

Smooth Meshes for Sketch-based Freeform Modeling
Takeo Igarashi

Computer Science Department, The University of Tokyo
takeo@is.s.u-tokyo.ac.jp

John F. Hughes
Computer Science Department, Brown University

jfh@cs.brown.edu

Abstract
This paper describes a framework for introducing visually smooth
surfaces into sketch-based freeform modeling systems. An existing
sketch-based freeform modeling system generates rough polygonal
meshes with uneven triangulations after each operation. Our
approach generates a dense, visually smooth polygonal mesh by
beautifying and refining the original rough mesh. A beautification
process generates near-equilateral triangles with a near-uniform
distribution of vertices to mask the noise and bad sampling of the
uneven mesh. The vertices are distributed on a smoothed surface
that approximately interpolates the original mesh. Refinement
generates a smooth, dense mesh by subdividing the beautified
mesh and moving the vertices to the interpolative surface. The
smooth interpolative surface is computed via implicit quadratic
surfaces that best fit the mesh locally in a least-squares sense.
Keywords: Polygonal Meshes, Subdivision, Beautification, Skin,
Implicit Surfaces, Sketch-based Modeling.

1 INTRODUCTION
Teddy [5] introduced a nice sketch-based modeling interface, but
the resulting models were rough polygonal meshes. Their
triangulations were uneven and the models had many undesirable
small bumps and dents; such artifacts were introduced by almost
all operations in the system. One could subdivide the mesh [9,20],
but the resulting shape was not visually smooth because of the
uneven triangulations. Our goal here is to introduce visually
smooth surfaces like those seen in parametric and implicit models
[17] to sketch-based modeling systems for free-form objects.

Our approach is to beautify and refine the irregular polygonal
meshes resulting from the original Teddy algorithms (Figure 1). A
beautification process, based on the Skin algorithm [11], generates
near-equilateral triangles with a near-uniform distribution of
vertices on the surface to hide irregularities in the original
polygonal model; then refinement generates a dense polygonal
mesh that smoothly interpolates the beautified mesh.

Beautification and refinement are guided by an implicit smooth
surface that approximately interpolates the polygonal mesh. We
compute implicit quadratic surfaces that best fit the mesh locally
in a least-squares sense, and move the vertices to the surface
during beautification and refinement. The implicit surfaces only
approximately interpolate the mesh, and C1 continuity among
adjacent surface pieces is not guaranteed. This is not acceptable if
one wants to use the implicit surface as final output, but works
well for guiding the beautification and refinement of polygonal
meshes. In addition, our framework is intended to apply to simple
rotund objects without small details, such as those in Teddy.

One can smooth meshes with geometric fairing [1,6,14], but
these methods are designed to remove high-frequency noise from
dense polygonal meshes with fairly uniform vertex distributions,
such as those arising from 3D scans; they do not work well for the

uneven, coarse meshes seen in Teddy. They also tend to make the
surface drift away from the original mesh. We avoid this problem
by fitting smooth surfaces to the mesh in a least-squares sense.

Our framework gives a basis for exploring various modeling
operations with smooth surfaces. Given the built-in beautification
mechanism, one can focus on the design of algorithms that
construct arbitrary polygonal meshes without worrying about
mesh quality or noise.

2 ALGORITHMS
Our basic representation for 3D geometry is a polygonal mesh. In
response to editing operations, our system first generates an
irregular polygonal mesh based on the algorithms introduced in
Teddy [5]. Then we beautify the mesh internally and show the
smoothly shaded refined mesh to the user. The algorithms have
parameters that depend on the size of the models. The models are
scaled to have their largest extent be 1.0.

2.1 Overview
The system maintains three polygonal mesh representations for
each 3D model (Figure 2). The first is the skin mesh, which is the
primary mesh for representing the target 3D shape. It adjusts itself
over time through beautification. The second is the skeleton mesh,
which is the irregular polygonal mesh created directly from the
input strokes and serves as the reference for guiding the skin mesh
during beautification. The third is the visible mesh, which is a
dense, smooth polygonal mesh displayed on the screen as
feedback to the user. The visible mesh is created from the skin
mesh by refinement and is rendered using smooth shading. It is
important to separate the visible mesh and skin mesh for efficient
computation of the geometry. We describe beautification and
refinement in detail in the following sections.

