
Converting 3D Furniture Models to Fabricatable Parts and Connectors

Manfred Lau1∗ Akira Ohgawara1,3 Jun Mitani1,2 Takeo Igarashi1,3
1JST ERATO Igarashi Design Interface Project, Tokyo Japan

2University of Tsukuba 3The University of Tokyo

Figure 1: Left: Arbitrary 3D model of IKEA ALVE cabinet downloaded from Google 3D Warehouse. Middle: Fabricatable parts and con-
nectors generated by our algorithm. Right: We built a real cabinet based on the structure and dimensions of the generated parts/connectors.

Abstract

Although there is an abundance of 3D models available, most of
them exist only in virtual simulation and are not immediately us-
able as physical objects in the real world. We solve the problem of
taking as input a 3D model of a man-made object, and automatically
generating the parts and connectors needed to build the correspond-
ing physical object. We focus on furniture models, and we define
formal grammars for IKEA cabinets and tables. We perform lexical
analysis to identify the primitive parts of the 3D model. Structural
analysis then gives structural information to these parts, and gen-
erates the connectors (i.e. nails, screws) needed to attach the parts
together. We demonstrate our approach with arbitrary 3D models
of cabinets and tables available online.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Modeling Packages;

Keywords: 3D modeling, procedural modeling, fabrication, gram-
mar, assembly instructions, exploded view illustrations

1 Introduction

The use of 3D models for non-professionals has become
widespread in recent years, as users can easily download them [Shi-
lane et al. 2004] from the internet or create their own 3D mod-
els [Igarashi et al. 1999]. For example, you can find far more va-
rieties of virtual furniture models on the internet than real ones in
your nearby furniture store. Our goal is to enable individual users to
“print” their favorite 3D model to obtain real furniture to leverage
these resources. This is partly inspired by recent interests in per-

∗e-mail: manfred.lau@gmail.com

sonal fabrication [Gross 2007; Landay 2009], in which individual
users design and build personalized products instead of just buying
mass-produced ones. However, printing using standard materials
such as wooden plates is difficult because virtual 3D models do not
have the structure necessary for physical construction. We solve the
problem of taking as input a 3D model of a man-made object, and
automatically generating the parts and connectors needed to build
the corresponding physical object. We focus on furniture models
that end-users have the ability to build with standard wooden mate-
rials. Methods for fabricating real objects from virtual models exist
for other specific object types [Mori and Igarashi 2007; Saul et al.
2011].

Our work is inspired by Agrawala et al.’s work [2003] for creat-
ing step-by-step assembly instructions from 3D models and Li et
al.’s work [2008] for visualizing explosion diagrams of existing 3D
models of parts. These previous methods assume the existence of
parts and connectors as input, and they do not begin from generic
3D models. Our work bridges the gap between generic 3D models
and these visualization methods.

Our method uses a formal grammar defined for each type of object
for structural analysis. We developed one grammar for cabinets
from 42 types of real IKEA cabinets/bookcases. While there are
minor differences in the structure and connection types among these
cabinets, the underlying framework for their construction is similar
and our grammar captures this framework. We also developed one
grammar for tables from 11 types of IKEA tables. Each grammar
describes a set of directed graphs. Each directed graph represents
an object, each node of the graph represents a part, and each edge of
the graph represents a connection. Each part and connection type
also includes information, which we call expert rules, used when
generating the parts and connectors. For example, we have a rule to
specify the number and positions of nails to use for connecting two
part types. We use examples of real IKEA furniture to derive these
rules, and hence we call them IKEA-expert rules.

We first perform lexical analysis to identify separate tokens (prim-
itive shapes) of the 3D model. This process gives us a primitive
graph, which consists of primitive shapes and their contact rela-
tionships. We then use the grammar to apply structural analysis to
the primitive graph and derive a fabricatable graph. This process
gives detailed specification of the primitives and how to connect
them. Structural analysis implicitly performs structure completion
of missing parts and produces a sequence of assembly instructions
for building the actual object.

