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Abstract 
 
We present a system for modeling flowers in three dimensions 
quickly and easily while preserving correct botanical structures. 
We use floral diagrams and inflorescences, which were developed 
by botanists to concisely describe structural information of 
flowers. Floral diagrams represent the layout of floral components 
on a single flower, while inflorescences are arrangements of 
multiple flowers. Based on these notions, we created a simple user 
interface that is specially tailored to flower editing, while 
retaining a maximum variety of generable models. We also 
provide sketching interfaces to define the geometries of floral 
components. Separation of structural editing and editing of 
geometry makes the authoring process more flexible and efficient. 
We found that even novice users could easily design various 
flower models using our technique. Our system is an example of 
application-customized sketching, illustrating the potential power 
of a sketching interface that is carefully designed for a specific 
application.  
 
CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling; I.3.6 [Computer Graphics]: 
Methodology and Techniques – Interaction Techniques. 
 
Keywords: 3D Modeling, floral diagram, flower, inflorescence, 
sketch-based modeling. 
 
1 Introduction 
 
Flowers pose an interesting and important challenge for 
three-dimensional (3D) computer graphics modeling. They have a 
great number of components, such as petals, stems, and pistils, 
which take on highly varied 3D shapes and which are connected 
with intricate structures. To create a flower, users must design 
each component as a freeform surface and lay them all out in 3D 
space. The geometric and structural complexity makes this a 
difficult and time-consuming task even for experienced users; for 
novice users, creation of beautiful and biologically plausible 
flowers using traditional tools is almost impossible. 
 
Various botanic modeling systems have been created to support 
the design of plants. These can be classified into two groups 
according to their purposes. The first group concentrates mainly 
on visual plausibility rather than botanical correctness [Deussen 
and Lintermann 1999]. This type of modeler tends to offer a 
simple user interface, but its underlying method is to use a 
predefined library, and it is therefore difficult to design models 
that are not in the library. The second group tries to build a 
theoretical framework based on biological knowledge. For 
example, the L-System, one of the best known plant modeling 

systems, defines plant structures using a set of rewriting rules 
[Prusinkiewicz and Lindenmayer 1990]. However, it is very 
difficult to encode and decipher the behavior of real-world plants 
in such a simple form, and users must also have specific 
biological knowledge about plants. Furthermore, while an 
L-system encodes various characteristics of the gross structure of 
a plant, the actual geometry of the individual components; leaves, 
petals, stems, etc. remains to be determined by the user.  
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Figure 1: Lily model. The structural information is given as a 
floral diagram (a) and an inflorescence (b). The floral diagram 
consists of one pistil, six stamens, and six petals. The 
inflorescence pattern is raceme. The geometry models are 
designed in the sketch-based editor (c). The user creates a 
flower (d) and the entire model (e) of a lily combining the 
structural information and the geometries. 

 
Our goal is to strike a balance between these two approaches to 
modeling, that is, to provide an easy-to-use interface, while 
allowing users to model a wide variety of biologically plausible 
flower models. When guiding the modeling process, we 
incorporate floral diagrams and inflorescences as general and 
compact frameworks to describe most real-world flowers. A floral 
diagram is an iconic description of a flower’s structural 
characteristics (Figure 1a); we use it to design individual flowers. 
An inflorescence is a branch with multiple flowers and its 
branching pattern is represented in a pictorial form; we use it to 
design models that consist of many flowers, such as bostryx, 
lavender, and lilies (Figure 1b). These two frameworks define the 
structure of a flower model; it is also necessary to specify the 
geometry of each component, such as the floral receptacle, pistil, 
stamen, petal, and sepal. To make geometric modeling intuitive 
and efficient, we use a customized freeform sketching interface.  
 
This paper describes the user interface of our prototype flower 
modeling system based on these ideas. The structure editor 
consists of two sub-systems: one is for individual flowers, driven 
by floral diagrams, the other for arrangements of multiple flowers, 



based on inflorescences. The geometry editor also has two 
sub-systems: one for floral elements, the other for inflorescences. 
We believe that this separation of structure editing from geometry 
editing is applicable to general modelers, simplifies the modeling 
process, and achieves high configurability and reusability. 
Without this separation, it is very difficult to change a basic 
structure after details have been completed. Using our system, 
once a whole model has been created, it is possible to apply the 
model to different geometry to create a new model with the same 
or a similar structure. 