Skeleton mesh Skin mesh

Beautification

User’s edit

Refinement

Visible mesh (smooth shading)Skeleton mesh Skin mesh

Beautification

User’s edit

Refinement

Visible mesh (smooth shading)
Figure 2: Three mesh representations.
When the user performs an editing operation, a copy of the skin

mesh is modified to reflect the new geometry (Figure 3). This new
geometry (whose triangulation is uneven and contains bumps and
dents) is used as a new skeleton mesh; a new skin (which starts
from this new skeleton mesh and gradually beautifies itself) is
created from it. The user always sees the smooth visible mesh

a) original mesh b) beautified mesh c) refined mesh d) resulta) original mesh b) beautified mesh c) refined mesh d) result
Figure 1: Overview of the algorithm. The system (a) constructs
an uneven polygonal mesh from freeform strokes, (b)
beautifies the mesh, (c) refines it, and (d) displays the refined
mesh using smooth shading.

obtained through refinement.
When a modeling task is finished, the system stores the skin

mesh as output. The user can use the mesh as a lightweight
polygonal model or as a control mesh for subdivision1, and can
also store the visible mesh if a dense polygonal mesh is desired.

Skeleton
mesh

Skin
mesh

Duplicate Duplicate

Beautify BeautifyEdit

Refer Refer
Skeleton
mesh

Skin
mesh

Duplicate Duplicate

Beautify BeautifyEdit

Refer Refer

Figure 3: An editing sequence.
Edges along curves representing sharp ridges and creases are

labeled as sharp. For example, the edges along the intersection
loop resulting from a cut are labeled as sharp. We avoid blending
surface normals of surrounding polygons at sharp edges so that
smooth shading does not mask the sharp features. The Skin
algorithm maintains the constraint that the sharp edges remain
aligned along the curve [11].

2.2 Mesh Beautification
Mesh beautification aims to generate a mesh with near-equilateral
triangles and a near-uniform vertex distribution while preserving
some original overall shape, including sharp edges. Our algorithm
is based on the Skin algorithm [11]. The vertices of our skin mesh
move as particles around the skeleton, repeatedly adjusting their
position and connectivity. Each skin vertex is associated with the
nearest point on the skeleton mesh (called the tracking point). The
main difference between our representation and that of Skin is that
while Skin generates a distance surface around the skeleton with a
certain offset, our beautification process tries to generate a surface
that approximately interpolates the original skeleton mesh. One
can obtain similar results simply by setting the offset to zero, but
in the original Skin algorithm this actually shrinks the mesh
(Figure 4 top). The amount of shrinkage is small if the skeleton
mesh is dense, but is still problematic because the shrinkage
accumulates through repeated edit-beautification cycles. This also
occurs in other topological fairing techniques [7,16] because they
insert new vertices on the existing polygonal surface.

Figure 4: Shrinking effect. If Skin particles stay on the
skeleton mesh, the resulting mesh gets smaller than the
original (left). To prevent shrinking, the particles must move
along an interpolative smooth surface (right).
To address this issue, we move the Skin particles along a

smooth surface that approximately interpolates the skeleton mesh
(Figure 4 bottom); we describe this surface in the next section.

2.2.1. Implicit quadratic surfaces
The many algorithms for creating interpolative parametric surfaces
generally exhibit some artifacts due to the lack of global continuity
[10]. Global optimization techniques can generate beautiful
surfaces, but they are generally very slow [12]. Variational

1 The result of subdivision is slightly smaller than the visible mesh. For
more accurate results, one can optimize the control mesh so that the result
of subdivision faithfully matches the visible mesh [3].

surfaces, represented by radial basis functions, are also globally
(generically) smooth surfaces [17], but it is difficult to maintain a
particular topology with them, and they sometimes exhibit
unintuitive oscillations. Our approach is to compute implicit
quadratic surfaces that best fit the mesh locally in a least-squares
sense. This quadratic representation effectively eliminates small
bumps and dents because of its limited degrees of freedom, and
the least-squares fitting to neighboring vertices generates an
aesthetically pleasing smooth surface from a coarse polyhedron.

Levin’s approach [8] also uses least-squares fitting, but it locally
computes a parametric surface while we locally fit implicit
surfaces in 3D space (which makes it possible to fit shapes like
ellipsoids perfectly). His approach also requires repeatedly solving
a minimization problem when computing multiple positions on a
surface. This would be prohibitively expensive when moving the
skin vertices on the surface. On the other hand, the approach
avoids the shrinkage problem mentioned above.

