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ABSTRACT 
Spatial layout is frequently used for managing loosely or-
ganized information, such as desktop icons and digital ink. 
To help users organize this type of information efficiently, 
we propose an interface for manipulating spatial aggrega-
tions of objects. The aggregated objects are automatically 
recognized as a group, and the group structure is visualized 
as a two-dimensional bubble surface that surrounds the 
objects. Users can drag, copy, or delete a group by operat-
ing on the bubble. Furthermore, to help pick out individual 
objects in a dense aggregation, the system spreads the ob-
jects to avoid overlapping when requested. This paper de-
scribes the design of this interface and its implementation. 
We tested our technique in icon grouping and ink reloca-
tion tasks and observed improvements in user performance.  
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces  – Graphical user interfaces. 
General terms: Design, Human Factors 
Keywords: spatial layout, direct manipulation, clustering 

INTRODUCTION 
In current graphical user interfaces, spatial layouts are of-
ten used to manage temporary or transient information. 
Examples include desktop icons, web bookmarks [18], and 
spatial hypertexts [21]. In these systems, the spatial posi-
tion of objects represents the semantic relationships among 
them. Objects placed close together are related and objects 
placed far away from each other are unrelated. Compared 
to more explicit grouping mechanisms, such as hierarchical 
folders, these spatial layouts enable more flexible and 
lightweight organization of information. They are particu-
larly useful for managing miscellaneous personal informa-
tion [2].  
Spatial aggregation plays an important role in management 
of information using spatial layout. An aggregation repre-
sents a group structure and people can quickly create, 

merge, and split groups by moving objects on the screen. 
However, in most existing systems, a group represented by 
a spatial aggregation exists only in the user’s mind, and the 
computers do not explicitly treat the group as a group. 
Therefore, the user needs to explicitly select the objects in 
a group using methods such as rubber banding or lasso 
selection before applying an operation (e.g. relocation or 
deletion) on the group. Another problem is that it is diffi-
cult to pick a hidden object from a dense spatial aggrega-
tion. To pick such an object using existing systems, the 
user needs to remove overlapping objects individually. 
We propose an interface, called Bubble Clusters, for ma-
nipulating spatial aggregations of objects to address these 
problems. First, the system automatically recognizes ag-
gregated objects as a group and visualizes the result as a 
bubble surrounding the objects (Figure 1). The bubble 
serves as a proxy for the group and the user can operate on 
the group by clicking on the bubble. Unlike standard fold-
ers, our system does not require an explicit grouping opera-
tion. The user simply creates, deletes, and moves objects, 
and the system automatically updates the group structure 
according to spatial relationships. Second, the system sup-
ports automatic spreading of aggregated objects to help the 
user to pick a hidden object. An aggregation expands tem-
porarily at the user’s request (by double-clicking on the 
bubble) and automatically returns to its original state once 
the user has picked a target object or cancelled the opera-
tion. 
In addition to being visually pleasing, the bubble metaphor 
is particularly suitable for our purposes for the following 
reasons. First, the rotund shapes present themselves as tran-
sient structures, encouraging further experiments in 
organizing documents [15]. Second, we can leverage users’ 
natural expectation of bubble behavior to help them to eas-
ily understand complicated behavior, such as the hysteresis 
effect that we describe later. Third, a bubble shape is spa-
tially efficient in comparison to a box [15] or a convex hull 
[2] because it compactly encloses the target objects.  
This paper describes the design of our interface and its im-
plementation details. We refined the design through itera-
tive design processes, and the resulting interface contains 
many subtle, yet highly effective details. These include a 
hysteresis effect in the merger and splitting of bubbles. 
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This paper also introduces possible applications of the 
technique and reports the results of a user study where we 
compared Bubble Clusters with standard folders in an icon 
grouping task and with lasso selection in an ink relocation 
task. We found that Bubble Clusters can improve user per-
formance by reducing the amount of user operations.  

RELATED WORK 
Spatial Layout and Aggregation 
Spatial layout has long been used for the management of 
documents in computing systems. A spatial layout of icons 
was used in the early Macintosh and it is one of the funda-
mental features of current window systems such as Win-
dows and Mac OS. Several extensions have been made to 
these simple 2D layouts, such as zoomable interfaces [3, 
16] and a 3D arrangement [18].  
Additional methods for controlling the spatial aggregation 
of icons have also been proposed. Mander et al. observed 
that people create piles of documents to organize informa-
tion in the real world, and developed a gestural interface 
for interacting with piles [13]. Dynapad extends zoomable 
desktops and introduces open, self-adjusting clumps for 
managing groups of icons [2]. The BumpTop system uses 
physics simulation to add realism to the behavior of desk-
top icons [1]. This enables users to create various group 
structures, ranging from tidy piles to messy aggregations. 
Our system differs from these systems in that they require 
the user to explicitly select multiple objects using lasso 
selection or rubber banding to initiate a new clump or a pile. 
In contrast, a bubble cluster automatically emerges when-
ever objects are aggregated. We believe that these two ap-
proaches will complement each other. Bubbles are suitable 
for transient grouping while explicit clumps or piles are 
suitable for more permanent groups. 