 
Figure 2: Examples of floral diagrams. A: axis, Bra: bract, O: 
ovary, Pe: petal, Se: sepal, St: stamen, Sp: sepal adnate to 
stamen, R: floral receptacle, Up: petal connate to petal.  

Note that our contribution is in simplifying the process of flower 
modeling, not in improving the final results. The resulting flower 
models can be replicated by existing modeling systems, but the 
process is different. With customized and well-designed 
high-level editors for particular classes of objects, the modeling 
process becomes much more intuitive and efficient. 
 
We describe the user interface of these editors in the following 
sections after discussing related work and the basic background. 
Our results show that users can design interesting flower models, 
such as the one shown in Figure 1, with little training. A user 
spent only 30 minutes creating this model from scratch. 
 
2 Related Work 
 
Lindenmayer [1968] formulated the L-System and Prusinkiewicz 
and Lindenmayer [1990] later introduced it to the computer 
graphics community. The L-System has been extended to simulate 
a wide variety of interactions between plants and their 
environments [Mĕch and Prusinkiewicz 1996; Prusinkiewicz et al. 
1994; 1996]. Prusinkiewicz et al. [2001] also proposed using 
positional information to control parameters along a plant axis. 
Boudon et al. [2003] proposed an L-system-based process for 
designing Bonsai tree models; it uses decomposition graphs to 
make it easier to manipulate various parameters. 
 
Deussen and Lintermann [1997; 1999; Lintermann and Deussen 
1996] developed the Xfrog system, which combines the power of 
a rule-based approach and intuitive user interfaces using a graph 
representation. Users design a graph representing the branching 
structures of a plant with 11 node types. This system offers an 
intuitive user interface and the resulting models are highly 
realistic, but the graph is designed heuristically and is too general 
for flower modeling (i.e., the graph can create structures other 
than plants). Furthermore, the graph representation includes 
geometric components such as FFD, so it is not possible to 
separate structural and geometric definitions completely. 
 
Over the past decade, sketch-based modeling has become popular; 
instead of creating precise, large-scale objects, a sketching 
interface provides an easy way to create a rough model that 
quickly conveys a user’s intentions. The main focus is on inferring 
3D shapes from two-dimensional (2D) sketches. Previous work 
has reconstructed rectilinear models covered by planar faces by 
solving constraints [Pugh 1992; Eggli et al. 1997] or by using 
optimization-based algorithms [Lipson and Shpitalni 1996]. The 
SKETCH system [Zeleznik et al. 1996] allows users to design 3D 
scenes consisting of simple primitives, while the Teddy system 
allows users to design freeform models [Igarashi et al. 1999]. 
Generating 3D curves through sketching is also a rich research 
domain; Pentland and Kuo [1989] generated a 3D curve from its 
2D projection using energy minimization, while Tanaka et al. 
[1989] used symmetric relations. Another strategy for defining a 

3D curve is to draw strokes twice, for example, a screen 
projection of a curve and its shadow [Cohen et al. 1999; Tobita 
and Rekimoto 2003]. 

Figure 3: Examples of inflorescence patterns. The two on the 
left are indeterminate inflorescences: raceme(a) and corymb(b). 
The next two are determinate inflorescences: dichasium(c) and 
drepanium(d). The last is a compound inflorescence: 
compound-raceme(e). 

 
2.1 Floral Diagrams and Inflorescences 
 
Floral diagrams and inflorescences are technical representations 
used in the study of plant morphology, which uses plant structure 
to explore their evolution, ecology, and systematics [Hara 1994; 
Shimizu 2001; Bell 1991]. 
 
A floral diagram pictorially represents the layout of four kinds of 
floral elements on a receptacle (the base of a flower): pistils, 
stamens, petals, and sepals (Figure 2). A floral diagram also 
describes additional information, such as the stem cross-section, 
number of ovules, and whether petals are connate. However, it 
does not describe the 3D geometry of floral components or their 
relative sizes. There is no universal definition of a floral diagram, 
and various forms of floral diagram exist. 
 