The implicit quadratic surface is computed for each skeleton
vertex using nearby vertices as fitting targets. The quadratic
function is formulated as

f(p) = f(x, y, z) = Ax2+By2+Cz2+Dxy+Eyz+Fzx+Gx+Hy+Iz+J,
and the surface is implicitly defined as f(p)=0. We use the nearest
13 vertices around the vertex (including the vertex itself) as targets
for fitting.2 These are collected by a local search around the target
vertex, which stops at edges labeled as sharp (Figure 5 left). To
establish an orientation and to increase robustness, we also include
extra low-weight constraints in the computation. These are
obtained by moving each vertex in the direction of its temporary
normal (the average of the surrounding polygon normals) with
predefined offsets (±0.05 units). The system tries to fit the surface
so that f(p) becomes 0 at the target vertices, 1 at outside constraints,
and –1 at inside constraints (Figure 5 right). Constraints are given
smaller weights (0.01).

f(x) = 1

f(x) = -1

f(x) = 0

0.05

Figure 5: Targets and extra constraints for least-squares fitting.
Red points indicate target vertices and the green surface
represents the resulting implicit quadratic surface (left). We use
13 target vertices and additional in and out constraints (right).

The objective function for the least-square fitting is formulated as

})1)(()1)(({01.0))(()(
traintsinsidecons

2

straintsoutsidecon

2

targets

2 ∑∑∑
∈∈∈

++−+=
ppp

pfpfpffE
In matrix form,

x0
2

y0
2

z0
2

x0y0
y0z0
z0x0
x0
y0
z0
1

x1
2

y1
2

z1
2

x1y1
y1z1
z1x1
x1
y1
z1
1

Target vertices
vi

Inside constraints
vi + 0.05ni

Outside constraints
vi - 0.05ni

= L
(10 × 3n)

x0
2

y0
2

z0
2

x0y0
y0z0
z0x0
x0
y0
z0
1

x1
2

y1
2

z1
2

x1y1
y1z1
z1x1
x1
y1
z1
1

Target vertices
vi

Inside constraints
vi + 0.05ni

Outside constraints
vi - 0.05ni

= L
(10 × 3n)

1

n n n

= W
(3n × 3n)

1
0.01

0.01
0.01

0.01

0

0

1

n n n

= W
(3n × 3n)

1
0.01

0.01
0.01

0.01

0

0
0 = B

(3n × 1)

0 1 1 -1 -1

n n n

T
0 = B

(3n × 1)

0 1 1 -1 -1

n n n

T

 X = (LWLT)-1LWB
The actual least-square fitting is done by solving the matrix

system above, where X denotes the unknown vector of coefficients
(XT={A,B,C,D,E,F,G,H,I,J}). The weighted overconstrained fitting

2 In a near-equilateral mesh, they are the vertices of the six triangles
around the center and those of the six triangles around them.

problem is WLt X = WB; multiplying by L on both sides leads to a
solvable system. Such a system is solved once per vertex of the
mesh.

Once we have the quadratic function for each skeleton vertex,
we compute the target position for each skin vertex based on its
tracking point on the skeleton mesh. If the tracking point is at a
vertex, we simply use the quadratic function associated with the
vertex. If the tracking point is at an edge, we compute the target
position using each of the two quadratic functions associated with
the edge’s end points and linearly interpolate them according to
the position on the edge. Similarly, the system uses quadratic
functions associated with the three corners when the tracking point
is on a triangle. To compute the position on the implicit quadratic
surface, we apply a simple Newton’s method three times, using the
tracking point as initial value. This works reasonably well because
the initial value is already close to the solution. For vertices lying
on a sharp edge, we compute two implicit quadratic surfaces, and
then move the vertex to one surface and then to the other in
sequence using Newton’s method.

PN
triangles

Butterfly
subdivision

Radial
basis

Quadratic
fitting

PN
triangles

Butterfly
subdivision

Radial
basis

Quadratic
fitting

Figure 6: Comparison of various interpolations. The original
mesh is subdivided twice and the vertices are moved to the
surface defined by each interpolation scheme. Figures are
rendered using smooth shading.
Figure 6 demonstrates the advantages of our approach. Local

parametric interpolation (PN triangles [18]) and interpolative
subdivision (butterfly subdivision [20]) exhibit small dents near
the ridge that topological fairing techniques [7,16] cannot hide.
Interpolation using radial basis functions [17] and our quadratic
fitting both efficiently recover the smooth surface. An alternative
solution to the problems arising in this example is to control the
meshing so that edges are aligned to ridges; then silhouette
problems are not so evident [19]. But this is difficult to do in
general, and is in conflict with the behavior of skin.