Object Manipulation and Group Manipulation 
Object selection and manipulation are some of the most 
fundamental operations in graphical user interfaces and 
many techniques have been proposed to improve them. An 
area cursor [22] and bubble cursor [8] make the mouse 
cursor larger. This makes it easier to catch a small target in 
a relatively sparse layout. In contrast, Bubble Clusters is 
designed to make object selection in dense layouts easier. 
Saund et al. proposed overloaded mouse drag selection, 
which combines rubber banding and lasso selection [19]. 
The user can use rubber banding by drawing a diagonal 
stroke and seamlessly switch to lasso selection by drawing 
an enclosure. They also proposed a flat lattice grouping 
structure [20] to enable an object to belong to multiple 
groups. The user can cycle through the groups by succes-
sive clicks. 
Some systems attempt to infer implicit grouping structures 
in object layouts. Shipman et al. analyzed typical spatial 
structures and developed algorithms to detect these com-
mon structures [21]. Igarashi et al. extended their work by 
focusing on less structured layouts [9]. Advanced grouping 
mechanisms for handwritten strokes have also been re-
searched in the context of electronic whiteboard and draw-

ing systems [11, 14, 15, 20]. Our method frees users from 
explicit grouping and makes implicit group structures visi-
ble by using a sophisticated visual representation to more 
actively support the spatial organization task. 

INTERFACE DESIGN 
This section describes the behavior of Bubble Clusters 
from the user’s point of view. We first discuss the visual 
representation of bubble clusters and then describe their 
behavior. 

Visual Representation 
The base application that we use in this explanation is a 
simple object manipulation system. The user can freely 
move and arrange small objects on a 2D flat canvas using a 
standard direct manipulation (i.e. drag-and-drop) interface. 
This application is an abstraction of typical object manipu-
lation tasks in current GUI frameworks. We will discuss 
more practical applications later. Figure 1 (left) shows a 
screen snapshot of the base system. As seen in this example, 
the spatial layout reveals distinct group structures. How-
ever, these perceptual groups exist only in the user’s mind 
and the computer does not share the structural information. 
Therefore, the user needs to explicitly select multiple ob-
jects in a group to apply some operation to the group. This 
is particularly frustrating when such group structures 
change frequently. 

 
Figure 1: Spatial layout of objects. Left: aggrega-
tions of objects represent their group structure. 
Right: bubbles are visualizations of groups. Each 
bubble surrounds the objects within a corresponding 
group. 

Our system automatically analyzes a spatial layout and 
recognizes such implicit structures. We currently focus on 
the simplest proximity cue for clustering and in future work 
will support a greater variety of cues [21]. The results of 
clustering are shown as bubbles surrounding each group of 
objects (Figure 1, right). A bubble not only works as a vis-
ual cue to indicate the existence of a group but also as a 
handle to interact with the group. The most basic operation 
is dragging: the user can grab and drag an entire group by 
dragging the bubble, i.e., the space within the bubble 
boundary and any objects therein. Other possible opera-
tions include deletion and copying of the entire group. 
These additional commands can be shown in a pop-up 
menu that appears when the user clicks on the bubble with 
the right mouse button. 

Construction of Bubble Clusters 
Bubble clusters are automatically generated by the system 
according to spatial proximity and there is no explicit 
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command for creating a cluster. Any operation that changes 
the layout of objects can be seen as an implicit command to 
create bubble clusters. 
Initially, each object on the canvas is associated with a 
cluster that consists of a single object. If an object is 
dragged and approaches another object, their clusters 
merge (Figure 2(a–c)). As the dragged object moves farther 
away from the objects in initial proximity, the cluster is 
automatically split (Figure 2(d–f)). The same is also true 
when the user drags multiple objects at the same time. Note 
that the visual representation of bubbles changes during 
dragging, but the set of objects being dragged does not 
change during dragging, so newly merged objects do not 
follow the cursor. If the user wants to move the newly 
merged objects in the cluster, the user needs to briefly stop 
and restart dragging, thereby grabbing all of the objects 
into the new cluster. 

(a) (b) (c)

(d) (e) (f)  
Figure 2: Grouping (a–c) and ungrouping (d–f) of 
objects.  

One interesting operation using this technique is “berry 
picking.” When using a standard interface, to collect multi-
ple scattered objects, a user must repeatedly drag and select 
the objects. Using bubbles, the user simply repeats drag-
release-drag operations to collect the objects, which are 
automatically added to the cluster when the user briefly 
releases the cluster near them (Figure 3). 