We demonstrate our approach with models of IKEA-style cabinets
and tables downloaded from Google 3D Warehouse and other web-
sites (Princeton Shape Benchmark [Shilane et al. 2004]). All our
test models have arbitrary topology and structure, and none of them
has the geometry or information for the connectors needed for fab-
ricating the real object. Our contributions are: (1) We solve the
problem of taking as input an arbitrary 3D furniture model, and
generating as output fabricatable parts and connectors; and (2) We
solve this problem by defining a single formal grammar for many
varieties of each type of object.

1.1 Related Work

Grammar-based Modeling. There exists previous research that
use grammar-based methods for understanding and modeling new
architecture [Stiny 1980], cities [Parish and Müller 2001], build-
ings [Müller et al. 2006], details of facades [Wonka et al. 2003],
and plants [Prusinkiewicz and Lindenmayer 1991]. Previous meth-
ods have also explored the procedural modeling of larger shapes
from a smaller input example [Merrell and Manocha 2008] and the
inverse procedural modeling of 3D shapes [Bokeloh et al. 2010].
The novelty of our work is in the application of a grammar for au-
tomatically parsing furniture models into separate buildable parts
and connectors.

Mesh Segmentation. Segmenting 3D meshes is a well stud-
ied problem. The publicly available 3D mesh segmentation bench-
mark [Chen et al. 2009] compares between segmentation meth-
ods that use K-means [Shlafman et al. 2002], random walks [Lai
et al. 2009], primitive fitting [Attene et al. 2006], randomized
cuts [Golovinskiy and Funkhouser 2008], core extraction [Katz
et al. 2005], and the shape diameter function [Shapira et al. 2008].
The novelty of our approach is that we parse, label, and re-mesh the
original mesh into fabricatable parts. Previous segmentation meth-
ods do not consider segmentation into fabricatable parts, and this is
important if the actual physical parts were to be built into a stable
and usable product.

Mesh Analysis. There has been much recent work on analyz-
ing 3D meshes for various purposes. These include computing
the upright orientation of objects [Fu et al. 2008], manipulating
joints connecting different components of meshes [Xu et al. 2009],
re-meshing a triangle model to a quad-dominant mesh [Lai et al.
2010], and computing the part correspondence between meshes for
the purpose of style-content separation [Xu et al. 2010]. Oh et al.’s
work [2006] is closely related, as they create physical wood pieces
with joints for fitting them together. Whiting et al.’s work [2009]
also uses procedural modeling, and focuses on creating buildings
that are structurally feasible. Our work focuses on finding the ap-
propriate connectors such as nails or screws for the purpose of ac-
tual construction.

Personal Fabrication. We believe that individual users will
play a role in designing and creating their own products in the fu-
ture [Gross 2007; Landay 2009]. Non-professional users can al-
ready build their own customized plush toys [Mori and Igarashi
2007] and chairs [Saul et al. 2011]. We contribute to this area by
solving the overall problem of converting a 3D mesh to separate
fabricatable parts and connectors.

2 Formal Grammar

We first define a formal grammar for describing each type of ob-
ject, give a concrete example for the 2D case of cabinets, and
then describe extensions to the general 3D case. Our grammar
is inspired by those from programming languages [Manning and
Schutze 1999].

2.1 Grammar

We define a grammar for each type of object (i.e. cabinets or ta-
bles). We assume that the classification of object type of our input
mesh is known, and use the corresponding grammar for each input
mesh. Defining a grammar is useful as we use it as a recipe to au-
tonomously perform mesh analysis algorithms to solve our overall
problem. A grammar is defined as (N,Σ, P, S) where N is the set
of non-terminal symbols, Σ = {Σnodes,Σedges} is the set of ter-
minal symbols for nodes and edges, P is the set of production rules,
and S ∈ N is the start symbol. Our language specifies a directed
graph. We could represent the graph as a string of the language, but
we choose to draw the graph itself for better intuition. Each node
of the graph represents a separate part of the object, and each edge
represents a connection between two parts that are in contact.

