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Abstract 
This paper presents an interactive system for designing and browsing 
volumetric illustrations. Volumetric illustrations are 3D models with 
internal textures that the user can browse by cutting the models at 
desired locations. To assign internal textures to a surface mesh, the 
designer cuts the mesh and provides simple guiding information to 
specify the correspondence between the cross-section and a reference 
2D image. The guiding information is stored with the geometry and 
used during the synthesis of cross-sectional textures. The key idea is to 
synthesize a plausible cross-sectional image using a 2D texture-
synthesis technique, instead of sampling from a complete 3D RGB 
volumetric representation directly. This simplifies the design interface 
and reduces the amount of data, making it possible for non-experts to 
rapidly design and use volumetric illustrations. We believe that our 
system can enrich human communications in various domains, such as 
medicine, biology, and geology. 
 
Keywords: Interactive Techniques, Texture Synthesis, Non-
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1. Introduction 
 
Surfaces are the most popular geometric representation for 3D models. 
They are widely used because they are compact, making them easy to 
construct, transmit, and render. However, the application of a surface 
representation is limited because it lacks internal information. For 
example, it is impossible to cut the model and inspect the detailed 
internal structures. 
 
Volumetric representations have complementary advantages and 
limitations. Since a volumetric representation stores internal 
information, the user can cut a model and observe internal structures. 
However, the amount of data required generally far exceeds that of a 
surface representation, making storage, transmission, modeling, and 
rendering much more difficult. Modeling is especially problematic, 
although the other problems can eventually be mitigated by more 
memory, faster processors, and networks. Since modeling problems are 
closely related to the limitations of human perception and manipulation, 
the design of appropriate user interfaces plays a critical role in 
addressing them. 
 
The main sources of volume data are the capture of real-world objects 
and procedural design. However, these are not appropriate for drawing 
volumetric illustrations quickly for communication purposes. Some 
interactive methods use 3D input devices (e.g., a Phantom), but they 
are unsuitable for designing detailed internal textures. 
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Figure 1 System overview. The user can cut the model anywhere and 
observe internal textures. Internally, the system first computes a control 
map using predefined guiding information and then synthesizes the 
texture using the control map and the reference textures. 
 
Our goal is to develop an interactive designing and browsing system 
that allows the user to add interesting textures to surface meshes 
manually by using existing 2D reference images (Figure 1). 
 
We cannot see all of the 3D volumetric information simultaneously; 
because of occlusion, we can see only one 2D cross-section at a time. 
For example, illustrations in biology textbooks or scientific magazines 
often show cross-sections of a volumetric object to explain internal 
structures (Figure 2). It is also important to note that these illustrations 
are the result of careful design processes rather than a literal simulation 
of reality. In Figure 2, for example, nuclei are seen in all the cells in the 
illustration, while an actual cross-section would contain cells whose 
nuclei were not visible. 
 
Based on this observation, we propose a new representation for 3D 
models with internal textures, namely one in which the system 
synthesizes the internal textures for a cross-section by using 2D 
reference images instead of maintaining all the 3D volumetric data 
(Figure 1). To assign internal textures to a model, the designer specifies 
the correspondence between a geometric cross-section and a reference 
2D image by providing guiding information, such as flow orientation. 
This approach significantly reduces the amount of data that the model 
requires. It also allows designers to add 3D internal texture to a model 
without specifying each voxel manually. 
 
Our technical contributions are the interfaces that are used to assign 
internal textures to a given surface mesh and the algorithms that 



synthesize textures on a cross-section. On a larger scale, our 
contribution is a modeling structure in which the specification and 
viewing of simple volumetrically textured models is easy and 
convenient, allowing non-experts to create volumetric illustrations 
rapidly. 

 
Figure 2 An example of an illustration that reveals internal structures 
(courtesy of Saeko Sato). 
 
2. Related work 
 
Volumetric modeling. One popular approach to designing volume 
data is to use procedural methods [Perlin 1985; Kniss et al. 2002], 
which enable the user to design various 3D structures, such as marble, 
clouds, and fire, using relatively simple programs. Cutler et al. [2002] 
proposed a scripting language for volumetric modeling. However, it is 
difficult for most people to obtain a desired texture by programming or 
adjusting parameters. 
 