 
Figure 3: Berry picking. 

Some test users of the initial version complained that un-
necessary merging of clusters occurred too frequently dur-
ing dragging in a crowded layout. Therefore, we added a 
simple hysteresis effect to this merger-and-split process to 
minimize unwanted occurrences of merging and splitting. 
Individual clusters resist being merged when approached, 
and resist being split when objects are leaving. This effect 
is visualized as bubble surfaces that are pushed away by 
surrounding bubbles and elongated when an object is leav-

ing (Figure 4). The addition of this small effect greatly in-
creases the flexibility of the spatial layout. For example, 
two objects at the same distance could belong to the same 
cluster or not depending on their previous state (Figure 
4(b) and (d)). 

(a) (b) (c) (d) (e)  
Figure 4: Hysteresis effect on bubbles. 

We also provide an explicit cutting operation to split bub-
ble clusters. The user simply draws a free-form stroke 
across the bubble and the system then splits the original 
cluster into two separate clusters (Figure 5). Our original 
intention was to allow the user to select a subset of objects 
in an existing cluster, but we subsequently found that this 
cutting operation is particularly useful for recovering the 
original cluster if the user unintentionally merges two clus-
ters. 

 
Figure 5: Cutting a bubble. The user draws a stroke 
and the system splits the cluster. 

Spreading a Cluster 
Spatial aggregation often involves extensive overlapping of 
objects, which is necessary to place many objects in a lim-
ited space. However, this can cause large overhead in ob-
ject manipulation tasks because the user needs to manually 
remove occluding objects one by one in order to see and 
interact with a hidden object. To help users to interact with 
such a hidden object, our system supports automatic expan-
sion of a densely aggregated cluster. When the user re-
quests expansion, the system moves the objects in the clus-
ter outward to remove overlapping, while keeping the 
original configuration as much as possible (Figure 6).  

 
Figure 6: Expansion of a cluster. The user double-
clicks a bubble and the system expands the cluster. 

Various expansion operations are already in use in some 
systems. Users can see the contents of folders and piles by 
opening them [13] in desktop systems. Nonlinear magnifi-
cation is also frequently used in the context of information 
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visualization [6]. Ramos et al. proposed a specialized inter-
face for accessing occluded 2D drawings [17]. Our expan-
sion technique is unique in that it solves an optimization 
problem to preserve the original layout when creating the 
expanded view. This makes it easier for the user to identify 
the target object.  
Our current implementation uses double clicking on a bub-
ble as the trigger for expansion. The expanded view is tem-
porary; the view immediately returns to the original 
“closed” view when the user picks a target in the expanded 
cluster or initiates an operation outside it. Another possible 
implementation is to leave the expanded cluster “opened” 
as we did in the user study. It may also be useful to expand 
a cluster when the cursor pauses on it during dragging to 
support drag-and-drop into an object hidden in an overlap-
ping aggregation. These specific gestures and behaviors 
should be customized for each target application. 

IMPLEMENTATION 
This section describes the implementation details of Bubble 
Clusters. We first describe how the clustering module con-
structs a cluster structure for a given object layout, simply 
by using the distances between objects as criteria for clus-
tering. Then, we describe how the visualization module 
generates a visual representation of a bubble for each clus-
ter, generating 2D blobby shapes around objects. We also 
describe how the splitting module processes cutting opera-
tions. Finally, we describe how the spreading module re-
solves overlapping of objects. 

Clustering 
This module takes the layout of objects as input and groups 
adjacent objects as a cluster. We use a standard bottom-up 
clustering algorithm: the system first assigns a cluster to 
each object and recursively merges adjacent clusters. If the 
distance between two objects in different clusters is shorter 
than a given threshold, the two clusters are merged. This 
merger process is repeated until all adjacent clusters are 
merged. 
In order to add the hysteresis effect, whereby objects resist 
being connected when approached and resist being sepa-
rated when left, we use different thresholds for objects de-
pending on whether they belong to the same cluster or to a 
different cluster in the previous state. If the objects belong 
to the same cluster, the system uses a large threshold to 
prevent their disconnection. If the objects belong to differ-
ent clusters, the system uses a smaller threshold to resist 
their connection. Pseudo-code is as follows. 

