

Bubble Clusters: An Interface for Manipulating

Spatial Aggregation of Graphical Objects

Nayuko Watanabe† Motoi Washida‡ Takeo Igarashi‡
†Research & Development Center

Toshiba Corporation
nayuko.watanabe@toshiba.co.jp

‡Computer Science Department
The University of Tokyo, SORST JST

wm3@ui.is.s.u-tokyo.ac.jp, takeo@acm.org

ABSTRACT
Spatial layout is frequently used for managing loosely or-
ganized information, such as desktop icons and digital ink.
To help users organize this type of information efficiently,
we propose an interface for manipulating spatial aggrega-
tions of objects. The aggregated objects are automatically
recognized as a group, and the group structure is visualized
as a two-dimensional bubble surface that surrounds the
objects. Users can drag, copy, or delete a group by operat-
ing on the bubble. Furthermore, to help pick out individual
objects in a dense aggregation, the system spreads the ob-
jects to avoid overlapping when requested. This paper de-
scribes the design of this interface and its implementation.
We tested our technique in icon grouping and ink reloca-
tion tasks and observed improvements in user performance.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces – Graphical user interfaces.
General terms: Design, Human Factors
Keywords: spatial layout, direct manipulation, clustering

INTRODUCTION
In current graphical user interfaces, spatial layouts are of-
ten used to manage temporary or transient information.
Examples include desktop icons, web bookmarks [18], and
spatial hypertexts [21]. In these systems, the spatial posi-
tion of objects represents the semantic relationships among
them. Objects placed close together are related and objects
placed far away from each other are unrelated. Compared
to more explicit grouping mechanisms, such as hierarchical
folders, these spatial layouts enable more flexible and
lightweight organization of information. They are particu-
larly useful for managing miscellaneous personal informa-
tion [2].
Spatial aggregation plays an important role in management
of information using spatial layout. An aggregation repre-
sents a group structure and people can quickly create,

merge, and split groups by moving objects on the screen.
However, in most existing systems, a group represented by
a spatial aggregation exists only in the user’s mind, and the
computers do not explicitly treat the group as a group.
Therefore, the user needs to explicitly select the objects in
a group using methods such as rubber banding or lasso
selection before applying an operation (e.g. relocation or
deletion) on the group. Another problem is that it is diffi-
cult to pick a hidden object from a dense spatial aggrega-
tion. To pick such an object using existing systems, the
user needs to remove overlapping objects individually.
We propose an interface, called Bubble Clusters, for ma-
nipulating spatial aggregations of objects to address these
problems. First, the system automatically recognizes ag-
gregated objects as a group and visualizes the result as a
bubble surrounding the objects (Figure 1). The bubble
serves as a proxy for the group and the user can operate on
the group by clicking on the bubble. Unlike standard fold-
ers, our system does not require an explicit grouping opera-
tion. The user simply creates, deletes, and moves objects,
and the system automatically updates the group structure
according to spatial relationships. Second, the system sup-
ports automatic spreading of aggregated objects to help the
user to pick a hidden object. An aggregation expands tem-
porarily at the user’s request (by double-clicking on the
bubble) and automatically returns to its original state once
the user has picked a target object or cancelled the opera-
tion.
In addition to being visually pleasing, the bubble metaphor
is particularly suitable for our purposes for the following
reasons. First, the rotund shapes present themselves as tran-
sient structures, encouraging further experiments in
organizing documents [15]. Second, we can leverage users’
natural expectation of bubble behavior to help them to eas-
ily understand complicated behavior, such as the hysteresis
effect that we describe later. Third, a bubble shape is spa-
tially efficient in comparison to a box [15] or a convex hull
[2] because it compactly encloses the target objects.
This paper describes the design of our interface and its im-
plementation details. We refined the design through itera-
tive design processes, and the resulting interface contains
many subtle, yet highly effective details. These include a
hysteresis effect in the merger and splitting of bubbles.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee prvided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’07, October 7-10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

173

This paper also introduces possible applications of the
technique and reports the results of a user study where we
compared Bubble Clusters with standard folders in an icon
grouping task and with lasso selection in an ink relocation
task. We found that Bubble Clusters can improve user per-
formance by reducing the amount of user operations.

RELATED WORK
Spatial Layout and Aggregation
Spatial layout has long been used for the management of
documents in computing systems. A spatial layout of icons
was used in the early Macintosh and it is one of the funda-
mental features of current window systems such as Win-
dows and Mac OS. Several extensions have been made to
these simple 2D layouts, such as zoomable interfaces [3,
16] and a 3D arrangement [18].
Additional methods for controlling the spatial aggregation
of icons have also been proposed. Mander et al. observed
that people create piles of documents to organize informa-
tion in the real world, and developed a gestural interface
for interacting with piles [13]. Dynapad extends zoomable
desktops and introduces open, self-adjusting clumps for
managing groups of icons [2]. The BumpTop system uses
physics simulation to add realism to the behavior of desk-
top icons [1]. This enables users to create various group
structures, ranging from tidy piles to messy aggregations.
Our system differs from these systems in that they require
the user to explicitly select multiple objects using lasso
selection or rubber banding to initiate a new clump or a pile.
In contrast, a bubble cluster automatically emerges when-
ever objects are aggregated. We believe that these two ap-
proaches will complement each other. Bubbles are suitable
for transient grouping while explicit clumps or piles are
suitable for more permanent groups.