An inflorescence represents a branch bearing multiple flowers. In 
an inflorescence, flowers are generally arranged in one of a fixed 
number of patterns specific to their species. There are three 
inflorescence groups: indeterminate, determinate, and compound. 
In indeterminate inflorescences, lower flowers bloom first and 
higher flowers follow. In determinate inflorescences, top or 
central flowers bloom first and lower or lateral flowers follow. 
Compound inflorescences are a mixture of the other two patterns. 
Simple 2D figures can be used to represent all branching patterns 
(Figure 3). Here, black lines represent the central axis and its 
branches, red circles represent flowers, and green crescents 
represent bracts. Larger circles indicate older flowers. 
 
3 Overview of the Modeling Process 
 
Our system consists of a set of independent editors, which can be 
basically categorized into two groups: structure editors and 
geometry editors. The structure editor consists of a floral diagram 
editor and an inflorescence editor. Users can alternate between 
these two editors. A typical scenario is as follows (Figure 4). 



 
The user first defines the flower’s structure in the floral diagram 
editor by editing the layout of the floral components. The user 
then models the shapes of the floral receptacle and floral 
components using the sketching interface in the geometry editor. 
The resulting receptacle model appears at the bottom of the floral 
diagram editor and the component thumbnails are listed on the 
right side of the window. Next, the user associates geometries of 
floral components with corresponding elements in the floral 
diagram using drag-and-drop operations. The system 
automatically places geometric objects on the receptacle model. 
The user can interactively adjust the angle of attachment, size, and 
shape of the components in the geometry editor. The user can also 
modify layout using the floral diagram editor. 
 
After designing individual flowers, the user models the 
inflorescence. The user first defines the structure in the 
inflorescence editor, choosing one pre-defined inflorescence 
pattern from the list and making basic adjustments to various 
parameters. Then the user defines the central axis geometry by 
drawing a freeform stroke in the geometry editor. The system 
creates a three-dimensional inflorescence along the axis. The user 
adjusts the angles of flower and branch attachment using the 
geometry editor and can adjust parameters such as branching 
angle, branch length, etc. using the inflorescence editor. 
 
4 Structure Editors 
 
4.1 Floral Diagram Editor 
 
A standard floral diagram represents not only the structure of a 
flower but also some geometric information. However, our floral 
diagram editor focuses on the layout of floral components, and 
geometries are modeled separately in the geometry editor. Floral 
components (pistil, stamen, petal, and sepal) are represented as 
icons (Figure 5b). Users first specify the number of parts by 
typing the number, then specify layout by dragging and moving 
icons in the diagram. 
 
Floral components are often arranged in radial symmetry, so our 
editor provides a function to arrange them in radial symmetry. 

There are four circular regions in the diagram editor and users can 
modify their size by dragging borders. If users press the “layout” 
button, the system distributes the parts uniformly in each region. 
Some species (e.g., Ranunculus acris) have an indefinite number 
of components. In this case, a specific region of the flower is 
filled by as many corresponding components as possible. In our 
system, if users check the “indefinite” box, the corresponding 
region is filled by as many icons as possible (Figure 5c). We use a 
filling algorithm introduced by Prusinkiewicz et al. [2001]. 

Figure 5: A snapshot of the floral diagram editor (a) and 
examples of floral diagrams: Brassica rapa (b) and Ranunculus 
acris (c). Pi: pistil, St: stamen, Pe: petal, Se: sepal. 
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Figure 4: Overview of the modeling process 

 

 
Figure 6: Mapping the 2D diagram onto the 3D receptacle. A 
stamen object on a floral diagram (a) and its position in 3D (b).

A floral diagram is a 2D representation of a layout, so in order to 
construct the final 3D flower, the system has to convert the 2D 
layout into a 3D composition of geometric objects. A floral 
receptacle is represented as a surface of revolution, the outline of 
which is drawn by the user. The system uses a polar coordinate 
system on this surface, shown in Figure 6b. In our implementation, 
the receptacle’s 3D view is located underneath the floral diagram 
view (Figure 5a). A change using the floral diagram editor is 
immediately reflected in the 3D view. We currently do not allow 
users to use the 3D view to directly manipulate the layout; this 
remains for future work. 
 
