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ABSTRACT

Turvy is a simulated prototype of an instructible agent. The
user teaches it by demonstrating actions and pointing at or
talking about relevant data. We formalized our assumptions
about what could be implemented, then used the Wizard of
Oz to flesh out a design and observe users’ reactions as they
taught several editing tasks. We found: a) all users invent a
similar set of commands to teach the agent; b) users learn
the agent’s language by copying its speech; c) users teach
simple tasks with ease and complex ones with reasonable
effort; and d) agents cannot expect users to point to or
identify critical features without prompting.

In conducting this rather complex simulation, we learned
some lessons about using the Wizard of Oz to prototype in-
telligent agents: a) design of the simulation benefits greatly
from prior implementation experience; b) the agent’s
behavior and dialog capabilities must be based on formal
models; c) studies of verbal discourse lead directly to an
implementable system; d) the designer benefits greatly by
becoming the Wizard; and e) qualitative data is more
valuable for answering global concerns, while quantitative
data validates accounts and answers fine-grained questions.

KEYWORDS: Intelligent agent, instructible system,
programming by demonstration, Wizard of Oz, prototyping

INTRODUCTION

We used the Wizard of Oz method to test a new design for

an instructible agent. In this paper we describe how end
users learned to teach a simulated agent called Turvy, in par-
ticular the set of instructions and commands they adopted.
These findings will be valuable to implementors of pro-
gramming by demonstration systems. We also explore the
lessons we learned using the method, which experimenters
can apply in their own studies of intelligent interfaces.
These lessons differ from other Wizard of Oz experiences in
being oriented towards prototyping an implementable sys-
tem, rather than a proof of concept.
The paper begins with a brief discussion of intelligent
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agents and the Wizard of Oz method. It then describes the
Turvy experiment and results, and ends with a retrospective
on our use of Wizard of Oz.

intelligent agents
When given a goal, [an intelligent agent] could carry out
the details of the appropriate computer operations and
could ask for and receive advice, offered in human terms,
when it was stuck. -Alan Kay (1984)

Intelligent interface agents have been touted as a significant
new direction in user interface design. Videos from Apple
and Hewlett-Packard show futuristic interfaces in which
agents play a dominant role, serving as computerized office
clerks, database guides and writing advisors. Reality is a bit
behind, but prototype intelligent agents have been
implemented by researchers. For exampler Eager (Cypher,
1991) detects and automates a user’s repetitive actions in
HyperCard; it matches examples by parsing text strings and
by testing numerical relationships. Metamouse (Maulsbyr
1989) learns drawing tasks from demonstrations; it applies
rules to find significant graphical constraints.

Yet today’s agents are “intelligent” in the narrowest sense
of the word. They understand only specialized or highly
structured task domains, and lack flexibility in conversing
with users. Kay (1984) suggests that agents should be
illusions that mirror the user’s intelligence while restricting

the user’s agenda, Unfortunately, because most work on
agents stems from the field of Artificial Intelligence, users’
needs are second to algorithm development. While the
systems prove that particular approaches can be codified in
algorithms, they rarely pay more than lip service to the
usability tradition of Human Computer Interaction. As a
result, they tend to fail as interfaces.

Agents must be designed around our understanding of what
people require and expect of them. However, the traditional
approach of system building is an expensive and unlikely
way to gain this understanding. The underlying discourse
models and algorithms for agents are usually so complex
and entrenched with assumptions that changes-even minor

ones— may require radical redesign. Moreover, because

agents act as intermediaries between people and their appli-

cations, the designer must craft and debug the
agent/application interface as well. A viable alternative to
system building is Wizard of Oz.
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Wizard of Oz
Wizard of Oz is a rapid-prototyping method for systems
costly to build or requiring new technology (Wilson and
Rosenberg, 1988; Landauer, 1987). A human “Wizard”
simulates the system’s intelligence and interacts with the
user through a real or mock computer interface,

Most Wizard of Oz experiments establish the viability of
some futuristic (but currently unimplementable) approach
to interface design. An example is the use of complex user

input like speech. Gould et. al., (1982), who pioneered the
method, simulated an imperfect listening typewriter to find
out whether it would satisfy people used to giving
dictation. Similarly, Hauptmann (1989) tested users’
preferences for manipulating graphic images through
gesture and speech, by simulating the recognition devices.