PN
triangles

Butterfly
subdivision

Radial
basis

Quadratic
fitting

PN
triangles

Butterfly
subdivision

Radial
basis

Quadratic
fitting

Figure 7: Comparison of various interpolations for the
original mesh. This figure is generated in the same way as
Figure 6. Existing schemes interpolate the original mesh
exactly, which inevitably amplifies the small noise in the
original mesh.
The piecewise quadratic surface approach may be unsuitable for

some applications because of its approximating nature, but it
works well for our purpose for several reasons. First, it generates a

smooth surface from an uneven mesh with small bumps and dents;
other methods are deliberately sensitive to these irregularities
(Figure 7). Second, it is reasonably fast for interactive operation.
Third, the implicit representation lets us move particles to the
desired surface quickly, which can be difficult when using an
interpolative subdivision scheme [6,9,20].

2.2.2. Computation of target edge length
The skin algorithm requires a target edge length for guiding the
remeshing process; edges should be shorter at high-curvature
regions and longer at low-curvature regions. A typical approach to
computing surface curvature is to use the immediate neighbors of
each vertex [13,15,16], but this can be unstable when applied to
uneven meshes. We therefore use the implicit quadratic surface
described in the previous section to compute the local curvature.
The curvature for a skeleton vertex p is computed as follows. We
compute the Hessian matrix Hf(p) – the array of all second partial
derivatives of f – and then the eigenvalues of

A =
b1

tHf(p)b1

b2
tHf(p)b1

b1
tHf(p)b2

b2
tHf(p)b2

A =
b1

tHf(p)b1

b2
tHf(p)b1

b1
tHf(p)b2

b2
tHf(p)b2

where {b1, b2} is an arbitrary orthonormal basis for the tangent
plane at p. The principal curvature km is then e1 / ||∇ f(p)|| where
e1 denotes the larger eigenvalue of A [2, 4]. For vertices along a
sharp curve, we use the curvature of the curve. Given km, we set
the target edge length to 0.8/ km . To prevent excessively long or
short edges, we clamp to a minimum and maximum edge length3.

This procedure determines the desired target edge length for
each vertex, but these values may not be appropriate from a more
global point of view. Figure 8 illustrates the problem. The
low-curvature point v suggests a long edge length, but the long
edges at v fail to represent the high curvature region near v. To
prevent this, we impose the following constraint to the target edge
length, using L(p) to denote the target edge length at vertex p: “For
every vertex u whose distance to a vertex v is smaller than L(v),
L(u) must be equal to or larger than L(v).” To satisfy the constraint,
the system searches the neigbors U of each vertex v and sets L(v)
to max (L(u), |v-u|) if L(u) < L(v) and u∈U. We use mesh distance
as the measure of distance between vertices.

v
L(v)

u
L(u)

v

L(v)

u

|v-u|

Figure 8: Postprocessing for target edge length.

2.3 Mesh Refinement
Mesh refinement generates a dense, smooth polygonal mesh from
the skin mesh as feedback for the user. To do this, we subdivide
the skin mesh, and then move the vertices to the quadratic surfaces
fitted to the skin mesh. One can obtain smoother surfaces by
applying the refinement process repeatedly, but we found that a
single refinement generates visually satisfying results as feedback
during editing operations.

3 IMPLEMENTATION AND RESULTS
We are developing a prototype modeling system based on our
surface representation. The system uses a sketching interface like
Teddy’s, with some experimental smooth-surface editing
operations such as filleting, creasing, and smoothly merging
separate meshes (Figure 9). Filleting smooths the sharp corners

3 The minimum edge length is set to 0.03 and the maximum to 0.3 in

the current implementation. In the future we hope to find a way to compute
these lengths from properties of the overall shape.

resulting from cutting or extrusion. We apply a geometric fairing
algorithm [13] to the skeleton mesh for smoothing. Creasing puts a
sharp crease where the user draws a stroke on the object surface.
This is done by pushing the stroke edges inwards and labeling
them as sharp [11]. For smooth merging we compute the union of
the two meshes and put a fillet at the intersection. As in the
original Teddy system, these operations simply edit the polygonal
mesh; this is significantly easier to implement than it would be
with parametric surfaces or implicit surfaces. The accompanying
video demonstrates the behavior of the system from the user’s
point of view.

b) creasea) fillet b) creasea) fillet
Figure 9: Experimental editing operations.
The system is implemented in Java™ (JDK1.4) and uses

directX7 for 3D rendering. It takes a few seconds for skin
algorithms to converge to a reasonably beautiful mesh after each
editing operation on a high-end PC (AMD Athlon™ 1.54GHz).
Figure 10 shows some example 3D models designed using the
system (they show the visible mesh in our system). The duck’s
neck is smoothly merged with the head, and the four legs are
smoothly merged to the octopus body. The palm and the bottom of
the foot were made by putting fillets at intersections after cutting.

Figure 10: 3D models designed in our system. The last one
was designed by a test user and the others by the author.