4.2 Inflorescence Editor 
 
In the inflorescence editor, users select a branching pattern from 
the list and modify parameters by dragging handles in the visual 
pattern display (Figures 7b, c). We have implemented 8 of 22 
patterns reported in the literature [Bell 1991]. The variety of 
adjustable parameters depends on the pattern selected. Figure 13 
shows all patterns and their parameters. Using a raceme as an 
example, branch angle, branch length, and flower size at the top 
and bottom of the axis can be modified using the handles (Figure 
7c). Values between the top and bottom are linearly interpolated. 
Parameters such as the existence of tropism or stem hardness are 
specified in dialog boxes, since these parameters are difficult to 
represent in a 2D illustration. In future research, we plan to allow 
for more flexible positional control [Prusinkiewicz et al. 2001]. 



To determine each branch’s 3D direction, the system must 
compute branch angle to the stem; we call this the rotation angle 
(Figure 7a). In certain inflorescences, branches have one rotation 
angle value, which can be described as follows: 
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This formula produces the following values: 180, 120, 144, 135, 
138.45, 137.14, and 137.65, covering almost all species [Bell 
1991]. These values are listed, and users can simply choose the 
desired value. Users can also specify an arbitrary angle when 
necessary. 

 
Users associate flower models (created in the floral diagram 
editor) with inflorescence branch terminals. Aging of a flower is 
represented simply by multiple flower models; as shown in Figure 
8a, users import multiple models of different ages into the 
inflorescence editor top row in ascending order of age. The age is 
also linearly interpolated depending on the pattern (see section 
2.1). For instance, when two flower models are provided for an 
indeterminate inflorescence pattern, the lower half is associated 
with the old flower model and the upper half is associated with the 
young flower model (Figures 8b, c). 
 
After adjusting parameters, users add geometric information to the 
inflorescence in the geometry editor. If desired, users can return to 
the structure editor and adjust parameters. The system provides 
immediate visual feedback to the 3D inflorescence model during 
the parameter adjustment process. 
 
There are special inflorescence patterns called head and spadix. A 
head is a pattern in which small flowers cover a base called a disc, 
e.g. sunflowers. A spadix is a pattern in which many flowers are 
densely arranged on a thick stalk, e.g. Lysichiton camtschatcense. 

These inflorescence patterns can be compactly represented in 
floral diagrams, so we work with them in the floral diagram editor, 
allowing users to arrange flowers on the receptacle as well as 
arranging standard floral components. 

 
Figure 7: (a) Down angle and Rotate angle. (b) Inflorescence 
editor. (c) Inflorescence pattern of a raceme with various 
parameters. 

 
5 Geometry Editors 
 
Flower model components are 3D freeform shapes. We use a 
sketch-based interface to allow quick and intuitive modeling. 
Sketch-based modeling systems [Zeleznik et al. 1996; Igarashi et 
al. 1999] allow users to design interesting 3D geometry by 
drawing strokes on the screen; by contrast, traditional modeling 
systems require users to work with menus and many control 
points. A key aspect of sketch-based systems is that they make 
strong assumptions in interpreting user input to maintain a simple 
user interface. Our system simplifies the interface by providing a 
customized modeling interface for each floral component. 
Traditional modeling interfaces are generally suitable for careful 
editing by expert users; sketching interfaces are suitable for quick 
exploration by novices or casual users. 
 
5.1 Floral Receptacles and Floral Components 
 
In the geometry editor, users can create the geometries of the 
floral receptacle, pistil, stamen, petal, and sepal.  
 
A floral receptacle is defined as a surface of revolution, the profile 
of which is given by a user as a freeform stroke. A pistil is 
modeled using an inflation algorithm similar to “extrusion” in the 
Teddy system [Igarashi et al. 1999]. A stamen is defined as the 
sweep surface of a circle along a central axis drawn by the user. 
The user then draws another stroke to describe the axis of the 
stamen’s anther and the system creates a mesh by warping an 
ellipsoid along this stroke. 

 
Figure 8: (a) Bud and blooming flower models (A and B) are 
specified. (b) (c) Buds are placed on the higher (younger) half 
of the branches. Blooming flowers are placed on the lower 
(older) half of the branches. 