Another popular source of volumetric data is the capture of existing 
real objects using special-purpose instruments, such as computed 
tomography (CT) scanners or cameras to take pictures of the slices 
[Banvard 2002]. However, the user can capture only existing objects. It 
is often desirable to design appropriate representations for 
communication purposes manually. 
 
There are systems that use 3D pointing devices [Galyean and Hughes 
1991; Ferley et al. 2000] or standard 2D devices [Wang and Kaufman 
1995] to create 3D volumes. However, they are designed mainly to 
convey the overall shape of a model and it is still difficult to design the 
detailed internal textures of 3D volumes. 
 
Texture synthesis. Texture synthesis algorithms take reference images 
as input and synthesize new images that appear similar. Texture 
synthesis algorithms can be categorized into four types: frequency 
domain, pixel-based, patch-based, and non-periodic tiling. Early 
systems used frequency domain techniques [Heeger and Bergen 1995], 
but they can handle only specific types of texture. The pixel-based 
approach [Efros and Leung 1999; Wei and Levoy 2000] uses a simpler 
strategy, and various extensions have been developed [Ashikhmin 
2001; Hertzmann et al. 2001]. The patch-based [Efros and Freeman 
2001; Kwatra et al. 2003] and non-periodic sampling [Stam 1997; 
Cohen et al. 2003] approaches can generate high-quality images 
quickly. 
 
Some texture-synthesis techniques have been extended to 3D textures. 
Heeger and Bergen [1995] extended their frequency domain methods 
to 3D textures, and Wei [2001] used a pixel-based technique to 
generate 3D volumes from 2D references. Other extensions synthesize 
textures on the surface of 3D models; Turk [2001] used a pixel-based 
technique and Praun et al. [2000] used a patch-based technique. 
 

Non-photorealistic modeling and rendering. Our system draws 
inspiration from various non-photorealistic rendering (NPR) systems 
that focus on the communication of particular information rather than 
the simulation of light transport [Gooch and Gooch 2001]. Our system 
is particularly influenced by the stylized rendering of 3D models that 
synthesize interesting 2D pictures by adding details to simple 3D 
geometries on the fly [Lake et al. 2000; Kalnins et al. 2002]. In a 
similar spirit, we synthesize detailed textures on cross-sections of 
simple surface models. 
 
Some systems also address the problem of authoring. Hertzmann et al. 
[2001] introduced a painting interface for directing the texture-
synthesis process for various artistic expressions; Kalnins et al. [2002] 
proposed an interface for painting a 3D model to specify rendering 
styles directly. Like these systems, our system provides a tailored user 
interface for intuitively designing volumetric illustrations. 
 
3. User interface 
 
3.1 Browsing interface 
 
The system comprises two functions: browsing and modeling. The 
browsing interface is a subset of the modeling interface. The browsing 
interface is a standard 3D model viewer with an extension that allows 
inspection of internal textures using a cut operation. Rotating and 
translating the model are assigned to the right mouse button, and 
cutting the model is assigned to the left mouse button. If the right 
button is pressed on the model, the model rotates. If the right button is 
pressed elsewhere, the model translates parallel to the screen. 
 
The user can cut the model by drawing a freeform stroke that crosses 
the model on the screen [Igarashi et al. 1999] (Figure 3). The cut object 
then opens automatically with animation [Owada et al. 2003] and the 
user can see the internal textures on the cross-section. The model closes 
when the user clicks an empty space. 
 

 
Figure 3 Inspecting internal structures using a freeform cut operation. 
 
Although our current implementation uses a cut operation that is based 
on a freeform stroke, the framework can easily be extended to support 
other interfaces for specifying cross-sections, such as 3D magic lenses 
[Viega et al. 1996] and two-handed operations using a prop and a plate 
[Hinckley et al. 1994]. 
 
3.2 Modeling interface 
 
The modeling operation starts by loading a predefined surface mesh 
(i.e., a surface mesh that delimits volumetric regions) and predefined 
2D images. The goal of the modeling operations is to specify how 
given images are to be mapped to the interior of the given surface mesh, 
while existing methods usually specify textures on surfaces [Hanrahan 
and Haeberli 1990; Pederson 1996]. The modeling process has the 
following steps. 
 
1. Cut the target 3D model and specify a 3D region to be textured by 

clicking on the cross-section. 
2. Choose one of the three texture types to use for the region. 