Other Wizard of Oz experiments concentrated more on
human behavior than futuristic systems. Hill and Miller
(1988), for example, investigated the complexities of
intelligent on-line help by observing interaction between
users of a statistical package and a human playing the role
of help system. Likewise, Dahlback, Jonsson and
Ahrenberg (1993) studied differences between human-human
and human-computer discourse through a variety of feigned
natural language interfaces. In another experiment, Leiser
(1989) showed that people can be led to use a language
understood by the computer through convergence, a
phenomenon of human dialog in which participants
unconsciously adopt one other’s speech pattern. When users
typed a natural language database query, the Wizard, using
only certain terms and syntactic forms, would verify it by
paraphrasing. Convergence occurred when users adopted
those same terms in their queries. We will return to this
theme in our discussion of “TurvyTalk”.

THE TURW EXPERIMENT

Our research concerns both the technical and usability
aspects of programming by demonstration. Previously
implemented systems have had problems with competence
or usability; we had in mind a more general purpose, easily
instructed system that would be nonetheless practical to
implement in the near future. The system we envisioned
starts with easily coded, primitive knowledge of datatypes
and relations, and more specialized knowledge defined by
application authors. It then learns higher-level constructs
and procedures specific to the individual user’s work. For
practicality, it must learn under the user’s guidance, so it
needs an intuitive and flexible teaching interface. We decided
that an agent metaphor would help us explore the design

issues; the agent is TUNY.

We wanted to see how end users would teach an agent with
perfect memory and primitive knowledge. We wanted to see
how they structured lessons and whether they could focus
its attention correctly. Would they be able to translate
cultural concepts (like surname) into syntactic search
patterns (like capita~ized word after Mr. or Ms.), and how
could Turvy minimize the annoyance of doing so? What
kinds of instructions and commands would they use, and
what wording? Could verbal input, based on pseudo-natural

language or even keyword-spotting, work in conjunction
with pointing? We decided to use a Wizard of Oz simulation
to investigate these issues, involving end users up front,
before making too many commitments in our design.

Using the Wizard of Oz to prototype programming by
demonstration makes unusual demands on the Wizard, and
we had some special concerns. We wanted to simulate a
“buildable” Turvy, so we designed a formal model of the

learning system and required the Wizard to obey it. We
wanted to separate the agent’s behavior (what it can
understand and how it can react) from the illusion it
presents in the interface, so we let users explore Turvy’s
abilities through discovery, finding its limits as it
responded to their own commands and teaching methods.
Finally, we wanted detailed qualitative and quantitative
results, so we designed a set of tasks to reveal interaction
problems, videotaped sessions, and interviewed the users.

Motivation: previous Implementation experience
We had completed a user study of Metamouse, a fully
implemented programming by demonstration system
personified by an agent named Basil, Basil learns repetitive
graphical edits, such as aligning or sorting by height,
provided the user makes all relevant spatial relations visible
by drawing construction lines. In that study we gave users
six tasks, all of which Basil could learn in principle. But in
practice, Basil frustrated users’ attempts to teach it. First,
though they discerned the need for constructions, users did
not grasp Basil’s strict procedural interpretation, and they
sometimes used a line to suggest a relation rather than
define it. Second, users didn’t think it possible to construct
some features, like height; they would have preferred to say
it in English. Third, they were confused by aspects of the
agent metaphor concerning how it searched for sets of
objects and created branching procedures. Finally,
limitations on Basil’s inferencing ability, and occasional
crashes due to bugs, compounded their problems and made
our observations harder to assess.

We wanted to overcome these deficiencies. We wanted
people to converse with the agent through a multi-modal
dialog, using demonstrations, English, or property sheets.
We wanted people to learn through conversation (verbal or
graphical) what the agent could understand. We wanted a
metaphor that would present the right illusion. We also
knew that a reincarnated Metamouse was not the vehicle for
this study, because we would be shackling ourselves to
ideas embedded in a big system. We turned to Turvy.

Turvy as agent
We made four key assumptions about the sort of agent we
would build, each with consequences for usability, “ First,
Turvy learns from a user’s demonstrations, pointing, and
verbal hints, It does not have human-level abilities or
knowledge; like Metamouse, it forms search and result pat-
terns from low-level features, and users must refer to them
during demonstrations. ● Second, unlike Metamouse, Turvy
does not equate the user’s demonstration with a procedure;
actions may be interpreted as focusing attention or extend-
ing a pattern, and Turvy can revise an interpretation as more
examples are seen. This enables a dialog where users can
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Class From User From Turvy
Command d Watch and learn what I do d

# End of lesson
Show me what to do

~ All done
Do the next step ~ May I take over?