 
The petal and sepal share a common user interface (Figure 9). A 
user first draws three strokes to represent the outline and central 
vein of the petal (the central stroke may be omitted). The system 
returns a flat petal object (Figure 9a). Next, the user draws 
modifying strokes; these strokes are interpreted as cross-sections 
of the object (Figures 9b, c, d). Modifying strokes have two 
modes: global and local. In the global mode, a modifying stroke 
deforms the entire object, while in the local mode, only part of the 
object is deformed (Figure 9d). Users can switch between the two 
modes by selecting a button. To add realism, users can also add 
noise and texture.  

 
Figure 9: Petal modeling. (a) Initial creation. (b) Transforming 
an object along the center vein. (c) Transforming an object in 
global mode and (d) in local mode. 



Figure 11: The geometry editor for inflorescences. The user 
draws the axis of the inflorescences freehand and the system 
provides the real time feedback during drawing. 

A petal object is implemented as a B-spline surface. When the 
initial three outline strokes are drawn, the system generates 
control points of the B-spline surface, shown in Figure 10a. We 
parameterize the surface using u and v coordinates, where the 
u-axis corresponds to horizontal direction and the v-axis 
corresponds to vertical direction. The system saves the plane on 
which the initial surface lies as a base plane. Modifying strokes 
move control points perpendicular to this base plane. If a user 
draws a modifying stroke in the u direction, the system first finds 
the control point nearest to the stroke’s starting point on the screen. 
Control points that have the same v value as the base point are 
marked as target control points. The system projects the stroke on 
a plane that passes through target control points and is 
perpendicular to the base plane (Figure 10b). Next, the system 
moves target control points to the projected stroke (Figure 10c). In 
the global mode, the system moves all control points on the 
surface, and in the local mode it moves only neighboring points 
(Figure 10d). The displacement amount smoothly decays toward 
the petal’s top and bottom. When a modifying stroke is drawn in 
the v direction, the system projects the stroke to a plane containing 
the central axis, perpendicular to the base plane (Figure 10e). The 
system then moves control points so that all points with the same 
v-coordinates move the same amount. In this case, there is no 
difference between global and local modes. 

Figure 10: Petal modeling. (a) Initial creation. (b) (c) The 
system maps the 2D stroke. (d) Resulting geometry in global 
and local modes. (e) An example of a modifying stroke along 
the vertical direction. 

 
5.2 Inflorescence 
 
The interface for modeling the geometry of an inflorescence is 
very simple. After selecting an inflorescence pattern and adjusting 
its parameters in the structure editor (Figure 7), the user draws the 
selected inflorescence’s central axis as a 2D freeform stroke. The 
system then creates the 3D geometry of the inflorescence, 
displaying the curves that represent the axis and branches during 
the drawing operation. When the user completes drawing the 
stroke, the system creates a mesh for the stem and places the 
flower objects on branch terminals (Figure 11). 
 
Our system automatically adds appropriate depth to a user-drawn 
2D stroke. Typical existing approaches first define a work plane 
that is almost perpendicular to the view direction and project the 
user-drawn stroke onto it [Cohen et al. 1999; Tobita and Rekimoto 

2003]. A drawback of this approach is that it cannot create the 
typical shapes of stems such as spirals, and it requires that strokes 
be drawn twice. Our approach requires input of a single stroke and 
generates a 3D curve with a similar appearance regardless of 
viewing direction around the axis. For example, when a user 
draws a sine curve, it creates a 3D spiral stroke. We achieve this 
effect by adding depth to the curve, so that the resulting curve has 
a constant curvature in 3D space (Figure 12). Our algorithm is a 
specialized version of the energy-minimizing curve reconstruction 
proposed by Pentland and Kuo [1989]. The detailed algorithm is 
as follows. 

 
Figure 12: (a) A stroke drawn by the user and the resulting 3D 
geometry models. (b) The model viewed from the right side. (c) 
The model viewed from higher perspectives. 