Each type of terminal symbol t ∈ Σnodes has a pre-defined
primitive shape Shapet and a set of example dimensions
ExampleDimt. The set ExampleDimt comes from measure-
ments of real IKEA cabinets. A specific instantiation of a part
has dimensions dimt. Each type of connection a → b (where
a, b ∈ Σnodes) has a set of example connectors connecting parts a
and b: (Dima, Dimb, T ypec, Numberc, T ransformationsc)
where Typec is the type of connector (i.e. type of screw),
Numberc is the number of connectors, and Transformationsc
contains the position and orientation of each connector relative
to parts a and b. This set also comes from real examples of
furniture. A specific instantiation of a connection has a specific
(typec, numberc, transformationsc), and a relative change in
position and orientation deltac (between parts a and b).

2.2 Concrete Example for 2D Cabinets

We define N = {S,B,X, Y } and Σ =
{hb, ht, v, ha, leg, wheel}, where S is the start symbol, B
represents the cabinet’s base, X represents a compartment sepa-
rated by vertical walls, Y represents a compartment separated by
horizontal walls, hb represents horizontal-bottom (the horizontal
and bottom piece of the cabinet), ht represents horizontal-top,
v represents vertical, and ha represents horizontal-adjustable.
Figure 2 shows the production rules P . Inspired by terminology
from programming languages, we define hb, ht and ha as subtypes
of h. We specify certain relationships in the rules for the purpose of
structure completion. For example, in rules 8-9, the two wheel/leg
parts are symmetric with respect to hb. A directed edge specifies
that the two corresponding parts are in contact. An undirected
edge means that the two parts are not in contact; the edge exists to
provide spatial intuition. Figure 3(a,b) shows an example cabinet.
In the graph, the directed edges specify the positioning of the parts.
This is best shown in Figure 3(c,d).

S

ht

B

v vX

Y

Y

v vhaXv v

Y

Y

v vhaYv v

ht

B

X XvX

ht

B
B

hb

leg leg

B
hb

wheel wheel

B hb

1 2 3

4

εX
5

εY
6

8

9
7

Figure 2: Production rules for 2D cabinets. ε is the empty graph.

ht

hb

v vha

wheel wheel

ht

v

ht

v

(c)

(d)

vha

(a) (b)

Figure 3: (a) A graph from our example grammar, and (b)
the corresponding cabinet. Each node contains the dimen-
sions of each part (dimt). Each edge contains deltac and
(typec, numberc, transformationsc). (c,d) The direction of the
edges specifies the positioning of the parts. The positionings are
important for ensuring that the parts are structurally buildable.

Although our production rules are manually defined, it is quite in-
tuitive to define them. In general, we typically have one rule per
terminal symbol for each family of models. For example, in Fig-
ure 2, rule 2 is for adding an ha to the overall structure, rule 3 is
for adding more ha’s, rule 4 is for adding v, and rules 8/9 are for
adding wheels/legs. While we need to define new rules to handle
new object types, this does not affect the generality of our approach
to a larger set of rules. This is similar to grammar rules for natural
or programming languages where we have to define new rules to
describe new grammar-types.

2.3 Extensions to General 3D Case

We show the grammars for 3D cabinets and tables in the supple-
mentary material. We extend the 2D cabinet grammar to 3D by
including these additional parts: back, front door, front drawer, and
front handle. We also define extra production rules for 3D cabinets
to demonstrate the extension of the grammar to handle another type
of cabinet models. For 3D table models, our grammar describes
tables with a tabletop and four legs or two supporting sides.

3 Conversion to Parts and Connectors

Our framework is inspired by programming language analysis. We
first perform lexical analysis to identify separate tokens (i.e. prim-
itives shapes) from the 3D model. Structural analysis then uses the
grammar to autonomously generate fabricatable parts and connec-
tors. As a consequence of this process, we can perform structure
completion, and generate a sequence of assembly instructions. We
use an example 2D cabinet to illustrate our algorithms throughout
this section.