Object Manipulation and Group Manipulation
Object selection and manipulation are some of the most
fundamental operations in graphical user interfaces and
many techniques have been proposed to improve them. An
area cursor [22] and bubble cursor [8] make the mouse
cursor larger. This makes it easier to catch a small target in
a relatively sparse layout. In contrast, Bubble Clusters is
designed to make object selection in dense layouts easier.
Saund et al. proposed overloaded mouse drag selection,
which combines rubber banding and lasso selection [19].
The user can use rubber banding by drawing a diagonal
stroke and seamlessly switch to lasso selection by drawing
an enclosure. They also proposed a flat lattice grouping
structure [20] to enable an object to belong to multiple
groups. The user can cycle through the groups by succes-
sive clicks.
Some systems attempt to infer implicit grouping structures
in object layouts. Shipman et al. analyzed typical spatial
structures and developed algorithms to detect these com-
mon structures [21]. Igarashi et al. extended their work by
focusing on less structured layouts [9]. Advanced grouping
mechanisms for handwritten strokes have also been re-
searched in the context of electronic whiteboard and draw-

ing systems [11, 14, 15, 20]. Our method frees users from
explicit grouping and makes implicit group structures visi-
ble by using a sophisticated visual representation to more
actively support the spatial organization task.

INTERFACE DESIGN
This section describes the behavior of Bubble Clusters
from the user’s point of view. We first discuss the visual
representation of bubble clusters and then describe their
behavior.

Visual Representation
The base application that we use in this explanation is a
simple object manipulation system. The user can freely
move and arrange small objects on a 2D flat canvas using a
standard direct manipulation (i.e. drag-and-drop) interface.
This application is an abstraction of typical object manipu-
lation tasks in current GUI frameworks. We will discuss
more practical applications later. Figure 1 (left) shows a
screen snapshot of the base system. As seen in this example,
the spatial layout reveals distinct group structures. How-
ever, these perceptual groups exist only in the user’s mind
and the computer does not share the structural information.
Therefore, the user needs to explicitly select multiple ob-
jects in a group to apply some operation to the group. This
is particularly frustrating when such group structures
change frequently.

Figure 1: Spatial layout of objects. Left: aggrega-
tions of objects represent their group structure.
Right: bubbles are visualizations of groups. Each
bubble surrounds the objects within a corresponding
group.

Our system automatically analyzes a spatial layout and
recognizes such implicit structures. We currently focus on
the simplest proximity cue for clustering and in future work
will support a greater variety of cues [21]. The results of
clustering are shown as bubbles surrounding each group of
objects (Figure 1, right). A bubble not only works as a vis-
ual cue to indicate the existence of a group but also as a
handle to interact with the group. The most basic operation
is dragging: the user can grab and drag an entire group by
dragging the bubble, i.e., the space within the bubble
boundary and any objects therein. Other possible opera-
tions include deletion and copying of the entire group.
These additional commands can be shown in a pop-up
menu that appears when the user clicks on the bubble with
the right mouse button.

Construction of Bubble Clusters
Bubble clusters are automatically generated by the system
according to spatial proximity and there is no explicit

174

command for creating a cluster. Any operation that changes
the layout of objects can be seen as an implicit command to
create bubble clusters.
Initially, each object on the canvas is associated with a
cluster that consists of a single object. If an object is
dragged and approaches another object, their clusters
merge (Figure 2(a–c)). As the dragged object moves farther
away from the objects in initial proximity, the cluster is
automatically split (Figure 2(d–f)). The same is also true
when the user drags multiple objects at the same time. Note
that the visual representation of bubbles changes during
dragging, but the set of objects being dragged does not
change during dragging, so newly merged objects do not
follow the cursor. If the user wants to move the newly
merged objects in the cluster, the user needs to briefly stop
and restart dragging, thereby grabbing all of the objects
into the new cluster.

(a) (b) (c)

(d) (e) (f)
Figure 2: Grouping (a–c) and ungrouping (d–f) of
objects.

One interesting operation using this technique is “berry
picking.” When using a standard interface, to collect multi-
ple scattered objects, a user must repeatedly drag and select
the objects. Using bubbles, the user simply repeats drag-
release-drag operations to collect the objects, which are
automatically added to the cluster when the user briefly
releases the cluster near them (Figure 3).

Figure 3: Berry picking.

Some test users of the initial version complained that un-
necessary merging of clusters occurred too frequently dur-
ing dragging in a crowded layout. Therefore, we added a
simple hysteresis effect to this merger-and-split process to
minimize unwanted occurrences of merging and splitting.
Individual clusters resist being merged when approached,
and resist being split when objects are leaving. This effect
is visualized as bubble surfaces that are pushed away by
surrounding bubbles and elongated when an object is leav-

ing (Figure 4). The addition of this small effect greatly in-
creases the flexibility of the spatial layout. For example,
two objects at the same distance could belong to the same
cluster or not depending on their previous state (Figure
4(b) and (d)).

(a) (b) (c) (d) (e)
Figure 4: Hysteresis effect on bubbles.