~ Do the rest of this example (iteration) ~ May I continue?
{ Do the next example (iteration) { [May I] do the next one?
i Do all remaining examples (iterations) { [May 1] do the rest?
i Stop (you’ve made a mistake)
- Undo [one step] [to the start of this iteration] - Undo [last step?] [this iteration?]
~ I&c~e~n~o~ (I’m fixing something)

You take over
1 Always let me do these steps Do you want to do this manually?

Focus 1 I’m repeating what I did before d I’ve seen you do this before
attention This is similar to [indicates previous example] ~ Treat this like [describes similar item]?

This case is different ? What is different about this case?
R Look here (this is important) ? Is this [describes item] important?
{ Look for [describes item] < I should look for [describes item]
R I did this [conditional branch] because [points at ~ Is this [describes feature] what distinguishes the

something and/or lists features]
1 I’m changing the way I do this task

two cases [or new special case]?
You’ve changed the method here, why?

Response R OK/ yes 4 OK/ yes
R No ~ No
R I don’t know/I don’t want to discuss that { I don’t know, show me what to do

Legend: V - used without difficulty; 1 – given by only 1 use~ R – given only in response to a prompt from Turvy;
-- not differentiated in usage; ? - questions asked by Turvy that caused user confusion; blank - not used.

Table 1. Messages used in the Turvy study.

teach new concepts on the fly. “ Third, an implementable
Turvy would not have true natural language capabilities,
and our system only recognizes spoken or typed keywords
and phrases, using an application-specific lexicon. This
poses problems for a user of Turvy’s language, for they
must learn this lexicon. Verbal inputs are either commands
(like Stop!) or hints about features (like look for a word
before a colon), where keywords (word colon) are compared
with actual data at the locus of action to determine their
meaning. This implies that users must accompany verbal
descriptions with editing or pointing actions. ● Fourth,
Turvy predicts actions as soon as possible, verbalizing
them on the first run through. Eager prediction gives users
efficient control over learning. Speech output signals the
features Turvy has deemed important, without obscuring
text or graphic data. As a side effect, the users also learn
Turvy’s language.

Turvy as system
This section supplies a brief description of Turvy’s built-in
knowledge, inference mechanism, and interaction model.
Maulsby (1993) provides more detail. Turvy learns proce-
dures and data descriptions — specialized types, structures,
orderings (cf. Halbert, 1984). Turvy’s learning strategy is to

make a plausible generalization from one example, then
revise it as more are seen or when the user gives descriptive
hints. Turvy’s tactic is to elicit hints by predicting.

We designed a formal model of the learning system in terms
of a grammar for tasks it could learn, then chose an
application (text editing), and made a detailed model of
Turvy’s background knowledge, in the form of an attribute
grammar for textual search patterns. The knowledge is more
primitive than that in Myers’ (1991) demonstrational text
formatter. Untutored Turvy recognizes characters, words,

paragraphs, brackets, punctuation, and properties like case
and font. Turvy learns to search for sequences of tokens
with specified properties.

We designed a model of interaction—an incomplete model,
formulated as a list of 32 kinds of instructions implied by
the learning model. If a person gives all the instructions,
the system can learn without inferencing, but we predicted
that people would use only the subset listed in Table 1. We
believe the user will give incomplete or ambiguous
instructions, which the system will complete by making
inferences and eliciting further details. Note that we told
Turvy’s users only that it could understand “some English”;
they did not receive a list of instructions or wordings. In
turn, the Wizard as Turvy responded only to instructions
whose intention corresponded to some message in the
interaction model.