4 LIMITATIONS AND FUTURE WORK
There are some fundamental limitations in our technique. First, it
works only for smooth, rounded surfaces. Second, it requires
several empirically set constants. Third, there is as yet no
theoretical guarantee of smoothness and robustness.

Our least-squares fitting finds good quadratic functions in most
cases, but the resulting surface sometimes has a “discontinuity” in
the middle of the target fitting area (Figure 11). This is a
fundamental problem of implicit quadratics and our only solution
so far is to have more vertices as fitting targets and to use “in” and
“out” hints. This prevents the problem in almost all cases in our
experience, but we clearly need a more complete solution.

The current implementation can represent sharp edges but not
the tip of a cone, i.e., we handle one-dimensional singularities but
not zero-dimensional ones. The system automatically rounds off

sharp tips in our current implementation. Although this might be
acceptable in most cases, we plan to search for an appropriate
representation of such points.

Skeleton mesh

Fitted quadratic function

Figure 11: A limitation of quadratic fitting.

References
1. M. Desbrun, M. Mayer, P Schröder, and A.H. Barr. Implicit fairing

of irregular meshes using diffusion and curvature flow. SIGGRAPH
99 Conference Proceedings, pages 317-324, 1999.

2. P. Dombrowski. Krümmungsgrößen Gleichungsdefinierter
Untermannigfaltigkeiten Riemannscher Mannigfaltigkeiten.
Mathematische Nachrichten, vol. 38, pages 133-190. Berlin:
Akademie Verlag, 1968.

3. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J.
McDonald, J. Schweitzer, and W. Stuetzle. Piecewise smooth
surface reconstruction. SIGGRAPH 1994 Conference Proceedings,
pages 295-302, 1994.

4. J. Hughes, Differential Geometry of Implicit Surfaces in 3-Space –
a Primer. Technical Report CS-03-05, Computer Science Dept.,
Brown University, 2003.

5. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching
interface for 3D freeform design. SIGGRAPH 99 Conference
Proceedings, pages 409-416, 1999.

6. L. Kobbelt. Discrete fairing and variational subdivision for freeform
surface design. The Visual Computer, Vol. 16, Issue 3/4, pages
142-158, 2000.

7. L. Kobbelt, T. Bareuther, H.P Seidel. Multiresolution shape
deformations for meshes with dynamic vertex connectivity,
Computer Graphics Forum, Vol 19, No 3, pages 249-260, 2000.

8. D. Levin. Mesh-independent surface interpolation. To appear in
Advances in Comp. Math.

9. J. Maillot and J. Stam. A unified subdivision scheme for polygonal
modeling. Eurographics ’01 proceedings, 2001.

10. S. Mann, C. Loop, M. Lounsbery, D. Meyers, J. Painter, T. DeRose,
and K. Sloan. A survey of parametric scattered data fitting using
triangular interpolants. In Hans Hagen, editor, Curve and Surface
Design, pages 145-172. SIAM, 1992.

11. L. Markosian, J.M. Cohen, T. Crulli, and J.F. Hughes. Skin: a
constructive approach to modeling free-form shapes. SIGGRAPH 99
Conference Proceedings, pages 393-400, 1999.

12. H.P. Moreton and C.H. Sequin. Functional optimization for fair
surface design. SIGGRAPH 92 Conference Proceedings, pages
167-176, 1992.

13. R. Schneider and L. Kobbelt. Geometric fairing of irregular meshes
for free-form surface design. To appear in Computer Aided
Geometric Design.

14. G. Taubin. A signal processing approach to fair surface design.
SIGGRAPH 95 Conference Proceedings, pages 351-358, 1995.

15. G. Taubin. Estimating the tensor of curvature of a surface from a
polyhedral approximation. Fifth International Conference on
Computer Vision, pages 902-907, 1995.

16. G. Turk. Re-tiling polygonal surfaces. Computer Graphics, Vol. 26,
No. 2, (SIGGRAPH 92), pages 55-64, 1992.

17. G. Turk and J. F. O’Brien. Variational implicit surfaces. Technical
Report GITGVU 9915, Georgia Institute of Technology, May 1999.

18. A. Vlachos, J. Peters, C. Boyd, and J.L. Mitchell. Curved PN
triangles. Proc. of Interactive 3D Graphics, pages 159-166, 2001.

19. J. Vorsatz, C. Rossl, L. Kobbelt, and H. Seidel. Feature sensitive
remeshing. Eurographics ’01 proceedings, pages 393-401, 2001.

20. D. Zorin, W. Sweldens, and P. Schröder. Interpolating subdivision
for meshes of arbitrary topology. SIGGRAPH 96 Conference
Proceedings, pages 189-192, 1996.