We also provide an explicit cutting operation to split bub-
ble clusters. The user simply draws a free-form stroke
across the bubble and the system then splits the original
cluster into two separate clusters (Figure 5). Our original
intention was to allow the user to select a subset of objects
in an existing cluster, but we subsequently found that this
cutting operation is particularly useful for recovering the
original cluster if the user unintentionally merges two clus-
ters.

Figure 5: Cutting a bubble. The user draws a stroke
and the system splits the cluster.

Spreading a Cluster
Spatial aggregation often involves extensive overlapping of
objects, which is necessary to place many objects in a lim-
ited space. However, this can cause large overhead in ob-
ject manipulation tasks because the user needs to manually
remove occluding objects one by one in order to see and
interact with a hidden object. To help users to interact with
such a hidden object, our system supports automatic expan-
sion of a densely aggregated cluster. When the user re-
quests expansion, the system moves the objects in the clus-
ter outward to remove overlapping, while keeping the
original configuration as much as possible (Figure 6).

Figure 6: Expansion of a cluster. The user double-
clicks a bubble and the system expands the cluster.

Various expansion operations are already in use in some
systems. Users can see the contents of folders and piles by
opening them [13] in desktop systems. Nonlinear magnifi-
cation is also frequently used in the context of information

175

visualization [6]. Ramos et al. proposed a specialized inter-
face for accessing occluded 2D drawings [17]. Our expan-
sion technique is unique in that it solves an optimization
problem to preserve the original layout when creating the
expanded view. This makes it easier for the user to identify
the target object.
Our current implementation uses double clicking on a bub-
ble as the trigger for expansion. The expanded view is tem-
porary; the view immediately returns to the original
“closed” view when the user picks a target in the expanded
cluster or initiates an operation outside it. Another possible
implementation is to leave the expanded cluster “opened”
as we did in the user study. It may also be useful to expand
a cluster when the cursor pauses on it during dragging to
support drag-and-drop into an object hidden in an overlap-
ping aggregation. These specific gestures and behaviors
should be customized for each target application.

IMPLEMENTATION
This section describes the implementation details of Bubble
Clusters. We first describe how the clustering module con-
structs a cluster structure for a given object layout, simply
by using the distances between objects as criteria for clus-
tering. Then, we describe how the visualization module
generates a visual representation of a bubble for each clus-
ter, generating 2D blobby shapes around objects. We also
describe how the splitting module processes cutting opera-
tions. Finally, we describe how the spreading module re-
solves overlapping of objects.

Clustering
This module takes the layout of objects as input and groups
adjacent objects as a cluster. We use a standard bottom-up
clustering algorithm: the system first assigns a cluster to
each object and recursively merges adjacent clusters. If the
distance between two objects in different clusters is shorter
than a given threshold, the two clusters are merged. This
merger process is repeated until all adjacent clusters are
merged.
In order to add the hysteresis effect, whereby objects resist
being connected when approached and resist being sepa-
rated when left, we use different thresholds for objects de-
pending on whether they belong to the same cluster or to a
different cluster in the previous state. If the objects belong
to the same cluster, the system uses a large threshold to
prevent their disconnection. If the objects belong to differ-
ent clusters, the system uses a smaller threshold to resist
their connection. Pseudo-code is as follows.

// c(o) means the cluster containing the object o
threashold[oi,oj] ← small value if c(oi) ≠ c(oj)
 large value if c(oi) = c(oj)
for (all objects oi)
 c(oi) = new cluster();
for (all object pairs oi, oj)
 if (distance(oi, oj) < threthshold[oi, oj]))
 merge(c(oi), c(oj));

Our initial implementation identified clusters after con-
structing the visual representation. That is, the system first
traced the iso-contours of the potential field around objects
and then collected the objects enclosed by each iso-contour
as a cluster. This strategy guarantees that the visual repre-
sentation always matches the internal semantic cluster
structure. However, the process of identifying the objects
enclosed by each iso-contour is time-consuming. In addi-
tion, it is difficult to implement the hysteresis effect in this
approach. Therefore, we decided to identify clusters first
and generate the visual representation later.
The separation of clustering and visualization computation
can cause a mismatch between them; that is, a single cluster
can be split into multiple bubbles through the iso-surface
extraction. To prevent this, we inserted a post-process that
detects when the objects belonging to a cluster would be
split in the visual representation. If this happens, the system
divides the cluster according to the visual representation
and recomputes the bubble geometry.

Visualization
This module takes the set of objects belonging to a cluster
and generates a boundary (bubble) for the cluster. We use a
2D version of blobby shapes [4] to do this. Each object is
associated with a potential field around it (Figure 7) and
the system traces the iso-contour of the potential field in
2D space. If multiple objects exist, the potential fields of
nearby objects are summed to generate a smoothly curved
boundary. We compute the value of the potential field at
each grid point and apply a standard marching-squares
method [12] to extract iso-contours.

0 r0 r1

1

r0r1

Figure 7: Potential field of a single object. We cur-
rently use a radial quadratic function f(r) that satis-
fies f(r0) = 1, f(r1) = f'(r1)=0, where r0 is the bubble
radius of an isolated object and r1 is the size of the
field.