Tasks and an example userflurvy dialog
We made up six tasks and a data set, on the theme of
formatting a bibliography:

a. italicize journal titles
b. quote the titles of conference and journal papers
c, create a citation heading with the primary author’s

surname and year of publication (illustrated in Figure 1)
d. put authors’ given names and initials after surnames
e. put book titles in Times-Roman font
f. strip out colons that separate bibliographic fields

Tasks involved domain concepts like “title,” “journal vs.
book,” and “list of authors,” concepts Turvy does not
understand. Users were shown before and after snapshots of
example data for each task; no mention was made of the
syntactic features Turvy would learn. This tested Turvy’s
ability to elicit effective demonstrations and verbal hints,
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a. before editing b. after putting first author and date into heading

Given the document on the left, users were asked to place the first author’s name and the date of publication in square
brackets with bold styling prior to each reference. Whe~ correctly reformatted the bibliography would appear as on the ~ight.

Figure 1. Sample data from Task c, “make citation headings”.

Similar concepts were repeated in later tasks, to see whether
users adopted Turvy’s description.

Figure 1 shows a sample of the data for Task c. The user is
supposed to make citation headings for each entry, using
the primary author’s surname and part of the date. From
Turvy’s point of view, these items are the word before the
first colon or comma in the paragraph, and the two digits
before the period at the paragraph’s end. Exceptional cases
to be learned include a baronial prefix (eg. “van Lehn”) and
initials after surname (eg. “Michalski R. S.”).

TaskC: repeat (FinaXurname FindDate)
FindSurname: if find pattern (Lot:= BeginParagraph

SomeText Surname:= ({O or more LowerCaseWord}
Word) [Colon or Comma])
then do MakeHeading else TurvyAllDone

MakeHeading: select Surname; copy Surname;
put cursor before Lot; type “~; paste Surname;
type(DateLoc:= Blank “]”); type Return;
select styleMenu; select “citation”

FindDate: if find pattern (Date:= (Digit Digit)
Period EndParagraph)
then do CopyDate else TurvyAskUserForDemo

CopyDate: select Date; copy Date;
put cursor after DateLoq paste Date

Figure 2. Pseudo-code derived by analyzing Task c

(from Figure 1) with TUNy’S inference model.

Prior to the experiment, we analyzed this task using the
inference model and got code similar to that in Figure 2
(we’ve omitted the code for handling initials after a
surname). Coding helps the Wizard act consistently, even if
users teach somewhat different procedures. The code loops
over all entries in the bibliography. Each step involves
finding a pattern in the text (to instantiate data descriptions)
and then executing a macro; if not found, a default action is
done. Macros are straight-line procedures that refer only to

instantiated variables. Mnemonic variable and macro names
are shown in italics.

Below is the trace of a dialog between Turvy and “Kate”, a
composite of two users in our study (the first paragraph was
spoken by the one, the rest by the other), Kate is working
through Task c: the first example is “Agre” in Figure 1.

Kate: Take the last name, it will be in some cases before
a colon. [Kate copies “Agre”, pastes it into a new
paragraph, types the brackets and sets the style.]
This is a list of publications. Now we’re going to add
the last two digits of the date [types “887.

Kate gives hints about the syntax (“before a colon”, “last
two digits”) and the subject matter (“name”, “a list of
publications”), Turvy interprets only the hints about
syntax, and then only in relation to actions demonstrated
(so “last two digits” is taken to mean the digits typed, not
those at the end of the paragraph).

Kate then signals the end of the lesson and gives Turvy a
chance to take over or get another example. Turvy edits the
next entry (not shown in Figure 1).

Kate:
Turvy:
Turvy:

TuNy:

Do you want another demo?
I can try if you want. — Kate: OK.
Looking for word before first colon in next
paragraph picks surname], OK? — Kate: OK.
[while doing actions] Copy, go to start of
paragraph, type return, paste, type brackets,
change style to “citation”, OK? — Kate: OK.

Now TUNy makes a mistake. Kate shows the right action
and TUNy echoes back a new hypothesis reflecting her hint
from earlier on.

Turvy: Type in blank space “88”, OK?
Kate: No, the /ast two digits at the end.
Turvy: Show me please. — [Kate picks digits.]
Turvy: Two digits before period at end of paragraph?
Kate: Yes.
Turvy: Continue? — Kate: OK.
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The next example introduces a new case, multiple authors
(see the second entry in Figure 1). Turvy’s search pattern
selects the last one. Kate tries to correct Turvy by giving a
hint, but Turvy insists on a demonstration to go with it.

Turvy: [picks “MacDonald”l — Kate: No – stop.
Turvy: Show me please.
Kate: / want the /ast name of the first author.
Turvy I don’t understand - show me please.
Kate: When you have a number of authors, choose the

first [picks “Andreae’~. Es before the comma.
Turvy: Word before first comma or colon? — Kate: Yes.