// c(o) means the cluster containing the object o 
threashold[oi,oj] ← small value if c(oi) ≠ c(oj) 
           large value if c(oi) = c(oj) 
for ( all objects oi ) 
 c(oi) = new cluster(); 
for ( all object pairs oi, oj ) 
 if ( distance(oi, oj) < threthshold[oi, oj]) ) 
   merge( c(oi), c(oj) ); 

 

Our initial implementation identified clusters after con-
structing the visual representation. That is, the system first 
traced the iso-contours of the potential field around objects 
and then collected the objects enclosed by each iso-contour 
as a cluster. This strategy guarantees that the visual repre-
sentation always matches the internal semantic cluster 
structure. However, the process of identifying the objects 
enclosed by each iso-contour is time-consuming. In addi-
tion, it is difficult to implement the hysteresis effect in this 
approach. Therefore, we decided to identify clusters first 
and generate the visual representation later. 
The separation of clustering and visualization computation 
can cause a mismatch between them; that is, a single cluster 
can be split into multiple bubbles through the iso-surface 
extraction. To prevent this, we inserted a post-process that 
detects when the objects belonging to a cluster would be 
split in the visual representation. If this happens, the system 
divides the cluster according to the visual representation 
and recomputes the bubble geometry. 

Visualization 
This module takes the set of objects belonging to a cluster 
and generates a boundary (bubble) for the cluster. We use a 
2D version of blobby shapes [4] to do this. Each object is 
associated with a potential field around it (Figure 7) and 
the system traces the iso-contour of the potential field in 
2D space. If multiple objects exist, the potential fields of 
nearby objects are summed to generate a smoothly curved 
boundary. We compute the value of the potential field at 
each grid point and apply a standard marching-squares 
method [12] to extract iso-contours. 

0 r0 r1

1

r0r1

  
Figure 7: Potential field of a single object. We cur-
rently use a radial quadratic function f(r) that satis-
fies f(r0) = 1, f(r1) = f'(r1)=0, where r0 is the bubble 
radius of an isolated object and r1 is the size of the 
field. 

We extend the above basic procedure in two ways to obtain 
more convincing visual effects. First, we attenuate the po-
tential field of densely positioned objects to prevent any 
unnecessary bulging effect. In the basic algorithm, two 
overlapping objects result in a larger bubble than that of a 
single object (Figure 8). However, this is inconvenient, as 
it consumes unnecessary space and contradicts the cluster-
ing algorithm, which uses a predefined distance threshold. 
We therefore first compute the potential field at each ob-
ject’s location using uniform weights (h0) and then reduce 
the weight of each object if the potential at the object’s 
location is large. In our current implementation, we set w = 
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hmax / h0 where hmax is the value of the potential field at the 
center of an isolated object. This ensures that the weight 
equals one if there are no other objects within the periphery 
and decreases as the number of objects within the periphery 
increases, keeping the bubble size nearly constant. 

             

 
Figure 8: Bubbles with and without bulging. Top: 
Bubbles created using uniform weights exhibit bulg-
ing. Bottom: Bubbles created using adjusted 
weights do not exhibit bulging. 

Second, we add a negative effect to objects outside the 
cluster to visualize a subtle repulsion effect, i.e., a bubble 
pushes away surrounding bubbles (Figure 9). When com-
puting the potential of a grid point, the system first visits all 
objects within the cluster and adds their positive potential 
values. The system then visits objects outside the cluster 
and adds their negative potential values. This effect is very 
subtle. We currently use a weight of –0.4 for the potential 
value of outside objects. 

+
+

+ -
-

- -

 
Figure 9: Negative effects of surrounding objects. 

Splitting 
This module takes a cutting stroke drawn by the user and 
splits a cluster cut by the stroke. The system identifies the 
bubble that the stroke intersects and divides the bubble in 
half at the boundary specified by the stroke. The system 
then collects the objects inside each half and assigns a new 
cluster to them. Finally, the system computes the new bub-
ble geometry for each cluster and displays them on the 
screen. Our current implementation simply ignores incom-
plete cutting strokes such as those finishing inside a bubble. 
If the stroke intersects multiple bubbles, the system splits 
only the first bubble. 

Spreading 
This module takes overlapping objects in a cluster and re-
turns new positions that avoid overlapping. The simplest 
approach is to use an iterative repulsion method whereby 
the system repeatedly identifies overlaps between pairs of 
objects and pushes them apart. Although very easy to im-
plement, this local repulsion method takes too long because 
any movement to resolve a local overlap can cause a new 
overlap in a different area. Therefore, we construct a global 
system that considers all objects concerned and computes 
their target locations by solving the global system. 

The system first applies Delaunay triangulation to the cen-
ters of the objects to find the neighbors of each object. 
Each edge of the Delaunay triangles corresponds to a pair 
of objects that are immediate neighbors. For each edge of 
the resulting triangles, that is, for each pair of neighboring 
objects, the system computes a target relative position that 
does not cause overlapping and is close to the original rela-
tive position. If two objects are not overlapping, the system 
uses the current relative position as the target. If they are 
overlapping, the system scales the relative position vector 
to resolve overlapping (Figure 10). If two objects have 
coinciding centers, the system moves them in a random 
direction.  

 
Figure 10: Computation of target relative positions. 