We extend the above basic procedure in two ways to obtain
more convincing visual effects. First, we attenuate the po-
tential field of densely positioned objects to prevent any
unnecessary bulging effect. In the basic algorithm, two
overlapping objects result in a larger bubble than that of a
single object (Figure 8). However, this is inconvenient, as
it consumes unnecessary space and contradicts the cluster-
ing algorithm, which uses a predefined distance threshold.
We therefore first compute the potential field at each ob-
ject’s location using uniform weights (h0) and then reduce
the weight of each object if the potential at the object’s
location is large. In our current implementation, we set w =

176

hmax / h0 where hmax is the value of the potential field at the
center of an isolated object. This ensures that the weight
equals one if there are no other objects within the periphery
and decreases as the number of objects within the periphery
increases, keeping the bubble size nearly constant.

Figure 8: Bubbles with and without bulging. Top:
Bubbles created using uniform weights exhibit bulg-
ing. Bottom: Bubbles created using adjusted
weights do not exhibit bulging.

Second, we add a negative effect to objects outside the
cluster to visualize a subtle repulsion effect, i.e., a bubble
pushes away surrounding bubbles (Figure 9). When com-
puting the potential of a grid point, the system first visits all
objects within the cluster and adds their positive potential
values. The system then visits objects outside the cluster
and adds their negative potential values. This effect is very
subtle. We currently use a weight of –0.4 for the potential
value of outside objects.

+
+

+ -
-

- -

Figure 9: Negative effects of surrounding objects.

Splitting
This module takes a cutting stroke drawn by the user and
splits a cluster cut by the stroke. The system identifies the
bubble that the stroke intersects and divides the bubble in
half at the boundary specified by the stroke. The system
then collects the objects inside each half and assigns a new
cluster to them. Finally, the system computes the new bub-
ble geometry for each cluster and displays them on the
screen. Our current implementation simply ignores incom-
plete cutting strokes such as those finishing inside a bubble.
If the stroke intersects multiple bubbles, the system splits
only the first bubble.

Spreading
This module takes overlapping objects in a cluster and re-
turns new positions that avoid overlapping. The simplest
approach is to use an iterative repulsion method whereby
the system repeatedly identifies overlaps between pairs of
objects and pushes them apart. Although very easy to im-
plement, this local repulsion method takes too long because
any movement to resolve a local overlap can cause a new
overlap in a different area. Therefore, we construct a global
system that considers all objects concerned and computes
their target locations by solving the global system.

The system first applies Delaunay triangulation to the cen-
ters of the objects to find the neighbors of each object.
Each edge of the Delaunay triangles corresponds to a pair
of objects that are immediate neighbors. For each edge of
the resulting triangles, that is, for each pair of neighboring
objects, the system computes a target relative position that
does not cause overlapping and is close to the original rela-
tive position. If two objects are not overlapping, the system
uses the current relative position as the target. If they are
overlapping, the system scales the relative position vector
to resolve overlapping (Figure 10). If two objects have
coinciding centers, the system moves them in a random
direction.

Figure 10: Computation of target relative positions.

Given the target relative positions obtained in the above
procedure, the system then computes new absolute posi-
tions for the objects so that the resulting relative positions
are as close to the target relative positions as possible. We
also constrain the center of gravity of all objects to stay at
the same location to obtain the absolute positions. Since
this is an over-constrained problem in general, we mini-
mize the difference in a least-squares sense as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟
⎠

⎞
⎜
⎝

⎛
+−−∑ ∑

ji i
iijji

v
cv

n
dvvv

,

2
2 1minarg

where c is the center of all vertices, dvij represents the tar-
get relative position of vi seen by vj, and the summation is
taken for all vertex pairs appearing in the Delaunay trian-
gulation. This is a standard least-squares minimization
problem for a linear system and can be solved very effi-
ciently using a publicly available sparse linear solver [5].
This approach is similar to the differential mesh processing
methods that are frequently used in the computer graphics
community [10]. Pseudo-code is as follows.

// n ← # of objects; m ← # of edges
for (edge ei in the Delaunay triangulation)

b[i] ← compute target edge vector for ei
b[m] = center of all objects
A ← (see below)
v = argmin(v){ |Av-b|2 } = (ATA)-1ATb;
for (all objects oi)
 oi.position ← v[i];

where A is a matrix that maps object coordinates to edge
vectors and the center of all objects. It looks like

1
-1

1

-1
1

-1

…

1/n 1/n …

m+1

n

1/n 1/n .
This method can efficiently resolve existing overlaps in the
object layout with a single-pass computation. However,

177

least-squares minimization can still leave some overlaps,
especially when the object layout significantly changes.
Therefore, we repeat the above procedure (Delaunay trian-
gulation and least-squares minimization) several times to
obtain a satisfactory result.

APPLICATIONS
We believe that Bubble Clusters is widely applicable to the
management of transient group structures in many applica-
tion domains. In this section we discuss some applications
of Bubble Clusters and their possible extensions.

Desktop Icons
A virtual desktop is often used as a temporary workspace
in which users manage incoming files before filing them
into folders. Some users explicitly create lightweight group
structures by placing related files together. In an informal
investigation of user desktops, for example, we found one
user who had placed more than 200 icons on his desktop
and created distinct spatial groups (Figure 11). Manipula-
tion of icons in such dense layouts is tedious and Bubble
Clusters would make it easier.