A little later on, Turvy comes to an entry in which the
surname happens to precede the initials (“Michalski in
Figure 1). Turvy’s search pattern picks the last initial.

Turvy: [picks “S.~ — Kate: No.
Turvy: Show me please.
Kate: / want you to take in this case the very first word

[picks surname], then continue as before.
Turvy: You skipped back over words ending in period?
Kate: Yes.
Turvy: Continue? — Kate: OK.

Finally, Kate teaches Turvy how to parse names with
baronial prefixes (“van L.ehn” in Figure 1).

Turvy: [picks “Lehn”J
Kate: Ok, urn, stop [hesitant]. In this case / want you to

select the /ast two words.
Turvy: Show me please. [Kate picks “van Lehn”.]
Turvy: What’s different about this case?
Kate: Hmm [confused].
TUNY: You selected these two words, why?
Kate: Because these two words make up his /ast name.
Turvy: Is there some feature of that word [hilites “van”l I

should look for? That word exactly?
Kate: /n this case, yes [hesitant].

As in previous lessons, Kate gives an explanation with her
demo, but it fails to distinguish this case. When she is
stymied, Turvy suggests a plausible (though wrong)
hypothesis, which she accepts for now.

To summarize the dialog: Kate’s goal is to get Turvy to do
the task (until a new case requires further teaching), and
Turvy’s goal is to get more specific instructions from Kate.
Typically, Kate does an example, then Turvy does the next
one. Turvy describes actions when predicting them the first
time. When Turvy errs, Kate demonstrates the right steps
and gives a verbal hint; Turvy echoes back an interpreta-
tion. If it cannot make use of Kate’s hint, Turvy proposes a
guess, to elicit further explanation.

We realized from the outset that it would be all too easy for
the Wizard to slip out of character, despite our formal
models, In order to sustain the simulation of algorithmic
intelligence, we decided to minimize the amount of new
information the Wizard has to cope with. Hence we had

users do standard tasks on data the Wizard had prepared.
Moreover, all tasks were designed to limit the user’s
options: there were no “inputs” (data was merely cut,
copied, pasted) and few points at which the order of steps
could be varied. As mentioned above, each task was

analyzed beforehand, so that inferences made from examples
(given in a standard sequence) were in effect pre-scripted,
Thus the Wizard was able to focus on the user’s speech and
gestures, and respond consistently. We also made Turvy a

littfe extra stupid (for instance, guessing “van” rather than
lowercase), to get more experimental data.

Hypotheses
Formalizing the inference and interaction models revealed
the complexity of various kinds of instructions and the
information needed to interpret them. This helped us form
hypotheses about the way people would construct lessons
and the instructions they would use. We had four main
working hypotheses.
1

2

3

4

All ‘u~&s would employ the same small set of
commands, those given in Table 1, with only minor
variations in wording.
Users would learn “TurvyTalk” (Turvy’s low-level
terminology for describing search patterns), but only as
a result of hearing Turvy describe things. Moreover, if
Turvy uttered (perhaps in the form of a question) some
instruction the user had previously given but with
different wording, users would thereafter adopt Turvy’s
wording. This hypothesis is based on verbal convergence
(Leiser, 1989), as mentioned in the introduction.
Users would teach simple tasks with ease and complex
ones with reasonable effort. In other words, the
complexity of instruction would depend on the task, not
on peculiarities of Turvy’s learning method.
Users would point to focus Turvv’s attention on t)arts of
a search patt&n. Pointing avoid: the problem of-how to
name something, but has the disadvantage of being
ambiguous; the teacher must rely on the learner to infer
the correct granularity and property.

Experimental setup

In our experiment users sat at a Macintosh computer and
worked on bibliographic entries using the Microsoft Word
text editor. A facilitator sat next to the user. Nearby (but
out of eye contact) sat Turvy, played by the system
designer, who had a second keyboard and mouse al$o
connected to the Macintosh. The video signal from the
computer was split-routed to both the user’s and Turvy’s
screens. This setup allowed them to view the document
simultaneously, yet restricted their physical interaction to
pointing on screen with the cursor. They competed for
control of the cursor, but this caused no problems in
practice. For each task, the facilitator opened an on-screen
document containing the references, then showed an
annotated picture of the reformatted result. The user would
practice on several entries until able to reformat them
correctly. At this point the facilitator would ask the user to
teach TuNy, and the Wizard became active, speaking and
acting as if Turvy were present in the software. To reinforce
the fantasy, the Wizard spoke in clipped sentences, with
rather mechanical intonation. While we did not deceive
users, they quickly bought into the illusion. They spoke
more curtly to Turvy than to the facilitator, and referred to
Turvy and the Wizard as two separate entities.