Given the target relative positions obtained in the above 
procedure, the system then computes new absolute posi-
tions for the objects so that the resulting relative positions 
are as close to the target relative positions as possible. We 
also constrain the center of gravity of all objects to stay at 
the same location to obtain the absolute positions. Since 
this is an over-constrained problem in general, we mini-
mize the difference in a least-squares sense as follows: 
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where c is the center of all vertices, dvij represents the tar-
get relative position of vi seen by vj, and the summation is 
taken for all vertex pairs appearing in the Delaunay trian-
gulation. This is a standard least-squares minimization 
problem for a linear system and can be solved very effi-
ciently using a publicly available sparse linear solver [5]. 
This approach is similar to the differential mesh processing 
methods that are frequently used in the computer graphics 
community [10]. Pseudo-code is as follows. 

// n ← # of objects; m ← # of edges 
for ( edge ei in the Delaunay triangulation ) 

b[i] ← compute target edge vector for ei 
b[m] = center of all objects 
A ← (see below) 
v = argmin(v){ |Av-b|2 } = (ATA)-1ATb; 
for (all objects oi) 
 oi.position ← v[i]; 

where A is a matrix that maps object coordinates to edge 
vectors and the center of all objects. It looks like 

1
-1

1

-1
1

-1

…

1/n 1/n …

m+1

n

1/n 1/n . 
This method can efficiently resolve existing overlaps in the 
object layout with a single-pass computation. However, 
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least-squares minimization can still leave some overlaps, 
especially when the object layout significantly changes. 
Therefore, we repeat the above procedure (Delaunay trian-
gulation and least-squares minimization) several times to 
obtain a satisfactory result. 

APPLICATIONS 
We believe that Bubble Clusters is widely applicable to the 
management of transient group structures in many applica-
tion domains. In this section we discuss some applications 
of Bubble Clusters and their possible extensions. 

Desktop Icons 
A virtual desktop is often used as a temporary workspace 
in which users manage incoming files before filing them 
into folders. Some users explicitly create lightweight group 
structures by placing related files together. In an informal 
investigation of user desktops, for example, we found one 
user who had placed more than 200 icons on his desktop 
and created distinct spatial groups (Figure 11). Manipula-
tion of icons in such dense layouts is tedious and Bubble 
Clusters would make it easier. 

 
Figure 11: Example of a user's desktop. There are 
more than 200 overlapping icons on the bottom right 
corner. 

We implemented a prototype desktop using Bubble Clus-
ters to test the feasibility of this idea (Figure 12). Several 
extensions were made to the original simple Bubble Clus-
ters. First, we implemented a pop-up menu that appears 
when the user clicks on the bubble with the right mouse 
button. The menu includes commands for deleting the clus-
ter, beautifying the layout of the objects in the cluster, and 
transforming the cluster into a folder. We found transfor-
mation to a folder to be useful for finalizing a structure 
after experimenting with many different structures in Bub-
ble Clusters.  

 
Figure 12: Prototype desktop using Bubble Clusters. 

Second, to allow users to drag-and-drop an icon onto a 
specific icon within a dense aggregation, we added a ges-
tural interface for spreading icons. To drop an icon onto 
another icon hidden in an aggregation, the user moves the 
cursor back and forth over the aggregation while dragging. 
The aggregation then automatically expands to make the 
target icon visible. A version in which an aggregation ex-
pands if the user hovers over it was tested, but the idle 
waiting time proved frustrating to users. 

Web Page Bookmarks  
Bookmarks are a good example of rapidly changing per-
sonal information. Users’ interest in bookmarked pages and 
the content of those pages change frequently. Consequently, 
new bookmarks are often added and old bookmarks 
quickly become obsolete. Accordingly, the group structures 
of bookmarks need to change rapidly. However, it is tedi-
ous to work with a tree structure, and most bookmark lists 
remain messy. 
The Data Mountain system [18] proposes the use of a spa-
tial layout for managing bookmarks. The user can place 
relevant bookmarks together in the workspace, and is freed 
from inflexible hierarchical structures. We believe that 
Bubble Clusters can further facilitate the use of spatial lay-
outs for managing bookmarks. Bubble Clusters would help 
users to move sets of bookmarks easily and to find book-
marks hidden in dense aggregations. 

Playlists for Music Players 
A playlist is a collection of songs in a music player, and 
sets of playlists are used to organize the large numbers of 
songs collected by users. Playlists are also shared and ex-
changed, and are therefore another example of a constantly 
changing group structure. We believe that Bubble Clusters 
can help in their organization. Goto et al. proposed a music 
playback interface for managing large numbers of tunes [7] 
where each song is represented as a small circular icon, and 
the user organizes playlists by manipulating them. Bubble 
Clusters can be a natural extension of this kind of interface. 