3.1 Lexical Analysis

This process takes a 3D model as input, and identifies its separate
primitive parts (Figure 4). We first convert the input model into
voxel representation. The motivation for the voxel representation
is that parsing the voxels into parts and then converting the parts
back to a mesh representation allows the original model to be seg-
mented and re-meshed effectively. We parse the voxel represen-
tation by scanning it with a set of primitive shapes [Attene et al.
2006]. The shapes that we parse include horizontal pieces, vertical
(side) pieces, vertical (front-facing) pieces, wheels, legs, and front
handles. We assume that the orientations of the model are given
as is common in [Agrawala et al. 2003; Li et al. 2008], or can be
found automatically with [Fu et al. 2008]. To parse for horizontal
(or other axis-aligned) pieces, we scan the voxel for the default hor-
izontal minimum shape (a cuboid), and “expand” this cuboid until
we have reached the default maximum shape or until the percent-
age of empty voxels to cuboid volume has reached the default limit.

This limit and the default minimum/maximum shapes are found
with ExampleDimt. We repeat scanning for the default mini-
mum shape until we cannot find one. To parse for wheels/legs, we
use the same procedure except we search for a spherical/cylindrical
shape, and the “expanding” process is successful if the expanded
shape encloses voxels and the immediate outward parts are empty
voxels. We search for the larger axis-aligned pieces first such that
this step can be fast. The remaining voxels are assumed to be front
handles. We represent each parsed shape by a node in our graph.
Lexical analysis may fail if individual front pieces are too close
together that the voxel representation do not consider them as sepa-
rate pieces. The axis alignment is not a requirement, as long as we
have the appropriate shape detector to identify each shape.

h

h

h

v v
v

wheel
v,h

h,v

ht

hb

v vha

wheel wheel

vha

h

h

v vh

wheel

vh

h

h

v h

v

wheel

v

v

Figure 4: Lexical Analysis: The input can be an irregularly-
shaped mesh (left). We convert the mesh to a voxel representation
and fit primitive shapes to it. The resulting shape of each part may
not necessarily have that exact primitive shape (i.e. top and bottom
horizontal pieces). The circled parts v and h (middle) completely
cross through each other, and we parse them again in either order
to create two possible primitive graphs (right).

We perform contact detection between each pair of nodes of the
graph to test if the corresponding two primitives are in contact. We
check if the two primitives have common voxels or if the neighbor-
ing voxels of one primitive includes the other. If two primitives are
in contact, we add an edge to the graph to connect those two nodes.
We now have our primitive graph. At this stage, we allow multi-
ple shapes to overlap at corners and T-junctions. However, if any
two parts completely cross through or intersect through each other,
we parse them again in either order to create two possible graphs
(Figure 4).

3.2 Structural Analysis

We apply structural analysis to all primitive graphs. The correctly
parsed primitive graph survives, and is augmented to a fabricatable
graph (Figure 5).

3.2.1 Fabricatable Parts and Connectors Generation

For this part of the algorithm, we slightly alter and augment the
production rules in two ways. First, we replace every occurence of
each subtype in the rules with the corresponding higher type. In
our 2D example, we replace each hb, ht, ha with h. Second, for
each “empty” rule (i.e. a rule with the right side being empty), we
iterate through each non-empty rule and generate additional rules
by replacing subgraphs on the right side of the non-empty rule that
match the left side of the empty rule with the empty graph. All
combinations of such empty rule replacement are taken (i.e. there
can be multiple replacements for each non-empty rule), and a new
additional rule is generated for each case. We then delete the empty
rules to form the set of augmented rules.

With these augmented rules, we take each primitive graph and per-
form a backward tracing procedure to it. The backward tracing
tries to find a subgraph in the current graph that matches the right