 
We assume that a user draws a stroke on the x-y plane and that the 
viewing direction is in the positive z direction. The initial stroke is 
represented as follows: 

( ){ }0,,, === iiiiii zzyxvvstroke  

where the y-axis corresponds to the vertical direction. We 
resample the input stroke so that vertices are equally spaced along 
the y direction. Our algorithm receives the stroke with x and y 
values as input and returns a new stroke with appropriate z values. 
To achieve this, our algorithm assumes that the resulting stroke 
has a constant curvature in 3D space along the y-axis, i.e.: 
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We compute z values by solving this equation. We first decide the 
constant value by taking the maximum squared value of the 
second derivatives of x along the axis. Given the constant value 
and the second derivatives of x, we can calculate absolute values 
of the second derivative of z by solving the above equation. 
 
Direct solution of this formula yields only absolute values. The 
next task is to determine the signs of the second derivatives of z. 
We assume that the second derivative of z0 is positive and 



determine the signs sequentially, so that successive signs change 
when the first derivatives of x cross zero. 
 
Given the signed second derivatives of z, we calculate values for z 
by integrating them twice. We set z0 to be 0 and adjust the first 
derivative of z0 (the initial branch slope in the depth direction) so 
that the last z also becomes zero. 
 
6 Discussion 
 
In this paper, we propose a system for efficiently modeling 
flowers with correct botanical structures. We introduce floral 
diagrams and inflorescences, which were developed by botanists 
to describe structural information about flowers. We also propose 
a specialized sketch-based geometry editor for floral elements. 
Our current implementation supports eight inflorescence 
branching patterns, shown in Figure 13. These are typical patterns 
selected from three inflorescence groups: indeterminate, 
determinate, and compound. Our results show that we can model 
plants successfully using these patterns, and it is probable that 
other branching patterns can be supported in a similar manner. 
 
Figure 14 shows flower models designed using our system with 
the corresponding floral diagrams and inflorescence patterns. 
Since our system provides a simple, intuitive user interface for 
defining complex structures and geometries, it took less than 40 
minutes to design these complete flower models from scratch. We 
also performed a preliminary user study to test the usability of our 
prototype system. We tutored four university students who were 
novice users for less than 20 minutes, and then asked them to 
create 3D flower models. Subjects were allowed to consult books 
to learn the structure of the target plants. It took less than 40 
minutes for them to design the complete flower models shown in 
Figure 14 from scratch. 
 
One limitation of the current system is that our inflorescence 
editor is not able to support the creation of a gradual progression 
of developmental flower stages. In addition, there are a few 
shapes that our geometry editor cannot create; for example, it is 
impossible to create petal-like shapes that do not have an elliptical 
outline. 
 
The basis of our approach is the importance of separating 
structure editing from geometry editing. Our approach could be 
useful for modeling other targets with complicated structures and 
geometry, such as trees, insects, four-footed animals, etc.; in the 
future we would like to deal with these targets. Another 
interesting direction would be to extend our system to support 
entire plant structures. We are also interested in creating a flower 
arrangement application; this application would require a 
combination of biological and artistic knowledge, and would 
therefore be an interesting challenge. 
 
We consider this work to be an example of an 
application-customized sketch-based interface; the success of the 
interface depends in part on balancing correct choice in expressive 
interface components against application needs: too-general 
components may allow users to make mistakes easily; too-limited 
ones may restrict user ability to reach goals, and may require a 
greater variety of components, which will be difficult to learn. 
The proper design rules for making such choices have yet to be 
elucidated; we hope that our system provides an instance from 
which such rules may someday be drawn. 
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Figure13: Inflorescence patterns and their parameters in our current implementation. The parameters with the superscript '*' are pair of 
numbers to be linearly interpolated along the stem. There are also some common parameters that are not shown in the figure: 
phototropism direction, stem hardness, stem width, rotate angle, and the number of branches. Dichasium and Drepanium patterns have 
additional “ratio” parameters for all parameters that determine the ratio of a child branch’s parameter values to those of a parent branch. 

(a) Lycoris radiate (40 min) (b) Cimicifuga acerina (30 min) (c) Hydrangea (40min)

(e) Saxifraga
stolonifera (15min)

(d) Sun flower (40min) (f) Allium roseum
(30min)

(g) Clematis terniflora
(30min)

(h) Brassica rapa
(30min)

Figure 14: Example models and the approximate time to complete each model. (a), (b), (d), and (e) are modeled by the author. (c), (f), (g), 
and (h) are designed by the test users. 
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