Digital Inking 
Handwritten text on a blank canvas, as in free-form note-
taking systems and electronic whiteboard systems, is an-
other good application for Bubble Clusters. The strokes in 
such text form distinct group structures and users fre-
quently move or delete sets of strokes as a group; users 
seldom move a single stroke in a word. However, most 
systems require the use of lasso selection or rubber banding 
to select target strokes, which interferes with the users' flu-
ent interaction with the system. Some systems automati-
cally recognize implicit structures in handwritten text [14, 
19] but they require explicit requests from the user. Bubble 
Clusters can work in the background and provide a way to 
manipulate groups of strokes without distracting from the 
main writing task. Our interface can complement existing 
informal grouping methods for handwritten texts [11, 15]. 
These are designed for managing larger working units (e.g., 
the entire discussion on a single topic) and our method is 
effective for smaller units (e.g., words and sentences). 
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We have implemented a prototype Bubble Clusters inter-
face for free-form inking (Figure 13). This demonstration 
was well received by lecturers using electronic whiteboards, 
many of whom would end up dragging a single stroke 
when they attempted to drag an entire word. Computing the 
potential fields for free-form strokes is computationally 
expensive because the strokes consist of many points while 
a single point is sufficient for an icon. Therefore, we de-
cided to update the bubble geometry only when the user 
completes a stroke or finishes moving strokes.  

 
Figure 13: Prototype interface for free-form inking. 

USER STUDY 
We conducted two user studies to measure the performance 
of our technique in different application scenarios: a group-
ing task in a desktop environment and an ink relocation 
task in a digital whiteboard environment. The goal of these 
studies is to see whether the users can successfully under-
stand the behavior of bubble clusters and to see whether 
automatic grouping actually improves user performance.  

User Study 1: Grouping Icons 
The goal of the first study was to examine whether Bubble 
Clusters could help users with icon grouping in a desktop 
environment. The participants were asked to group icons 
with same color using conventional folders and Bubble 
Clusters. This kind of grouping task occurs when the user 
wants to organize a set of unclassified files, such as images 
and documents. Our main hypothesis was that the Bubble 
Clusters would outperform conventional folders in this 
kind of bottom-up grouping task. 
Apparatus. We used a Dell Dimension 9100 Pentium 4 
computer with a standard mouse and keyboard. The test 
program was implemented using Java™ 5.0 running on 
Windows XP SP2 Professional. The size of the canvas was 
1024 × 736 pixels. 
Participants. Twelve participants, all men ranging in age 
from 20 to 25 years, were recruited mainly from the local 
university community for the experiment. Participants each 
were paid 1,000 Japanese yen and all were regular com-
puter users. None had previous experience with Bubble 
Clusters. 
Task. The task was to group spatially distributed icons ac-
cording to their colors. Each task consisted of two phases: 
an initial grouping phase and a regrouping phase. Initially, 
small boxes were scattered randomly on the canvas (Figure 
15(a)). Each box was colored red, green, blue, cyan, or 
yellow. Users were given 6 boxes of each color, for a total 
of 30 boxes. Users grouped the scattered boxes by color 
using dragging operations (initial grouping task). The 

grouping task was complete when all of the boxes were 
correctly grouped (Figure 15(b)), and then the color of each 
box was randomly changed (Figure 15(c)). The number of 
colors and the number of boxes per color were the same as 
in the initial grouping task. The users then grouped the 
boxes again (regrouping task; Figure 15(d)). 
Interfaces. In the folder interface, the users distributed the 
colored boxes into folders (Figure 14). This task mimics 
the standard desktop workspace in a modern window sys-
tem. The users could create a new folder or change its 
name from a context menu. The users could open a folder 
by double-clicking. The users moved boxes into a folder by 
dragging them into the folder or into its corresponding 
open window. Multiple boxes could be selected with stan-
dard rubber banding. We also provided additive selection 
using a shift key. Each task ended when all of the boxes 
were correctly grouped, with all of the boxes of the same 
color in the same folder and each folder containing only 
one color of box, although we allowed the users to leave 
folders empty. 

 
Figure 14: Screen snapshot of the grouping task us-
ing the folder interface. 

In the bubble interface, the participants used Bubble Clus-
ters to create clusters with boxes of the same color (Figure 
15). Users could move, merge, split, and expand bubbles as 
described in this paper. Each task ended when all of the 
boxes were correctly clustered, with each cluster containing 
all of the boxes of the same color. 