Figure 11: Example of a user's desktop. There are
more than 200 overlapping icons on the bottom right
corner.

We implemented a prototype desktop using Bubble Clus-
ters to test the feasibility of this idea (Figure 12). Several
extensions were made to the original simple Bubble Clus-
ters. First, we implemented a pop-up menu that appears
when the user clicks on the bubble with the right mouse
button. The menu includes commands for deleting the clus-
ter, beautifying the layout of the objects in the cluster, and
transforming the cluster into a folder. We found transfor-
mation to a folder to be useful for finalizing a structure
after experimenting with many different structures in Bub-
ble Clusters.

Figure 12: Prototype desktop using Bubble Clusters.

Second, to allow users to drag-and-drop an icon onto a
specific icon within a dense aggregation, we added a ges-
tural interface for spreading icons. To drop an icon onto
another icon hidden in an aggregation, the user moves the
cursor back and forth over the aggregation while dragging.
The aggregation then automatically expands to make the
target icon visible. A version in which an aggregation ex-
pands if the user hovers over it was tested, but the idle
waiting time proved frustrating to users.

Web Page Bookmarks
Bookmarks are a good example of rapidly changing per-
sonal information. Users’ interest in bookmarked pages and
the content of those pages change frequently. Consequently,
new bookmarks are often added and old bookmarks
quickly become obsolete. Accordingly, the group structures
of bookmarks need to change rapidly. However, it is tedi-
ous to work with a tree structure, and most bookmark lists
remain messy.
The Data Mountain system [18] proposes the use of a spa-
tial layout for managing bookmarks. The user can place
relevant bookmarks together in the workspace, and is freed
from inflexible hierarchical structures. We believe that
Bubble Clusters can further facilitate the use of spatial lay-
outs for managing bookmarks. Bubble Clusters would help
users to move sets of bookmarks easily and to find book-
marks hidden in dense aggregations.

Playlists for Music Players
A playlist is a collection of songs in a music player, and
sets of playlists are used to organize the large numbers of
songs collected by users. Playlists are also shared and ex-
changed, and are therefore another example of a constantly
changing group structure. We believe that Bubble Clusters
can help in their organization. Goto et al. proposed a music
playback interface for managing large numbers of tunes [7]
where each song is represented as a small circular icon, and
the user organizes playlists by manipulating them. Bubble
Clusters can be a natural extension of this kind of interface.

Digital Inking
Handwritten text on a blank canvas, as in free-form note-
taking systems and electronic whiteboard systems, is an-
other good application for Bubble Clusters. The strokes in
such text form distinct group structures and users fre-
quently move or delete sets of strokes as a group; users
seldom move a single stroke in a word. However, most
systems require the use of lasso selection or rubber banding
to select target strokes, which interferes with the users' flu-
ent interaction with the system. Some systems automati-
cally recognize implicit structures in handwritten text [14,
19] but they require explicit requests from the user. Bubble
Clusters can work in the background and provide a way to
manipulate groups of strokes without distracting from the
main writing task. Our interface can complement existing
informal grouping methods for handwritten texts [11, 15].
These are designed for managing larger working units (e.g.,
the entire discussion on a single topic) and our method is
effective for smaller units (e.g., words and sentences).

178

We have implemented a prototype Bubble Clusters inter-
face for free-form inking (Figure 13). This demonstration
was well received by lecturers using electronic whiteboards,
many of whom would end up dragging a single stroke
when they attempted to drag an entire word. Computing the
potential fields for free-form strokes is computationally
expensive because the strokes consist of many points while
a single point is sufficient for an icon. Therefore, we de-
cided to update the bubble geometry only when the user
completes a stroke or finishes moving strokes.

Figure 13: Prototype interface for free-form inking.

USER STUDY
We conducted two user studies to measure the performance
of our technique in different application scenarios: a group-
ing task in a desktop environment and an ink relocation
task in a digital whiteboard environment. The goal of these
studies is to see whether the users can successfully under-
stand the behavior of bubble clusters and to see whether
automatic grouping actually improves user performance.

User Study 1: Grouping Icons
The goal of the first study was to examine whether Bubble
Clusters could help users with icon grouping in a desktop
environment. The participants were asked to group icons
with same color using conventional folders and Bubble
Clusters. This kind of grouping task occurs when the user
wants to organize a set of unclassified files, such as images
and documents. Our main hypothesis was that the Bubble
Clusters would outperform conventional folders in this
kind of bottom-up grouping task.
Apparatus. We used a Dell Dimension 9100 Pentium 4
computer with a standard mouse and keyboard. The test
program was implemented using Java™ 5.0 running on
Windows XP SP2 Professional. The size of the canvas was
1024 × 736 pixels.
Participants. Twelve participants, all men ranging in age
from 20 to 25 years, were recruited mainly from the local
university community for the experiment. Participants each
were paid 1,000 Japanese yen and all were regular com-
puter users. None had previous experience with Bubble
Clusters.
Task. The task was to group spatially distributed icons ac-
cording to their colors. Each task consisted of two phases:
an initial grouping phase and a regrouping phase. Initially,
small boxes were scattered randomly on the canvas (Figure
15(a)). Each box was colored red, green, blue, cyan, or
yellow. Users were given 6 boxes of each color, for a total
of 30 boxes. Users grouped the scattered boxes by color
using dragging operations (initial grouping task). The