3. Import a reference 2D image. 
4. Establish the correspondence between the 2D reference image 

and the cross-section of the 3D model by providing the necessary 
guidance information. 

5. Repeat steps 1-4 for each 3D region. 
 
We explain each step in turn. 
 
3.2.1 Specifying a region to be filled 
 
First, the user cuts the target surface mesh using the freeform cut 
operation. The cross-section reveals the internal structure of the model 
and can be divided into several closed regions. For example, a model 
of an egg might consist of a spherical surface mesh representing the 
yolk enclosed by a larger sphere representing the egg white. In this case, 
the cross-section has two regions. The user can simply click on the 
target region on the cross-section to specify the 3D region to be 
textured. 
 
3.2.2 Selecting a texture type 
 
When the user clicks on the target region on the cross-section, the 
system opens a dialog box that is used to specify the texture type 
(Figure 4a). Once the user has specified the texture type, the system 
opens a separate pane that shows the reference image and a reference 
cube (Figure 4b). The reference cube is an intermediate representation 
that visualizes the relationship between the 2D reference image and the 
3D region. Steps 3 and 4 differ slightly for each texture type. Therefore, 
we first introduce the three texture types and then explain the steps for 
each. 
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Figure 4 Window layout of the system for assigning textures to a 
model. 
 
The current system supports three types of textures: isotropic, layered, 
and oriented (Figure 5). Isotropic textures have a uniform distribution 
in the 3D space with no dependency on position or orientation. All of 
the cross-sections of an isotropic texture look similar, regardless of 
their location or orientation. Examples include a sausage, a sponge, and 
any other material that consists of isotropic elements. Layered textures 
have varying appearances according to their position in the axial or 
radial direction. Examples include kiwi fruits, human skin, tree trunks, 
and leaves. Layered textures require depth information for the target 
3D region. Finally, oriented textures are defined by both a reference 
image and a flow direction; the appearance of an oriented texture 
depends on the orientation of the cut-plane relative to the flow-direction 
(Figure 5c). Examples include muscle, plant stems (of 
monocotyledonous plants), and any other material that consists of 
bundled long fibers. The oriented texture requires that the flow 
orientation in the target 3D region be specified. 
 

We do not claim that these three types cover all possible real-world 
textures. Some textures can be combinations of layered and oriented 
textures, and some have more complicated structures. We support these 
three types in the current implementation because they are relatively 
easy to understand, they can be specified with a simple interface, and 
they cover a wide range of interesting textures that are commonly seen 
in organic materials. Future work will investigate other types of texture 
filling. 
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Figure 5 Examples of texture types 
 
3.2.3 Isotropic textures 
 
The user imports a reference image by dragging an image file and 
dropping it onto the source image area in the main window. The user 
can choose a specific region of the reference image by rubber banding. 
The selected region is immediately transferred to all faces of the 
reference cube and to the cross-section of the surface mesh using a 
texture-synthesis technique. No guidance information is required in this 
case (Figure 6). 
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Figure 6 Using an isotropic texture. The user specifies a region to use 
by rectangular rubber banding, and it is then transferred to all faces of 
the reference cube and the cross-section. 
 
3.2.4 Layered textures 
 
A layered texture requires additional guidance information in the 
surface mesh to specify the mapping between the image and the model. 
The user first draws two freeform strokes that correspond to the upper 
and lower bounds of the layer on the imported reference image (Figure 
7, left). The first and last points of the two strokes are connected by 
straight lines to carve out a portion of the input image. Then, texture-
synthesis techniques fill the side faces of the reference cube using the 
portion of the image as a reference (Figure 7, middle). The user then 
specifies two corresponding upper and lower bounds in the surface 
mesh by clicking a boundary or drawing a stroke on the cross-section 
(Figure 7, right). Clicking on the boundary selects the associated 
surface region and the stroke becomes the constraint on the cross-
section (Figure 8). 
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Figure 7 Using a layered texture. The red and blue marks on the 
reference image define the upper and lower bounds for the algorithm. 
The texture-synthesis techniques fill the side faces of the reference cube, 
using the image between the two marks as a reference. Similarly, the 
red and blue marks on the surface mesh define the upper and lower 
bounds. The texture on the cross-section is synthesized using the 
reference image as an example. 
 