side of an augmented production rule and applies that rule in re-
verse. We use a simple tree-search enumeration procedure for sub-
graph matching. Since the edges in the primitive graphs do not
contain directions, the matching ignores the direction of the edges.
The matching also considers the part relationships defined in the
rules, and considers the matching to be successful if a missing part
can be generated from the others. For example, rule 8 of our 2D
grammar specifically includes a condition that when performing
subgraph matching, one of the wheels can be missing. We allow
for backtracking in the tracing process if no rules can be applied.
This can potentially lead to a combinatorial explosion, but this is
not an issue as both the subgraphs and number of rules are small.
We can use more sophisticated matching algorithms if the rules are
more complex. If no production rules can be applied in reverse and
we have not arrived at S, that primitive graph is not chosen. The
primitive graph that can be traced back to S survives. The most
important aspect of this backward tracing process is that by re-
applying the production rules in the forward direction starting from
S, we generate the fabricatable graph. Hence we have re-labeled
the parts and found the direction of the edges. In our example, the
backward tracing procedure matches this backward order of rules:
{8,6,6,2,6,6,2,4,1}. Applying these rules in the forward order start-
ing from S gives us the graph in Figure 5 right. The backward
tracing process can fail if the object’s structure is different from
those in the grammar or the 3D model is missing too many parts. In
either case, no primitive graph survives.

ht

hb

v vha

wheel wheel

vha

h

h

v vh

wheel

vh

h

h

v h

v

wheel

v

v

Figure 5: Structural Analysis: The primitive graph (left) that
matches the formal grammar is augmented to a fabricatable graph
(right) that represents separated parts and connectors (not shown).
This procedure re-labels, re-positions, and re-meshes the parts. We
also perform structure completion to generate the other wheel.

With the fabricatable graph, we re-position the parsed parts such
that they can be physically attached together. We iterate through
each directed edge and re-position the parts as shown in Fig-
ure 3(c,d). Each resulting part has dimensions dimt. For 3D
meshes that only contain the surface of the shape, the thicknesses
of each part can be small. For these cases, the system automatically
assigns default thicknesses derived from ExampleDimt. For ex-
ample, given the length and width of a cuboid part, we use a k-
nearest-neighbor regression technique and ExampleDimt to find
its depth.

We perform re-meshing by converting each part’s voxels into a 3D
mesh with the marching cubes [Lorensen and Cline 1987] algo-
rithm. In our example in Figure 5, the top and bottom parts are
not exact rectangular shapes, and we re-mesh the parsed pixels. In
these cases, the bounding box of the re-meshed shape has dimen-
sions dimt. If the physical object were to be built, the user may find
it convenient to approximate shapes as cuboids and not perform re-
meshing. This was the case for the horizontal-bottom piece of the
real cabinet in Figure 1.

For 3D cabinets, front doors and drawers are both originally parsed
as vertical front-facing parts. We differentiate between them with
an IKEA-expert rule. This rule uses the dimensions of the part
and corresponding front handle, and example data ExampleDimt

(which includes the dimensions of front doors and drawers from
real IKEA furniture). Details of when to apply this rule is provided

in the supplementary material. For front doors, we identify their
axes of rotation for visualization purposes. We assume there are
two possibilities for the axis (i.e. opening from left or right side),
and we identify it with an IKEA-expert rule. For front drawers, the
input 3D models that we have tested contain only the surface of the
overall cabinet and hence the front piece of the drawer. We generate
four additional rectangular pieces with another IKEA-expert rule to
form a complete drawer.

We generate connectors for each directed edge of the fab-
ricatable graph. We use the example set of connec-
tors (Dima, Dimb, T ypec, Numberc, T ransformationsc) for
each edge a → b. We have the values of dima and dimb

from the parts, and we use them to generate the values of
(typec, numberc, transformationsc) with a k-nearest-neighbor
regression technique.

3.2.2 Structure Completion

A consequence of the pattern matching method is structure com-
pletion of the original 3D model. In our example in Figure 5, we
generate the geometry and position of the other wheel based on rule
8 and the geometry of the existing wheel. Structure completion is
not the main goal of this paper, and the process only works for those
cases that are defined in the production rules of the grammar.