grouping task was complete when all of the boxes were
correctly grouped (Figure 15(b)), and then the color of each
box was randomly changed (Figure 15(c)). The number of
colors and the number of boxes per color were the same as
in the initial grouping task. The users then grouped the
boxes again (regrouping task; Figure 15(d)).
Interfaces. In the folder interface, the users distributed the
colored boxes into folders (Figure 14). This task mimics
the standard desktop workspace in a modern window sys-
tem. The users could create a new folder or change its
name from a context menu. The users could open a folder
by double-clicking. The users moved boxes into a folder by
dragging them into the folder or into its corresponding
open window. Multiple boxes could be selected with stan-
dard rubber banding. We also provided additive selection
using a shift key. Each task ended when all of the boxes
were correctly grouped, with all of the boxes of the same
color in the same folder and each folder containing only
one color of box, although we allowed the users to leave
folders empty.

Figure 14: Screen snapshot of the grouping task us-
ing the folder interface.

In the bubble interface, the participants used Bubble Clus-
ters to create clusters with boxes of the same color (Figure
15). Users could move, merge, split, and expand bubbles as
described in this paper. Each task ended when all of the
boxes were correctly clustered, with each cluster containing
all of the boxes of the same color.

a) b)

c) d)
Figure 15: Screen snapshots of the icon grouping
task using the bubble interface. (a) Initial layout. (b)
Completion of the initial grouping task. (c) Colors
are changed. (d) Completion of the regrouping task.

179

The major difference between the two interface conditions
is that the folder interface requires explicit creation and
opening of folders. This can be seen as a bias. However,
the ability to create and work with groups without explicit
group operations is the main benefit of our technique.
Therefore, we set the goal of this study to show the benefit
of removing explicit group operations and chose this de-
sign.
Design. Each participant was subjected to both interface
conditions. Participants were divided into two groups of six.
One group used the folder interface first and the other
group used the bubble interfaces first. Each session lasted
approximately 20 min.
One set consisted of the grouping and regrouping phase,
and each participant performed 4 sets for each interface, for
a total of 16 trials (4 sets × 2 interfaces × 2 phases). The
first set in each interface was used for tutorial and practice.
The subsequent three sets were used for the statistical
analysis. Participants were asked to complete the trials as
quickly and as accurately as possible. The task time was
measured from the moment the user pressed a start button
until the moment when all of the boxes were grouped or
regrouped. The users were requested to resolve errors be-
fore completing the task, which means that error measure-
ment is included in the task completion time. Participants
completed a questionnaire at the end of the experiment.
Results. The average and the standard variation of the two
interfaces are shown in Figure 16. Paired t-tests showed
significant differences between the two interfaces in both
the grouping tasks (t(11) = 6.46, p < 0.001) and the re-
grouping tasks (t(11) = 9.61, p < 0.001). In the question-
naires, 10 of 12 participants preferred the bubble interface
over the folder interface for this particular task and all of
the participants answered "yes" to the question “Was the
concept of Bubble Clusters easy to understand?” This
shows that Bubble Clusters can be useful for bottom-up
grouping of items on the desktop.

0

10

20

30

40

50

60

70

80

90

100

grouping regrouping

se
c

folder

bubble

Figure 16: Average trial time in seconds under each
interface condition with standard deviation.

A detailed analysis of the user’s operation history under the
bubble condition reveals that the participants successfully
understood each operation and used it well to accomplish
the task. On average, the participants used 8 cut operations
and 6 expansion operations in the grouping phase, and 10
cuts and 12 expansions in the regrouping phase. This dif-
ference occurred because the icons were highly overlap-

ping at the beginning of the regrouping phase and the user
first needed to resolve this before the task could be com-
pleted.

User Study 2: Ink Relocation
The goal of the second study was to examine whether Bub-
ble Clusters could help users perform an ink manipulation
task in a digital whiteboard environment. The participants
were asked to move handwritten words to designated areas
using conventional lasso selection and Bubble Clusters.
Our main hypothesis was that the Bubble Clusters would
outperform conventional lasso selection.
Apparatus. We used a display-integrated tablet with a 17”
display (Wacom Cintiq) connected to a laptop computer
with 1.10 Ghz Pentium M processor (Toshiba Dynabook
SS2120). The test program was implemented using JavaTM
5.0 running on Windows XP SP2 Home Edition. The size
of the screen was 1024 × 768 pixels.
Participants. Twelve participants (2 women and 10 men)
ranging in age from 18 to 35 years were recruited mainly
from the local university community and volunteered for
the experiment. Participants each were paid 1,000 Japanese
yen and all were regular computer users. None had previ-
ous experience with ink manipulation using Bubble Clus-
ters. All participants were right-handed.
Task. The task was to move eight handwritten words, listed
vertically on the left-hand side of the screen, to the right-
hand side in a reversed order. Each word consisted of mul-
tiple free-form strokes. The target region for each word
was clearly shown to the user. Figure 17 shows a screen
snapshot of task using the lasso interface.