a)  b)  

c)  d)  
Figure 15: Screen snapshots of the icon grouping 
task using the bubble interface. (a) Initial layout. (b) 
Completion of the initial grouping task. (c) Colors 
are changed. (d) Completion of the regrouping task. 
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The major difference between the two interface conditions 
is that the folder interface requires explicit creation and 
opening of folders. This can be seen as a bias. However, 
the ability to create and work with groups without explicit 
group operations is the main benefit of our technique. 
Therefore, we set the goal of this study to show the benefit 
of removing explicit group operations and chose this de-
sign. 
Design. Each participant was subjected to both interface 
conditions. Participants were divided into two groups of six. 
One group used the folder interface first and the other 
group used the bubble interfaces first. Each session lasted 
approximately 20 min.  
One set consisted of the grouping and regrouping phase, 
and each participant performed 4 sets for each interface, for 
a total of 16 trials (4 sets × 2 interfaces × 2 phases). The 
first set in each interface was used for tutorial and practice. 
The subsequent three sets were used for the statistical 
analysis. Participants were asked to complete the trials as 
quickly and as accurately as possible. The task time was 
measured from the moment the user pressed a start button 
until the moment when all of the boxes were grouped or 
regrouped. The users were requested to resolve errors be-
fore completing the task, which means that error measure-
ment is included in the task completion time. Participants 
completed a questionnaire at the end of the experiment. 
Results. The average and the standard variation of the two 
interfaces are shown in Figure 16. Paired t-tests showed 
significant differences between the two interfaces in both 
the grouping tasks (t(11) = 6.46, p < 0.001) and the re-
grouping tasks (t(11) = 9.61, p < 0.001). In the question-
naires, 10 of 12 participants preferred the bubble interface 
over the folder interface for this particular task and all of 
the participants answered "yes" to the question “Was the 
concept of Bubble Clusters easy to understand?” This 
shows that Bubble Clusters can be useful for bottom-up 
grouping of items on the desktop.  
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Figure 16: Average trial time in seconds under each 
interface condition with standard deviation. 

A detailed analysis of the user’s operation history under the 
bubble condition reveals that the participants successfully 
understood each operation and used it well to accomplish 
the task. On average, the participants used 8 cut operations 
and 6 expansion operations in the grouping phase, and 10 
cuts and 12 expansions in the regrouping phase. This dif-
ference occurred because the icons were highly overlap-

ping at the beginning of the regrouping phase and the user 
first needed to resolve this before the task could be com-
pleted. 

User Study 2: Ink Relocation 
The goal of the second study was to examine whether Bub-
ble Clusters could help users perform an ink manipulation 
task in a digital whiteboard environment. The participants 
were asked to move handwritten words to designated areas 
using conventional lasso selection and Bubble Clusters. 
Our main hypothesis was that the Bubble Clusters would 
outperform conventional lasso selection. 
Apparatus. We used a display-integrated tablet with a 17” 
display (Wacom Cintiq) connected to a laptop computer 
with 1.10 Ghz Pentium M processor (Toshiba Dynabook 
SS2120). The test program was implemented using JavaTM 
5.0 running on Windows XP SP2 Home Edition. The size 
of the screen was 1024 × 768 pixels. 
Participants. Twelve participants (2 women and 10 men) 
ranging in age from 18 to 35 years were recruited mainly 
from the local university community and volunteered for 
the experiment. Participants each were paid 1,000 Japanese 
yen and all were regular computer users. None had previ-
ous experience with ink manipulation using Bubble Clus-
ters. All participants were right-handed. 
Task. The task was to move eight handwritten words, listed 
vertically on the left-hand side of the screen, to the right-
hand side in a reversed order. Each word consisted of mul-
tiple free-form strokes. The target region for each word 
was clearly shown to the user. Figure 17 shows a screen 
snapshot of task using the lasso interface.  

 
Figure 17: Screen snapshot of the ink relocation 
task using the lasso interface. 

Interfaces. We tested four interface conditions. The Lasso 
interface used standard lasso selection in which the user 
selected a target word by drawing an enclosing stroke 
around it and moved the word by dragging the area en-
closed by the lasso (Figure 17). For Bubble Clusters, we 
tested three different parameter settings. The small bubble 
interface used Bubble Clusters that were too small to en-
close some words; these words were split among multiple 
bubbles (Figure 18, left). In this case, the user needed to 
connect these bubbles to move the entire word. In the me-
dium bubble interface, bubble size was optimal and each 
word was associated with a single bubble (Figure 18, cen-
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ter). The user could simply drag-and-drop the individual 
bubbles to complete the task. In the large bubble interface, 
all of the words initially were connected together (Figure 
18, right). The user had to cut the bubbles to move the in-
dividual words. These scenarios emulate errors in auto-
matic group creation in real-time authoring. 

           
Figure 18: Three different bubble conditions (left, 
small bubble; center, medium bubble; right, large 
bubble). 

