cursor Relocation 
In the experiment, we located the cursors in a regular 
pattern because we were interested in the general 
performance with pseudorandomly distributed targets. In a 
common WIMP interface, however, the target distribution 
is more specific as described in the previous subsection. 
Moreover, the distribution often changes in response to user 
input. Thus, dynamic adjustment of cursor locations could 
make it easy to point to the most likely target. For example, 
when a dialog box pops up, it is likely that the user will 
click on one of the buttons in the box. Thus, the system 
could provide an extra cursor inside the dialog box to help 
users point to a button with minimal effort (Fig. 17). Unlike 
cursor-jumping techniques such as object pointing [11], 
targets outside the dialog box are still easy to select with the 
remaining cursors. 

 

Figure 17: A dialog box invocation presents new clickable 
targets such as dialog buttons. An extra cursor can help users 

point to them. 

Selecting Multiple Objects 
As with most previous techniques that modified the cursor 
behavior to reduce the ID, the ninja cursor is less applicable 
to high-density targets such as characters in a text editor 
and pixels in a paint tool. To work well, the ninja cursor 
requires a certain void space around each target in which 
nothing is clickable. 

Specifying a region to select multiple targets is another 
operation in which the ninja cursor has difficulty because 
void space surrounding the targets must be clickable to use 
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standard region selection methods, such as rectangular 
rubber band or lasso tools. However, region selection is one 
of the most essential features for object manipulation 
systems. Thus, we present two methods for region selection 
with the ninja cursor. 

The first method allows using the single point cursor to 
specify a region. Pressing a shortcut key temporarily 
reduces the number of cursors to 1. Once the system enters 
single-cursor mode, the user can specify a region using a 
common rectangular selection tool. The appearance of the 
ninja cursor is identical to the traditional point cursor while 
it is in the single-cursor mode. Pressing the key again 
restores the multiple cursors. One of the drawbacks of this 
method is that it requires explicitly pressing a key to change 
modes. However, we can apply this pointing method for 
very dense targets. 

Figure 18 describes the second method, which allows the 
use of a lasso tool without changing modes. Once the user 
presses the mouse button, each cursor in the void space 
starts drawing a lasso while the active cursor starts dragging 
the pointed target if it is draggable. Note that two or more 
cursors may simultaneously draw a lasso. This introduces 
the question of which is the intended lasso and whether the 
user is attempting to draw a lasso or drag an object. To 
reduce these ambiguities, we introduce the following three 
criteria: 

• Any lasso stroke must be closed. 
• No lasso stroke ever intersects with targets. 
• Any lasso must contain at least one target. 

The first criterion distinguishes a lasso gesture from a drag 
gesture. The other two omit less likely lassoes from the 
screen. If multiple lassoes still meet these criteria when a 
lasso gesture is completed, then multiple regions are 
presented. The user can resolve this final ambiguity simply 
by starting interaction with one of them, such as clicking 
with the right mouse button to open a pop-up menu. 

 

Figure 18: All the cursors start drawing a lasso (left). Unlikely 
lassoes are canceled dynamically and the user obtains a single 

lasso (right). 

Integration with Other Techniques 
The concept of the ninja cursor, increasing the number of 
cursors, is orthogonal to previous cursor-enhancing 
techniques, and various combinations are possible. For 

example, the bubble cursor [9] might be improved by 
increasing the number of cursors (Fig. 19). Using multiple 
bubble cursors, a user could point to any target with the 
nearest cursor just like the ninja cursor. A user could point 
to a small target with the expanded virtual width just like 
the bubble cursor. Another possible application is semantic 
pointing [6]. The performance of pointing to distant targets 
might be improved by adjusting the C-D gain for each 
cursor independently. One possible future direction of this 
research would be to examine the properties of these 
integrations of the ninja cursor and other cursor-enhancing 
techniques. 

 

Figure 19: Each bubble cursor moves synchronously following 
the physical mouse movement. Users can point to a target with 

one of several bubble cursors. 

Limitations 
As with other techniques that change the mapping of 
physical mouse movement to cursor motion, the ninja 
cursor can be used only with indirect input devices such as 
mice, touch pads, and trackballs. It does not work well with 
direct input devices such as pen tablets and touch panels. 
This is one of the known limitations of the ninja cursor. 

The performance of the ninja cursor becomes worse with 
large numbers of cursors and targets because the cursors 
frequently enter the waiting state. This problem is expected 
to be reduced by using a priority queue as the waiting queue, 
and by assigning appropriate priorities to each cursor. In the 
current implementation, each cursor in the waiting queue is 
handled equally without considering the movement 
direction. However, the cursors moving toward the center 
of targets would be more likely than those just intersecting 
the edge of targets (Fig. 20). The total waiting time is 
expected to be reduced by giving a higher priority to the 
former. 

 

Figure 20: C1 moves towards the center of T1 while C2 is about 
to intersect the edge of T2. 
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If the user fails to click on the intended target, a very distant 
and incorrect target may be selected erroneously by a 
distant cursor. This will confuse users because this type of 
problem cannot occur in traditional single-cursor systems. 
To help users understand what happens in the case of failed 
target acquisition, we recommend providing visual 
feedback, such as animations and afterglow effects [4], to 
indicate which object is selected. 

CONCLUSION 
We presented the design, implementation, and performance 
evaluation of our ninja cursor technique. With multiple, 
synchronously moving cursors, the ninja cursor technique 
was designed to reduce the expected ID, especially in a 
large screen such as the dual displays used in this study. A 
simple waiting queue algorithm was used to prevent 
multiple cursors from pointing to different targets 
simultaneously. Our experimental results showed that both 
the number of cursors and the target density significantly 
affect pointing performance. The ninja cursor generally 
outperformed the traditional point cursor. However, it 
resulted in low performance when both the number of 
cursors and the target density were relatively high. We also 
discussed several issues to be addressed before putting our 
technique into practice, including the support of realistic 
target distributions and region selection methods. We hope 
that our study will encourage the investigation of usability 
issues related to the number of cursors, a subject that has 
received little attention to date. 
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