Figure 17: Screen snapshot of the ink relocation
task using the lasso interface.

Interfaces. We tested four interface conditions. The Lasso
interface used standard lasso selection in which the user
selected a target word by drawing an enclosing stroke
around it and moved the word by dragging the area en-
closed by the lasso (Figure 17). For Bubble Clusters, we
tested three different parameter settings. The small bubble
interface used Bubble Clusters that were too small to en-
close some words; these words were split among multiple
bubbles (Figure 18, left). In this case, the user needed to
connect these bubbles to move the entire word. In the me-
dium bubble interface, bubble size was optimal and each
word was associated with a single bubble (Figure 18, cen-

180

ter). The user could simply drag-and-drop the individual
bubbles to complete the task. In the large bubble interface,
all of the words initially were connected together (Figure
18, right). The user had to cut the bubbles to move the in-
dividual words. These scenarios emulate errors in auto-
matic group creation in real-time authoring.

Figure 18: Three different bubble conditions (left,
small bubble; center, medium bubble; right, large
bubble).

Design. A balanced within-subjects design was used. Each
participant was subjected to all four interface conditions.
Participants were divided into two groups of six. One
group used the lasso interface first and the other group used
the bubble interfaces first. The order of three bubble condi-
tions was counterbalanced within each group. Each session
lasted approximately 20 min.
Each participant performed 5 trials under each interface
condition, for a total of 20 trials (5 trials × 4 interfaces).
The first two trials were used for tutorial and practice and
the subsequent three trials were applied in the statistical
analysis. Participants were asked to complete the trials as
quickly and as accurately as possible. Pilot testing and
analysis of the study data did not show significant learning
effects after the first two trials. The task time was counted
from the moment the user pressed a start button until the
moment when the last word was placed within the target
region. Participants completed a questionnaire at the end of
the experiment.
Results. The average and the standard variation of the four
interfaces are shown in Figure 19. A repeated measures
analysis of variance (ANOVA) was conducted on the task
completion times across the four interface types (lasso,
small bubble, medium bubble, and large bubble). A signifi-
cant difference was observed across the interface types,
(F(3, 33) = 31.651, p < 0.001). The mean task completion
time was 32.72 s for lasso selection, 24.73 s for small bub-
ble, 19.28 s for medium bubble, and 28.86 s for large bub-
ble. Post hoc tests showed that tasks using the small bubble
and the medium bubble took significantly less time than the
lasso selection (p < 0.01 and p < 0.001, respectively), but
we found no significant difference between using the lasso
selection and the large bubbles (p > 0.1).
These results show that Bubble Clusters can be very useful
for an ink relocation task. Under the optimal condition
(medium bubble), the task completion time was approxi-
mately 60% that under the lasso condition. The advantage

of Bubble Clusters remained significant when the bubble
size was too small and the user needed to perform an extra
operation. In a realistic situation, most bubbles would be of
an appropriate size (because the user can easily customize
bubble size) with a few incorrectly clustered words. There-
fore, the real performance should be within the range of the
three bubble conditions in this study, which is clearly faster
than the lasso condition.

0

5
10

15
20

25

30
35

40

lasso small medium large

se
c

Figure 19: Average trial time in seconds under each
interface condition with standard deviation.

The observation of the users' behavior during the study and
the posttest interview revealed that the large bubble condi-
tion has a usability issue. Several users unintentionally
dragged a large bubble when they tried to cut the bubble. It
might be possible to reduce this mistake with a more com-
plicated cutting interface, such as one that uses a physical
button or a special gesture, but these are not attractive op-
tions because they would make the interface more complex.
The small bubble condition had better results than the large
bubble condition, so a practical solution to this problem is
to use bubbles that are slightly small (i.e., use a parameter
setting that tolerates over-segmentation while avoiding
under-segmentation).

CONCLUSIONS AND FUTURE WORK
We proposed a technique, Bubble Clusters, for organizing
transient group structures in spatial information manage-
ment systems. Nearby objects are automatically recognized
as a cluster and the system visualizes the structure as a
bubble surrounding the objects. We also introduced auto-
matic expansion of overlapping objects, implemented a
prototype system, and performed a user study. The results
show that Bubble Clusters could improve performance in a
simple icon grouping task and an ink relocation task com-
pared to standard folders and lasso selection, respectively.
Although they do not guarantee the superiority of our tech-
nique in real applications, these results show that Bubble
Clusters did help users in certain situations.
We hope to further explore several additional areas. Cur-
rently, users can select an icon or a bubble, but there is no
method to select a smaller group of icons within a bubble.
It might be interesting to vary the selection range depend-
ing on the number of clicks. For example, a single-click
might select the icon underneath the cursor, a double-click,
the overlapping icons within a cluster, and three clicks, the
entire cluster [9]. Such multiple-click selection is also seen