(a) (b)  
Figure 8 Clicking a boundary on the cross-section selects the associated 
surface region as the upper or lower bound (a). We assume that the user 
has predefined the correspondence between a boundary and a surface 
region (provided as a surface mesh). A stroke drawn in the interior of a 
cross-section becomes a bound on the cross-section (b). 
 
3.2.5 Oriented textures 
 
An oriented texture has distinct appearances in cross-sections that are 
perpendicular and parallel to the flow orientation. Our current 
implementation asks the user to provide a reference image for the 
cross-sections perpendicular to the flow orientation. The reference 
image must be isotropic. The user specifies a rectangular region in the 
reference image using rubber banding. The system then synthesizes the 
top face of the reference cube using the selected region as a reference. 
Then, it generates a reference volume by sweeping the image vertically 
and shows textures for the cross-sections parallel to the flow orientation 
on the side faces of the reference cube. 
 
We experimented with other strategies for specifying the reference 
volume. One let the user specify the images for the side faces of the 
volume, and the other let the user specify the images on both the top 
and side faces. We used Wei’s [2001] volumetric texture-synthesis 
technique to synthesize the reference volume in these cases. We did not 
pursue this direction further in our current implementation because it 
was too slow and the quality of the resulting volume was unsatisfactory.  
However, it is sometimes desirable to specify the appearance of side 
faces, and in the future we will investigate efficient supporting 
strategies. 
 
An oriented texture requires the user to specify the flow field across the 
target region as guidance information. This is done by drawing short 
arrows that represent local flow directions on the cross-section and 
surface of the region (Figure 9, right) [Turk 2001]. Our current 
implementation does not allow the user to draw arrows that are not 

parallel to the cross-section. Therefore, the user should cut the model 
parallel to the desired flow orientation. 
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Figure 9 Using an oriented texture. The user specifies a region to use 
by rectangular rubber banding, and it is then transferred to the top face 
of the reference cube. The system generates the side faces by sweeping 
the image on the top face vertically. The user draws short arrows on the 
cross-section to specify the flow orientation. 
 
4. Algorithms 
 
This section describes the algorithms and implementation details for 
synthesizing a texture for a given cross-section using the reference 
images and the associated guidance information. The cutting operation 
cuts the model by sweeping a user-drawn 2D stroke in the direction 
perpendicular to the screen (we use orthogonal projection). Using this 
curved plane, a model is divided by CSG operations [Hoffman 1989]. 
The parametrization of the cross-section is given as follows: the y-axis 
is defined along the cutting stroke and the x-axis is defined along the 
sweeping direction. The starting point of the stroke becomes y=0 and 
the corner of the model’s bounding box nearest the screen becomes 
x=0. The imported surface mesh is scaled so that the size of the 
bounding box equals 1, and the pixel size of the synthesized texture is 
1/150~1/400 in our current implementation. A cross-sectional bitmap 
is obtained by synthesizing the pixel color at each grid point on this 
parameterized cross-section within a rectangular region that covers the 
model’s bounding box. If the user wants to change the scale of the 
synthesized texture, the original image must be scaled beforehand. We 
describe our texture-synthesis algorithms for each of the three texture 
types. 
 
4.1 Isotropic textures 
 
An isotropic texture has no dependency on position or direction. 
Therefore, we simply use a standard 2D texture-synthesis algorithm to 
construct a 2D texture image for the cross-section [Wei and Levoy 
2000; Cohen et al. 2003; Kwatra et al. 2003]. The system uses the 
selected region in the original reference image as the reference for the 
synthesis directly. The reference cube exists only to give feedback to 
the user. Note that there is no guarantee of obtaining exactly the same 
image when a model is cut twice at the same cross-section. However, 
since our aim is to convey a volumetric impression rather than to 
generate consistent volumetric data, we believe that this simple 
approach is sufficient. 
 
4.2 Layered textures 
 
A layered texture has an appearance that varies according to the depth. 
Therefore, the algorithm needs depth information for each pixel in the 
reference image and target cross-section. Figure 10 illustrates the 
overall process. The system generates a reference control map for the 
reference image and a target control map for the cross-section. A 
control map is a grayscale 2D image in which the floating-point pixel 
values indicate associated depth values. 
 