Design. A balanced within-subjects design was used. Each 
participant was subjected to all four interface conditions. 
Participants were divided into two groups of six. One 
group used the lasso interface first and the other group used 
the bubble interfaces first. The order of three bubble condi-
tions was counterbalanced within each group. Each session 
lasted approximately 20 min.  
Each participant performed 5 trials under each interface 
condition, for a total of 20 trials (5 trials × 4 interfaces). 
The first two trials were used for tutorial and practice and 
the subsequent three trials were applied in the statistical 
analysis. Participants were asked to complete the trials as 
quickly and as accurately as possible. Pilot testing and 
analysis of the study data did not show significant learning 
effects after the first two trials. The task time was counted 
from the moment the user pressed a start button until the 
moment when the last word was placed within the target 
region. Participants completed a questionnaire at the end of 
the experiment. 
Results. The average and the standard variation of the four 
interfaces are shown in Figure 19. A repeated measures 
analysis of variance (ANOVA) was conducted on the task 
completion times across the four interface types (lasso, 
small bubble, medium bubble, and large bubble). A signifi-
cant difference was observed across the interface types, 
(F(3, 33) = 31.651, p < 0.001). The mean task completion 
time was 32.72 s for lasso selection, 24.73 s for small bub-
ble, 19.28 s for medium bubble, and 28.86 s for large bub-
ble. Post hoc tests showed that tasks using the small bubble 
and the medium bubble took significantly less time than the 
lasso selection (p < 0.01 and p < 0.001, respectively), but 
we found no significant difference between using the lasso 
selection and the large bubbles (p > 0.1). 
These results show that Bubble Clusters can be very useful 
for an ink relocation task. Under the optimal condition 
(medium bubble), the task completion time was approxi-
mately 60% that under the lasso condition. The advantage 

of Bubble Clusters remained significant when the bubble 
size was too small and the user needed to perform an extra 
operation. In a realistic situation, most bubbles would be of 
an appropriate size (because the user can easily customize 
bubble size) with a few incorrectly clustered words. There-
fore, the real performance should be within the range of the 
three bubble conditions in this study, which is clearly faster 
than the lasso condition. 
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Figure 19: Average trial time in seconds under each 
interface condition with standard deviation. 

The observation of the users' behavior during the study and 
the posttest interview revealed that the large bubble condi-
tion has a usability issue. Several users unintentionally 
dragged a large bubble when they tried to cut the bubble. It 
might be possible to reduce this mistake with a more com-
plicated cutting interface, such as one that uses a physical 
button or a special gesture, but these are not attractive op-
tions because they would make the interface more complex. 
The small bubble condition had better results than the large 
bubble condition, so a practical solution to this problem is 
to use bubbles that are slightly small (i.e., use a parameter 
setting that tolerates over-segmentation while avoiding 
under-segmentation).  

CONCLUSIONS AND FUTURE WORK 
We proposed a technique, Bubble Clusters, for organizing 
transient group structures in spatial information manage-
ment systems. Nearby objects are automatically recognized 
as a cluster and the system visualizes the structure as a 
bubble surrounding the objects. We also introduced auto-
matic expansion of overlapping objects, implemented a 
prototype system, and performed a user study. The results 
show that Bubble Clusters could improve performance in a 
simple icon grouping task and an ink relocation task com-
pared to standard folders and lasso selection, respectively. 
Although they do not guarantee the superiority of our tech-
nique in real applications, these results show that Bubble 
Clusters did help users in certain situations.  
We hope to further explore several additional areas. Cur-
rently, users can select an icon or a bubble, but there is no 
method to select a smaller group of icons within a bubble. 
It might be interesting to vary the selection range depend-
ing on the number of clicks. For example, a single-click 
might select the icon underneath the cursor, a double-click, 
the overlapping icons within a cluster, and three clicks, the 
entire cluster [9]. Such multiple-click selection is also seen 
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in text editors.  Another possibility is to change the selec-
tion range depending on where the user clicks in a bubble. 
That is, clicking near an icon could select only nearby 
icons while clicking near the edge of a bubble selects the 
entire bubble. 
Scalability can be an issue when users want to manage a 
large number of objects using Bubble Clusters. Our initial 
goal was to improve the usability of existing spatial layout 
systems, so the target number of objects to handle was less 
than a hundred. Beyond that, we expect users to switch to 
traditional folders. One interesting future direction is to 
combine Bubble Clusters with zooming interfaces to obtain 
a virtually infinite amount of space [3].  
Visual clutter is also an issue. Although we designed the 
visual representation to be as simple as possible, it does 
show a great deal of information on the screen and can be 
distracting. One solution is to make bubbles transparent 
and only show them at relevant times in the interaction. In 
the electronic whiteboard application, it would be helpful 
to show clusters only on the instructors display and hide 
them on the main display.  
Some test users said that they wanted to name clusters. 
Currently, users cannot name clusters manually because the 
system creates clusters automatically. The users requested 
automatic naming of clusters so that they had some clue as 
to the kind of icons hidden in a dense cluster. It might be 
possible to add properties to a cluster based on the proper-
ties of the objects in the cluster.  One possibility is to give a 
different color to each bubble depending on the properties 
of its member objects. These extensions would allow users 
to recognize the characteristics of a cluster without examin-
ing individual objects. 
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