181

in text editors. Another possibility is to change the selec-
tion range depending on where the user clicks in a bubble.
That is, clicking near an icon could select only nearby
icons while clicking near the edge of a bubble selects the
entire bubble.
Scalability can be an issue when users want to manage a
large number of objects using Bubble Clusters. Our initial
goal was to improve the usability of existing spatial layout
systems, so the target number of objects to handle was less
than a hundred. Beyond that, we expect users to switch to
traditional folders. One interesting future direction is to
combine Bubble Clusters with zooming interfaces to obtain
a virtually infinite amount of space [3].
Visual clutter is also an issue. Although we designed the
visual representation to be as simple as possible, it does
show a great deal of information on the screen and can be
distracting. One solution is to make bubbles transparent
and only show them at relevant times in the interaction. In
the electronic whiteboard application, it would be helpful
to show clusters only on the instructors display and hide
them on the main display.
Some test users said that they wanted to name clusters.
Currently, users cannot name clusters manually because the
system creates clusters automatically. The users requested
automatic naming of clusters so that they had some clue as
to the kind of icons hidden in a dense cluster. It might be
possible to add properties to a cluster based on the proper-
ties of the objects in the cluster. One possibility is to give a
different color to each bubble depending on the properties
of its member objects. These extensions would allow users
to recognize the characteristics of a cluster without examin-
ing individual objects.

REFERENCES
1. Agarawala, A. and Balakrishnan, R. Keepin’ it real:

pushing the desktop metaphor with physics, piles and
the pen. In Proceedings of CHI, pp. 1283-1292, 2006.

2. Bauer, D., Fastrez, P., and Hollan, J. Spatial tools for
managing personal information collections. In Proceed-
ings of HICSS’, pp. 104.2, 2005.

3. Bederson, B.B., Hollan, J.D., Perlin, K., Meyer, J., Ba-
con, D., and Furnas, G. Pad++: A zoomable graphical
sketchpad for exploring alternate interface physics.
Journal of Visual Languages and Computing, Volume 7,
Number 1, pp. 3–31, 1996.

4. Blinn, J.F. A generalization of algebraic surface draw-
ing. In ACM Transactions on Graphics, Volume 1, Issue
3 (July 1982), pp. 235–256, 1982.

5. Davis, T.A. UMFPACK Version 4.1 User Guide, 2003.
6. Furnas, G.W. The fisheye view: a new look at struc-

tured files. Technical Report, Bell Laboratories, 1981.
7. Goto, M. and Goto, T. Musicream: new music playback

interface for streaming, sticking, sorting, and recalling
musical pieces. In Proceedings of the 6th International

Conference on Music Information Retrieval, pp. 404–
411, 2005.

8. Grossman, T. and Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor’s activation area. In Proceedings of CHI, pp.
281–290, 2005.

9. Igarashi, T., Matsuoka, S., and Masui, T. Adaptive rec-
ognition of implicit structures in human organized lay-
outs. In Proceedings of Visual Languages ’95, pp. 258–
266, 1995.

10. Igarashi, T., Moscovich, T., and Hughes, J.F. As-rigid-
as-possible shape manipulation. In ACM Transactions
on Computer Graphics, Volume 24, Issue 3, ACM
SIGGRAPH 2005, pp. 1134–1141, 2005.

11. Kramer, A. Translucent patches—dissolving windows.
In Proceedings of UIST, pp. 121–130, 1994.

12. Lorensen, W.E. and Cline, H.E. Marching cubes: a high
resolution 3D surface construction algorithm. In Pro-
ceedings of SIGGRAPH, pp. 163–169, 1987.

13. Mander, R., Salomon, G., and Wong, Y.Y. A ’pile’
metaphor for supporting casual organization of informa-
tion. In Proceedings of CHI, pp. 627–634, 1992.

14. Moran, T.P., Chiu, P., van Melle, W., and Kurtenbach,
G. Implicit structure for pen-based systems within a
freeform interaction paradigm. In Proceedings of CHI,
pp. 487–494, 1995.

15. Mynatt, E.D., Igarashi, T., Edwards, W.K., and La-
Marca, A. Flatland: new dimensions in office white-
boards. In Proceedings of CHI, pp. 346–353, 1999.

16. Perlin, K. and Fox, D. Pad: an alternative approach to
the computer interface. In Proceedings of SIGGRAPH,
pp. 57–64, 1993.

17. Ramos, G., Robertson, G., Czerwinski, M., Tan, D.,
Baudisch, P., Hinckley, K., Agrawala, M. Tumble!
Splat! Helping users access and manipulate occluded
content in 2D drawings. In Proceedings of AVI, pp.
428–435, 2006.

18. Robertson, G., Czerwinski, M., Larson, K., Robbins,
D.C., Thiel, D., and van Dantzich, M. Data Mountain:
using spatial memory for document management. In
Proceedings of UIST, pp. 153–162, 1998.

19. Saund, E., Fleet, D., Larner, D., and Mahoney, J. Per-
ceptually-supported image editing of text and graphics.
In Proceedings of UIST, pp. 183–192, 2003.

20. Saund, E. and Moran, T.P. A perceptually supported
sketch editor. In Proceedings of UIST, pp. 175–184,
1994.

21. Shipman, F.M., III, Marshall, C.C., and Moran, T.P.
Finding and using implicit structure in human-
organized spatial layouts of information. In Proceedings
of CHI 1995, pp. 346–353, 1995.

22. Worden, A., Walker, N., Bharat, K., and Hudson, S.
Making computers easier for older adults to use: area
cursors and sticky icons. In Proceedings of CHI, pp.
266–271, 1997

182

	Untitled