3.2.3 Assembly Instructions Generation

Our main purpose is to generate parts and connectors given a 3D
mesh. Our output can be used with Agrawala et al.’s work [2003]
to generate assembly instructions. However, an interesting conse-
quence of our overall approach is that the sequence of production
rules from S to the fabricatable graph corresponds to a possible set
of instructions for assembling the object. To generate a set of in-
structions, we take the sequence of production rules in the forward
direction, combine consecutive steps of the same production rule
into one step, and generate a graph for each step starting from S.
We then keep only the non-terminal symbols and associated edges
in each graph. The resulting sequence of graphs may have consec-
utive graphs that are the same, in which case we keep only one of
each in our sequence. For each graph in the remaining sequence, we
display one image of the virtual parts and connectors correspond-
ing to the graph. Figure 6 shows one example. In some cases,
there can be more than one possibility of steps (all of which can
make intuitive sense) depending on the order of production rules
the backward tracing process iterates through. Regardless of the
possibility that is chosen, the final image (i.e. the separated parts
and connectors) is the same.

4 Results

We tested our method with IKEA-style and other arbitrary 3D cabi-
net/bookcase models (Figures 1 and 7). These are downloaded from
Google 3D Warehouse, the Princeton Shape Benchmark [Shilane
et al. 2004] and other websites. For a set of 13 cabinets/bookcases
from the benchmark, our original grammar works successfully with
10 of them. The others (one of which is in Figure 7 bottom right)
did not work as their structures are somewhat different. We there-
fore defined additional production rules to represent these models
and incorporated the rules into the original 3D cabinet grammar
(see supplementary material). The new grammar then works for all
13 examples. The runtime for each example is at most one second.
Conversion to voxel representation occupies most of the runtime.
We use a simple method to explode the parts for better visualiza-
tion. The output of our method can be used as input to Li et al.’s
method [2008] for creating better exploded view diagrams.

Figure 6: Model m844 (left) from the Princeton Shape Benchmark, and assembly instructions generated from our grammar. The focus of
our work is to generate fabricatable parts and connectors, but our approach can also generate assembly instructions.

Figure 7: Input 3D models and fabricatable parts/connectors generated by our algorithm for arbitrary cabinet/bookcase models from Google
3D Warehouse and the Princeton Shape Benchmark. From top left: GALANT (IKEA), BESTA, m864 (benchmark), BJURSTA, m957, model
from other website, m860. Top right example demonstrates structure completion of the back piece. Bottom right example did not work with
our original cabinet grammar, but it worked after we added additional production rules.

We also defined a grammar for 3D tables (see supplementary mate-
rial) and demonstrated it with various 3D table models (Figure 8).
Our framework works well with most of the models from the shape
benchmark. For the models that did not work, the lexical or struc-
tural analysis fails to parse the 3D shape because the structure of
these models are quite different from those represented by the gram-
mar. Defining additional production rules to represent such models
is typically a good starting point for handling such cases.

5 Discussion

We have developed a framework for generating fabricatable parts
and connectors from a 3D furniture model. To make our frame-
work more general in the future, we can take an arbitrary mesh of
any object, classify the object into a specific object type and then
use the grammar for that type to perform the mesh conversion. The
main limitation of our system is that the grammar and expert rules
are defined manually. For future work, it would be useful to auto-
matically learn the grammar given examples of a type of object.

We currently do not make verifications of object dimensions. One
possibility is that vertical pieces of the cabinets should have the
same height. Another possibility is that there is currently no limit
for the number of ha’s in the graph, but there is a limit based on

the cabinet’s height and the height of each ha. More general shape
verifications can be performed with the output of our system. Ex-
ploring shape completion from noisy scanned data [Nan et al. 2010]
together with our grammar-based mesh algorithms can also be an
interesting direction for future work.

References

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003.
Designing effective step-by-step assembly instructions. ACM
Transactions on Graphics 22, 3, 828–837.

ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. 2006. Hi-
erarchical mesh segmentation based on fitting primitives. Visual
Computer 22 (March), 181–193.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Transactions on Graphics 29, 4, 104.

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. A
benchmark for 3D mesh segmentation. ACM Transactions on
Graphics 28, 3, 73.

Figure 8: Input 3D models and fabricatable parts/connectors generated by our algorithm for two IKEA table models (MAMMUT, NORDEN)
from Google 3D Warehouse and three arbitrary table models (m871, m895, m907) from the Princeton Shape Benchmark. The legs of the
MAMMUT table were parsed as cuboids and re-meshed to conic shapes.