The grayscale values of the reference control map represent a smooth 
2D depth field constrained by the two bounds provided in the reference 
image. The mark for the upper bound (red curve in Figure 10) is 
associated with depth value 0 and that for the lower bound (blue curve 
in Figure 10) is associated with depth value 1. We use a 2D thin-plate 
interpolation technique [Turk and O’Brien 1999] to compute this 
smooth 2D depth field (reference control map in Figure 10). The depth 
field is given as a continuous function that returns a scalar value for a 
given 2D position. This function is sampled on each pixel location on 
the reference control map, which has the same resolution as the 
reference image. 
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Figure 10 Overview of texture synthesis for layered textures. The 
system synthesizes the texture bitmap for a cross-section by using the 
reference image, the reference control map associated with the 
reference image, and the target control map associated with the target 
texture. 
 
To construct the target control map, the system first computes a 3D 
scalar field using the user-defined upper and lower bound 3D 
geometries as constraints. The upper-bound geometry (a surface region 
or a line in 3D space) is associated with depth value 0 and the lower-
bound geometry is associated with depth value 1. Again, we use Turk 
and O’Brien’s [1999] 3D thin-plate interpolation technique to construct 
this smooth 3D scalar field. When the user cuts the model, the system 
generates a 2D target control map by sampling the aforementioned 3D 
depth field on the cross-section. 
 
Given the reference image, reference control map, and target control 
map, it is now possible to start the texture synthesis process using a 
pixel-based technique. This synthesis process is similar to field 
distortion synthesis, which is used for texture synthesis on surfaces 
[Turk 2001; Zhang et al. 2003]. The differences are as follows (also see 
Figure 11): 
 
1. An orientation field is computed from the target control map as the 

gradient direction in the target control map. 
2. Each pixel in the reference image also has an orientation computed 

as the gradient direction in the reference control map. The 
neighboring structures are computed according to this orientation. 

3. The order of synthesis is determined using the depth value of pixels. 
4. When synthesizing a pixel in the target image, the search space in 

the reference image is restricted by the depth value of the pixel 
being synthesized; pixels whose depth value equals that of the 
synthesizing pixel are subject to the search. In our implementation, 
real-valued depth values are discretized into 32 levels and the pixels 
are indexed according to the discretized scalar level during 
preprocessing. 
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Figure 11 Computing the pixel color in the synthesized texture. First, 
the system rotates the neighborhood of the target pixel so that the 
gradient of the target control map matches that of the reference control 
map. Then, the system compares the rotated neighborhood of the target 
pixel with that of the reference image around a pixel whose gray-scale 
value in the reference control map is identical to the gray-scale value in 
the target control map. 
 
4.3 Oriented textures 
 
The synthesis process for an oriented texture requires a 3D reference 
volume and a flow field defined in the 3D region in the surface mesh. 
As already discussed, the 3D reference volume is obtained by 
sweeping the top face of the reference cube vertically. The top face is 
synthesized using the selected region in the reference image as the 
example. The reference volume is oriented vertically (each pixel in the 
reference volume is associated with a vertical flow vector) and the size 
of the reference volume is 64×64×64. 
 
The construction of the 3D flow field again uses the thin-plate 
interpolation technique [Turk and O’Brien 1999], employing user-
defined arrows as constraints. A smooth scalar-valued interpolation 
function is constructed for each xyz component. The flow field is 
constructed by combining them and normalizing the resulting flow 
vectors. This approach can produce singular points where no flow is 
defined. However, singular points rarely appear on the cross-section in 
our system because the user cuts the model using a freeform stroke. 
When singular points do appear, we assign a random orientation to the 
pixel. After obtaining the 3D flow field, the system generates a 2D 
target control map for the given cross-section (each pixel is associated 
with a flow orientation) by sampling the flow vectors along the cross-
section. 
 
At this point, we have the 3D reference volume (associated with 
vertical flow orientation) and the 2D control map for the cross-section 
that contains the flow vectors for each pixel. Given this information, 
the system computes the color for each pixel in the cross-section by 
finding a pixel in the reference volume that has a similar neighborhood 
[Wei and Levoy 2000]. The similarity of neighbors is computed as 
follows. The neighborhood of the pixel on the cross-section is 
approximated by a small flat rectangle. For each pixel in the reference 
volume, the system samples the neighborhood in a corresponding 
small flat rectangle whose slant angle (angle between the rectangle and 
the vertical flow vector) equals that of the rectangle on the cross-section 
(Figure 12). Rotation about the flow vector does not matter, because 



we assume that the reference volume has an isotropic structure on 
cross-sections perpendicular to the flow orientation. 
 