In this study, we did a pre-pilot, a pilot and a final run.
Originally, we planned a Wizard of Oz without speech. The
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terminology
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Figure 3. The language spoken by users.

pre-pilot used a menu, with the facilitator-to-be acting as
user. When it became clear that our user misunderstood the
menu commands, we realized we ought not to predetermine
the user’s language. In the pilot, four users tested a speech
input version of Turvy; they could compose their own
commands, but initially Turvy spoke only to ask very
general questions like “What’s important here?” Generality
confused them, but was rectified when questions were made
context specific, and when Turvy described its actions and
proposed guesses. In the main cxpcrimcnt, eight subjects
(five with some programming experience) tested the revised
version, whose behavior was held constant.

OBSERVATIONS AND RESULTS

Our data consists of video tapes, transcripts, and the exper-
imenters’ subjective observations. We studied comments
made by users while working with Turvy and during inter-
views. We also did content analyses, counting the number
of bibliographic terms vs. TurvyTalk in users’ instructions,
and measuring indicators of confidence, hesitation and con-
fusion at various points of interest during the session.

Command set (Hypothesis 1)

Users gave a close-fitting subset of the instructions we had
predicted. From Table 1 we see that nearly all commands
were used and caused no difficulty. The actual wordings
subjects used were quite consistent, especially after they
heard Turvy ask the corresponding question: they would
turn it into a command, such as “Do the rest.” (See

TurvyTalk, Hypothesis 2).

Instructions for focusing attention were problematic. Users
almost never volunteered vague hints like “I’m repeating
actions,” “ this is similar; and even “look here.” On the
other hand, users would give hints in answer to Turvy’s
questions. The wording of focus instructions was more
variable than for commands or responses.

TurvyTalk (Hypothesis 2)

We found that users did learn to describe things like titles
and surnames in terms of their syntax. In post-session inter-
views, all users said that Turvy does not know about bibli-
ographies; few could describe the sort of terminology it
does understand, but they could list examples. We did a
content analysis of users’ speech to confirm these findings.
Dividing the entire session into 16 events for different
phases of tasks (first example, points where Turvy would
err, etc.), we counted the number of user utterances referring

to features in terms Turvy understood (TurvyTalk) versus
those involving bibliographic terminology (eg. “paste after
the author’s name”). The analysis confirmed our qualitative
findings. In particular, as shown in Figure 3, use of biblio-
graphic terminology tapers off and TurvyTalk increases. We
conclude that Turvy’s speech quickly trained users to mirror
its languagt+verbal convergence occurs. Even more inter-
esting is users’ tendency to juxtapose both languages in one
instruction, as if trying to relate their concepts to Turvy ’s.

Teaching difficulty (Hypotheals 3)

One of our chief aims is to make simple tasks easy to
teach, and complex tasks teachable with reasonable effort.
In our study, easy tasks (like changing underlined text to
italics) were trivially taught by giving a demonstration. The
hard tasks (like reversing author’s surnames and initials)
involved more verbal description of special cases.

All but one user reported that Turvy was easy to teach, once
they had realized it learns incrementally and continuously so
they needn’t ant icipate all special cases. However, one user
told us at the outset that no computer could be taught
without anticipating all cases, and therefore refused to try.
No one complained about having to speak TurvyTalk.

We sought to objectify users’ impressions of teaching effort
in a content analysis of speech characteristics, with ratings
measuring high confidence through to confusion. We found
that users had a fairly neutral feeling of control; however,
dealing with unexpected cases caused anxiety.

Speech versus polntlng (Hypothesis 4)

One instructional technique we hoped to find was pointing
to focus attention, but we observed almost none (apart from
explicit selections required by tasks). When Turvy asked
users to explain a new case by “pointing to something in
the text,” they were confused, if the distinguishing feature
was a property rather than a string. We concluded that this
query is ineffective; instead, Turvy should propose a guess.

