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ABSTRACT
In this study, we propose a programming-by-example (PBE)-based
data transformation method for feature engineering in machine
learning. Data transformation by PBE is not new. However, we
utilized the one proposed herein to improve the performance of ma-
chine learning in synthesizing a transformation rule from examples.
Herein, the system first generates candidate rules, and then chooses
the rule that achieves the highest performance in a target machine
learning task. We tested this system with the Titanic dataset, and
the result shows that the proposed method can avoid worst-case
performance compared to the original PBE method.
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1 INTRODUCTION
Data transformation in feature engineering is crucial for improv-
ing the performance of machine learning [2–4]. However, feature
engineering, which mainly involves manual and tedious tasks with
many trial and errors [4], is difficult and time consuming especially
for non-programmers. Domain experts often know how data should
look, but they do not have the skills to write a code that will achieve
the desired result.

Programming-by-Example (PBE) can be useful in enabling non-
programmers to process datawith ease. For example, FLASHFILL [1]
synthesizes string transformation program from input-output ex-
amples provided by users. Although, in general, these techniques
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are useful in data transformation; however, the performance of ma-
chine learning in the process have not been studied by the existing
methods.

We propose a PBE-based data transformation method, which is
specifically designed for feature engineering in machine learning.
The main idea is to consider the prediction accuracy of machine
learning in terms of synthesizing transformation rules. We evalu-
ated the proposed system with the Titanic dataset obtained from
Kaggle1. Our system successfully generated feature transforma-
tion rules that improve classification accuracy from only a limited
number of input-output examples. Compared to the original PBE
method, where one has to explicitly prioritize the rules , our method
has an advantage of automatically selecting rules that avoid worst-
case performances.

1.1 Method
We focused on transforming a single feature with regard to su-
pervised learning during a classification task. Suppose we have a
dataset comprising many data elements, which consist of input fea-
tures and an output class. In the training phase, the system learns
mapping from input features to an output class. In the classifica-
tion phase, the system takes input features and returns a predicted
output class. The system learns mapping using training data, and
we evaluate its performance using test data.

Furthermore, we focused on transforming a feature, which is
given as a text string. The user provides several examples of the
desired transformation, where each example is a pair of an input
string and an output string. Our algorithm, which internally con-
structs a string program using a domain specific language, is based
on the one presented in FLASHFILL [1]. It first generates multiple
candidate programs and selects the simplest one. We modified this
ranking process to consider the classification accuracy, and we
processed training and classification of a target task to evaluate
the performance of each candidate program and selected the best
among them.

2 EVALUATION
We tested the proposed synthesis algorithmwith the Titanic dataset
and applied it to a feature named “Cabin." Most values in this fea-
ture have an alphabet followed by a number (ex. “C231"). While
some have more than one room number (ex. “A21 A22"), some data
are found to be missing. To make this feature applicable, we first
replaced missing data with some alternative values. Then, we cate-
gorized the data based on its alphabet, e.g., “C231" to “C." We also
needed to handle outlier cases. Our approach allows the system to

1https://www.kaggle.com/francksylla/titanic-machine-learning-from-disaster
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Figure 1: Input-output examples fed to the PBE systems.

Figure 2: Transformation rules obtained using the original
PBE and our method. “Match" is a predicate. “SubStr" and
“ConstStr" are atomic expressions described in [1].

synthesize such transformations only from examples in a way to
improve prediction accuracy.

Out of the nine original features in the Titanic dataset2, we used
five features in addition to “Cabin" to predict a passenger’s survival
(“Survived"). We removed the other 3 features (Fare, Pclass, and
SibSp) because they are highly correlated with “Cabin" and thus
obscure the effect of its transformation. We randomly split the
entire data (894) into training data and test data by 9:1. The training
data is used for training as well as selecting a transformation rule.
We split the training data into five, and we used 4 among them for
training and 1 for testing, to get predicted accuracy for each possible
transformation. Then we average five possible combinations and
chose the rule that provides the best prediction accuracy. Hence,
we used only the training data in the whole synthesis process. Also,
we used the random forest for the classification algorithm.

We compared the result obtained by applying the proposed PBE
method to the “Cabin" feature and that obtained by employing the
original PBE method [1]. We also consider the baseline (without
“Cabin" feature). We configured the PBE systems so that when the
synthesized program fails, they return the most frequently appear-
ing class in the successful transformation results. As for the original
PBE, we tested two variations of the method presented in [1], pri-
oritizing the rules differently. Original PBE1 prefers numbers to
alphabets, while Original PBE2 prefers the opposite.

3 RESULTS
Figure 1 shows the examples provided to the PBE system, while
Figure 2 shows examples of programs synthesized by the original
PBE method and the proposed method. Figure 3 shows examples
of the transformation results. Program 2 outputs “None" (String)
for input “T" because the program cannot handle a single alphabet,
2Age,Cabin,Embarked,Fare,Parch,Pclass,Sex,SibSp,Title.

Figure 3: The outputs generated by programs shown in Fig-
ure. 2.

Figure 4: Distribution of prediction accuracy with random
selection of training (test) data.

and thus, replaced with the most frequent output in the successful
transformations (“None").

Figure 4 shows the distribution of the prediction accuracy ob-
tained by processing training and classification 30 times by ran-
domly changing the selection of training and test data. This shows
that the performance of the three PBE methods is similar. Original
PBE1 is less stable (larger variance) than Original PBE2. Selection
of PBE1 or PBE2 is rather arbitrary (one has to decide which rule to
give priority), but our method automatically chooses more stable
rules, thereby avoiding worst-cases.

4 LIMITATION AND FUTUREWORK
The result obtained is promising but is arguably just the starting
point, indicating that further research is necessary. First, we shall
test the proposed method with datasets other than Titanic, espe-
cially, with a much larger dataset. Second, we shall improve our
method to support numerical features. Third, we require to support
transformations combining multiple features. We also plan to have
the synthesized program in a way that users can modify it. This
is especially important because users cannot fully trust black box
behavior and prefer transparency. Finally, we need to run user study
to ascertain the usability and effectiveness of the proposed method.
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