FU, H., COHEN-OR, D., DROR, G., AND SHEFFER, A. 2008.
Upright orientation of man-made objects. ACM Transactions on
Graphics 27, 3, 42.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2008. Randomized
cuts for 3D mesh analysis. ACM Transactions on Graphics 27,
5, 145.

GROSS, M. 2007. Now more than ever: computational thinking
and a science of design. Japan Society for the Science of Design
16, 2, 50–54.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
a sketching interface for 3d freeform design. ACM SIGGRAPH,
409–416.

KATZ, S., LEIFMAN, G., AND TAL, A. 2005. Mesh segmentation
using feature point and core extraction. The Visual Computer
(Pacific Graphics) 21, 649–658.

LAI, Y.-K., HU, S.-M., MARTIN, R. R., AND ROSIN, P. L. 2009.
Rapid and effective segmentation of 3d models using random
walks. Computer Aided Geometric Design 26 (Aug.), 665–679.

LAI, Y.-K., KOBBELT, L., AND HU, S.-M. 2010. Feature aligned
quad dominant remeshing using iterative local updates. Com-
puter Aided Design 42 (Feb.), 109–117.

LANDAY, J. 2009. Design tools for the rest of us. Communications
of the ACM 52, 12, 80.

LI, W., AGRAWALA, M., CURLESS, B., AND SALESIN, D. 2008.
Automated generation of interactive 3d exploded view diagrams.
ACM Transactions on Graphics 27, 3, 101.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3d surface construction algorithm. ACM SIG-
GRAPH, 163–169.

MANNING, C., AND SCHUTZE, H. 1999. Foundations of Statisti-
cal Natural Language Processing. MIT Press.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model syn-
thesis. ACM Transactions on Graphics 27, 5, 158.

MORI, Y., AND IGARASHI, T. 2007. Plushie: an interactive design
system for plush toys. ACM Transactions on Graphics 26, 3, 45.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
VAN GOOL, L. 2006. Procedural modeling of buildings. ACM
Transactions on Graphics 25, 3, 614–623.

NAN, L., SHARF, A., ZHANG, H., COHEN-OR, D., AND CHEN,
B. 2010. Smartboxes for interactive urban reconstruction. ACM
Transactions on Graphics 29, 4, 93.

OH, Y., JOHNSON, G., GROSS, M. D., AND DO, E. Y.-L. 2006.
The designosaur and the furniture factory: simple software for
fast fabrication. International Conference on Design Computing
and Cognition, 123–140.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling
of cities. ACM SIGGRAPH, 301–308.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1991. The Algo-
rithmic Beauty of Plants. Springer Verlag.

SAUL, G., LAU, M., MITANI, J., AND IGARASHI, T. 2011.
SketchChair: An all-in-one chair design system for end-users.
International Conference on Tangible, Embedded and Embodied
Interaction (TEI), 73–80.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. Visual Computer 24 (March), 249–259.

SHILANE, P., MIN, P., KAZHDAN, M., AND FUNKHOUSER, T.
2004. The Princeton Shape Benchmark. Shape Modeling Inter-
national, 167–178.

SHLAFMAN, S., TAL, A., AND KATZ, S. 2002. Metamorphosis of
polyhedral surfaces using decomposition. Computer Graphics
Forum, 219–228.

STINY, G. 1980. Introduction to shape and shape grammars. Envi-
ronment and Planning B 7, 343–361.

WHITING, E., OCHSENDORF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. ACM
Transactions on Graphics 28, 5, 112.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. ACM Transactions on Graphics 22,
3, 669–677.

XU, W., WANG, J., YIN, K., ZHOU, K., VAN DE PANNE, M.,
CHEN, F., AND GUO, B. 2009. Joint-aware manipulation of
deformable models. ACM Transactions on Graphics 28, 3, 35.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z. 2010. Style-content separation by anisotropic part
scales. ACM Transactions on Graphics 29, 5, 184.