Dialog

We found two distinct styles of interaction, not anticipated
in our hypotheses. One type of user is highly interactive,
talkative; the other is quiet, non-inviting. A talkative user
describes a task before starting it, then does one example
and gets Turvy to try the next. Some feel duty-bound to
explain expected special cases in advance, but find this hard
to do. Soon they learned to wait for special cases to arise.

In contrast, a quiet user works silently through the first
example and goes on to the next one without inviting
Turvy to try, nor even signaling that the first is done.
When Turvy detects repetition, it butts in “I’ve seen you do
this before, may I try?” The user consents, and the rest of
the dialog proceeds much as for talkative users, though a
quiet one is more likely to tell Turvy to skip a troublesome
case than try explaining it.

Talkative users say less as they grow more adept at using
Turvy; quiet ones stay quiet. A content analysis showed
that talkative users gradually grow more confident, with
lapses at special cases, while quiet ones, initially very
confident, lose their edge as tasks get harder.
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In the post-session interviews (see the Appendix for sample
questions), we found that both types of user formed similar
models of Turvy’s inference and interaction. They
recognized that it learns primarily by watching actions, but
also understands verbal hints. All users liked the way Turvy
is eager to predict after one example, because they believed
this gave them more control over learning. All users were
concerned about completeness, correctness and autonomy,
believing it would be foolhardy to leave Turvy unsupervised
until all cases had been covered. Some of the programmers
thought that seeing a printout of the procedures Turvy
learned would be helpful; the other users disagreed.

All users (apart from the one who refused to teach) said they
would use Turvy in their daily work, if only it were real.
Most wished that Turvy would learn their language.

To generalize the experiment, we also tried Turvy on
drawing and file management with four different subjects,
The results were the same, except that we saw some use of
pointing (at fields in file listings),

LESSONS LEARNED USING WIZARD OF 02

Turvy is the most complex Wizard of Oz simulation done
to date. The lessons we learned will be of value to those
who want to use the Wizard of Oz in their own studies of
intelligent interfaces. These lessons differ from other Wizard
of Oz experiences, being oriented towards implementable
systems, rather than proof of concepts.

Ironically, prior implementation experience is invaluable.
The chief danger in using a Wizard of Oz is ascribing to the
Wizard powers which no real system could have. This casts
doubt on the validity of hypotheses and yields inappropri-
ate, optimistic results. We wanted Turvy to help us design
a system of the near future, so the danger is magnified. A
prior implementation (like Metamouse) suggests limita-
tions to be put on the Wizard’s intelligence, as well as
interesting research questions.

The Agent’s behavior should be based upon an algorithm.
Another way to keep the simulation honest is to base it on
an algorithm or at least a fairly detailed formal model. This
ensures consistent behavior and experimental repeatability.
When the algorithm is too complex for the Wizard to run in
real time, it can be used to analyze tasks in order to script
the Wizard’s behavior. We did this in Turvy by designing a
formal learning model, and by “scripting” the Wizard’s
responses by running the tasks through the model and
codifying the results.

The Agent’s dialog capabilities should be based upon a
constrained interaction model, Similarly, true natural
language understanding by computers is far in the future. A
realistic dialog must be constrained by an interaction model
that explicitly lists the kinds of instructions the system can
understand and the feedback it can formulate.

You can build real systems derived from studies of verbal
Wizard-human discourse. Even given an interaction model,
some would argue that discourse rules derived from studies
of verbal dialog cannot be incorporated in today’s technol-
ogy. We offer a glimpse into our current work as an exis-

tence proof that this is indeed possible. Moctec (Maulsby,
1992) is a working prototype, limited to simple search and
replace tasks, and using a subset of the Turvy instructions
without an agent metaphor. Users direct it by menus, voice
buttons, and text-based pseudo-natural language hints, Cima
(in progress) is a full implementation of Turvy’s inferenc-
ing and interaction techniques,

The Designer benefits by becoming the Wizard. Perhaps the
most important aspect of Turvy was the “training” the
designer received by playing the role of agent. Being
personally responsible for a user’s discomfort and confusion
motivates revisions! And simulating an incomplete design
reveals its ill-defined aspects.