Given the rectangle on the cross-section and that in the reference 
volume, the system can now compare the similarity between the two. 
 
Ideally, the system should sample every possible small rectangle in the 
entire reference volume. For performance reasons, however, the system 
samples pixels in a slanted 2D square region at the center of the 
reference volume and uses the resulting image as a reference for 
standard 2D texture synthesis. In our current implementation, the size 
of the square is 45×45 (to fit within the reference volume completely). 
We further reduce the computation time by caching the sampled image 
using discretized slant angles as keys (a discretization step is π/32). 
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Figure 12 Finding pixels that have a similar neighborhood in the 
reference volume for each pixel in the cross-section. 
 
5. Results 
 
Figure 13 shows some volumetric illustrations that were created using 
our system. The amount of data in the models, time for design, and 
time for synthesizing the cross-section are summarized in Table 1. For 
isotropic and oriented textures, we used a three-level multi-resolution 
pyramid with a 3×3 square neighbor for lower resolution and a 5×5 L-
shaped neighbor for higher resolution. For layered textures, we used a 
3×3 square neighbor for lower resolution and a 5×3 rectangular 
neighbor for higher resolution. We used a laptop computer with a 
Pentium M 1.6-GHz processor and 1 GB of RAM. Although in some 
cases it took more than 10 seconds to obtain the result for the finest 
resolution, this did not impede the interactive modeling process 
because progressive synthesis of cross-section images frees the user 
from waiting for the final result each time. Since the resolution of the 
cross-section is approximately 300×300, the quality is comparable to 
that of 3003 colored voxels, which would require approximately 80 
MB of storage. 
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Figure 13 Results  
 
Title Amount of data 

(without 
compression) 

Modeling time 
(excluding 
mesh editing) 

Synthesis 
time 

Meat (Fig. 1) 622 kb 90 sec 22 sec 
Cucumber 53 kb 40 sec 4 sec 
Bamboo 291 kb 30 sec 14 sec 
Stomach 402 kb 15 sec 18 sec 
Tooth 307 kb 120 sec 32 sec 
Table 1 Statistics for the example models 
 
6. Conclusions and future work 
 
We described a modeling and browsing system that adds internal 
textures to a surface mesh. The user provides 2D reference images and 
a surface mesh with simple guidance information that specifies the 
correspondences between them. When the user cuts the model, the 
system synthesizes cross-sectional images using 2D texture-synthesis 
techniques. This system would be useful for conveying volumetric 
information, such as between a teacher and students, a doctor and a 
patient, or a virtual-reality content-provider and consumers. Although 
the lack of real volumetric data makes some applications impossible, 
such as translucent rendering or volumetric simulation, our lightweight 
data representation may well be useful in many applications. 
 
Nevertheless, our system has several limitations. One is the 
computational cost. A layered texture rotates the neighbors so that the 
gradient of the target control map matches that of the reference control 
map, while an oriented texture generates a 2D reference image by 
slicing the reference volume at an appropriate angle for each pixel. 
These processes require more computation than standard texture 
synthesis. The quality of the synthesized image also requires 
improvement, in part because of the cascading resampling and 
resulting distortion. In future work, we will improve both the 
performance and quality of the overall process. 
 



One interesting avenue for future research is to enhance images of the 
cross-section by using the information that is embedded in the pixels of 
the reference map. We are currently exploring text annotation and 
displacement mapping. The pixels of the reference image are 
associated with annotations and displacements, and the system adds 
them to the corresponding pixels on the cross-section. Text annotation 
allows designers to add textual explanations to the internal material of 
3D models, which would be useful for educational and communication 
applications. Displacement mapping can add realism to a cross-section, 
as cross-sections of real objects cannot be perfectly flat. Adding such 
additional information to 3D regions directly can be very difficult, but 
is straightforward in our framework. 
 
We are also interested in designing other interaction techniques to 
explore the internal textures of 3D models, in addition to the current 
freeform cutting. As McGuffin et al. [2003] suggested, active 
interaction can facilitate the understanding of volumetric structures as 
compared to passive browsing of static images. 
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