Qualitative results are the most valuable. By acting as
Wizard, facilitator, and interviewer, the experimenters
become immersed in the experiment and many important
results become obvious. The most interest ing experimental
questions cannot be answered by statistics, at least in small,
cheap studies. Still, measurements are useful: they validate
the opinions of experimenters and users, and allow a
detailed (if myopic) exploration of particular activities.

Interviews are essential, and video records are useful. We
want to know what works, what doesn’t, and why.
Moreover, we want to know what concepts the users are
constructing to explain the system to themselves, Accounts
based on running commentaries and interviews are the most
efficient means of finding out. Video records permit content
analyses of speech and gesture in the users’ visual context.

CONCLUSIONS

We prototype an instructible computer agent using a
Wizard of Oz simulation. The agent, Turvy, learns
procedures and data descriptions from one or more examples
done by the user, combined with verbal and pointing hints.
The Wizard of Oz allowed us to test ideas without
implementing a system, and thereby involve end-users in
several iterations of Turvy’s design. The simulation was
constrained by formal models of inference and interaction,
so that Turvy would have realistic limitations. As a result,
we found a natural teaching protocol that we believe we can
implement in a real system; in fact, we have implemented
parts of it in a second prototype.

In some ways, the Turvy we tested was more stupid than
one we would implement. It had no special purpose task
knowledge and no ability to apply what it learned in one
task to another one later on. Moreover, it learned concepts,
but not the user’s terminology. Nonetheless, users accept
Turvy because it learns new cases on the fly, and makes
good use of both demonstrations and verbal hints.

We learned valuable lessons about the Wizard of Oz, in
particular the benefits of formal models, detailed task
analysis, and direct feedback from users to the designer.
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APPENDIX — INTERVIEW QUESTIONS

Questions asked of users during post-session interviews are
listed below. The questions are intended to focus the user’s
thoughts on key aspects of working with Turvy: translating
cultural concepts into syntactic proxies, speech input and
output, eager prediction and supervision. We also asked
users how they felt about our experimental method. We

often reworded questions to refer to specijic things that
happened during a session. For lack of time, we did not ask

all questions of all users.

Did you find some tasks hard to do yourself? Which ones?

How much English do you think Turvy understands? Does
he understand whole sentences?

Were you surprised at what Turvy understood? What had
you ex-&zted? -

You gave Turvy
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some instructions like “select the author’s
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last name.” Do you think Turvy understood those?

Do you think Turvy can learn a concept like “name”?
Do you think Turvy understands instructions like “look for
the word before the italic text”?

What kinds of bibliography features do you think Turvy can
recognize? What did TUNY know before you taught him?

Turvy described what he was doing. Did this help you? Did
you find the details distracting?

Can you recall one or two descriptions Turvy read out?

Do you think Turvy can learn from verbal instructions
alone — can you simply tell him what to do and then get
him to do it?

Could you list some commands Turvy recognizes?

Did you want Turvy to start predicting actions as soon as
he did? How many examples do you think Turvy should
wait for before he starts predicting?

Sometimes Turvy would change the order of the steps you
had demonstrated when he did them. Did this bother you?

Do you think it’s best to tell Turvy in advance about all the
special cases, or wait for them to arise?

Sometimes Turvy would say “What’s different here, can
you point to something in the text?” Did you understand
this question? What did TUNy want you to do?

Do you think Turvy remembers what he learned in one task
when you teach another one? For instance, you did two
tasks that involved searching for surnames. Did you expect
Turvy to remember?

Did you feel comfortable with the fact that Turvy made a
number of mistakes while learning? Would you run out of
patience if using Turvy for real?

At some point in every task you would let Turvy “do the
rest”. Did you watch him closely while he zipped through
them? Would you rather watch step by step or review his
work afterwards?

Would you trust Turvy to ask you about questionable
items, or do you suppose he would just do them, stupidly?

Would you like to be able to see a printed program or script
of the task as Turvy learns it? Would this help you?

What did you like about Turvy? What did you dislike?

Would you like to be able to see Turvy (as an icon)?

Would you use Turvy in your day-to-day work?

What additional kinds of knowledge (if any) do you think
Turvy should come bundled with?

During the experiment, did you get the impression that

Turvy was real, or were you constantly aware that you were
talking to a person?

Did the experiment cause you any problems? Were the tasks
too difficult? Did it go on too long? Did you feel pressured,
or that you were being tested?


