
Floral diagrams and inflorescences:
Interactive flower modeling using botanical structural constraints

Takashi Ijiri† Shigeru Owada‡ Makoto Okabe† Takeo Igarashi†§

†The University of Tokyo ‡Sony CS Laboratories Inc. §PRESTO/JST
Abstract

We present a system for modeling flowers in three dimensions
quickly and easily while preserving correct botanical structures.
We use floral diagrams and inflorescences, which were developed
by botanists to concisely describe structural information of
flowers. Floral diagrams represent the layout of floral components
on a single flower, while inflorescences are arrangements of
multiple flowers. Based on these notions, we created a simple user
interface that is specially tailored to flower editing, while
retaining a maximum variety of generable models. We also
provide sketching interfaces to define the geometries of floral
components. Separation of structural editing and editing of
geometry makes the authoring process more flexible and efficient.
We found that even novice users could easily design various
flower models using our technique. Our system is an example of
application-customized sketching, illustrating the potential power
of a sketching interface that is carefully designed for a specific
application.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling; I.3.6 [Computer Graphics]:
Methodology and Techniques – Interaction Techniques.

Keywords: 3D Modeling, floral diagram, flower, inflorescence,
sketch-based modeling.

1 Introduction

Flowers pose an interesting and important challenge for
three-dimensional (3D) computer graphics modeling. They have a
great number of components, such as petals, stems, and pistils,
which take on highly varied 3D shapes and which are connected
with intricate structures. To create a flower, users must design
each component as a freeform surface and lay them all out in 3D
space. The geometric and structural complexity makes this a
difficult and time-consuming task even for experienced users; for
novice users, creation of beautiful and biologically plausible
flowers using traditional tools is almost impossible.

Various botanic modeling systems have been created to support
the design of plants. These can be classified into two groups
according to their purposes. The first group concentrates mainly
on visual plausibility rather than botanical correctness [Deussen
and Lintermann 1999]. This type of modeler tends to offer a
simple user interface, but its underlying method is to use a
predefined library, and it is therefore difficult to design models
that are not in the library. The second group tries to build a
theoretical framework based on biological knowledge. For
example, the L-System, one of the best known plant modeling

systems, defines plant structures using a set of rewriting rules
[Prusinkiewicz and Lindenmayer 1990]. However, it is very
difficult to encode and decipher the behavior of real-world plants
in such a simple form, and users must also have specific
biological knowledge about plants. Furthermore, while an
L-system encodes various characteristics of the gross structure of
a plant, the actual geometry of the individual components; leaves,
petals, stems, etc. remains to be determined by the user.

(b)

(c)

(d) (e)

(a)

Figure 1: Lily model. The structural information is given as a
floral diagram (a) and an inflorescence (b). The floral diagram
consists of one pistil, six stamens, and six petals. The
inflorescence pattern is raceme. The geometry models are
designed in the sketch-based editor (c). The user creates a
flower (d) and the entire model (e) of a lily combining the
structural information and the geometries.

Our goal is to strike a balance between these two approaches to
modeling, that is, to provide an easy-to-use interface, while
allowing users to model a wide variety of biologically plausible
flower models. When guiding the modeling process, we
incorporate floral diagrams and inflorescences as general and
compact frameworks to describe most real-world flowers. A floral
diagram is an iconic description of a flower’s structural
characteristics (Figure 1a); we use it to design individual flowers.
An inflorescence is a branch with multiple flowers and its
branching pattern is represented in a pictorial form; we use it to
design models that consist of many flowers, such as bostryx,
lavender, and lilies (Figure 1b). These two frameworks define the
structure of a flower model; it is also necessary to specify the
geometry of each component, such as the floral receptacle, pistil,
stamen, petal, and sepal. To make geometric modeling intuitive
and efficient, we use a customized freeform sketching interface.

This paper describes the user interface of our prototype flower
modeling system based on these ideas. The structure editor
consists of two sub-systems: one is for individual flowers, driven
by floral diagrams, the other for arrangements of multiple flowers,

based on inflorescences. The geometry editor also has two
sub-systems: one for floral elements, the other for inflorescences.
We believe that this separation of structure editing from geometry
editing is applicable to general modelers, simplifies the modeling
process, and achieves high configurability and reusability.
Without this separation, it is very difficult to change a basic
structure after details have been completed. Using our system,
once a whole model has been created, it is possible to apply the
model to different geometry to create a new model with the same
or a similar structure.

Figure 2: Examples of floral diagrams. A: axis, Bra: bract, O:
ovary, Pe: petal, Se: sepal, St: stamen, Sp: sepal adnate to
stamen, R: floral receptacle, Up: petal connate to petal.

Note that our contribution is in simplifying the process of flower
modeling, not in improving the final results. The resulting flower
models can be replicated by existing modeling systems, but the
process is different. With customized and well-designed
high-level editors for particular classes of objects, the modeling
process becomes much more intuitive and efficient.

We describe the user interface of these editors in the following
sections after discussing related work and the basic background.
Our results show that users can design interesting flower models,
such as the one shown in Figure 1, with little training. A user
spent only 30 minutes creating this model from scratch.

2 Related Work

Lindenmayer [1968] formulated the L-System and Prusinkiewicz
and Lindenmayer [1990] later introduced it to the computer
graphics community. The L-System has been extended to simulate
a wide variety of interactions between plants and their
environments [Mĕch and Prusinkiewicz 1996; Prusinkiewicz et al.
1994; 1996]. Prusinkiewicz et al. [2001] also proposed using
positional information to control parameters along a plant axis.
Boudon et al. [2003] proposed an L-system-based process for
designing Bonsai tree models; it uses decomposition graphs to
make it easier to manipulate various parameters.

Deussen and Lintermann [1997; 1999; Lintermann and Deussen
1996] developed the Xfrog system, which combines the power of
a rule-based approach and intuitive user interfaces using a graph
representation. Users design a graph representing the branching
structures of a plant with 11 node types. This system offers an
intuitive user interface and the resulting models are highly
realistic, but the graph is designed heuristically and is too general
for flower modeling (i.e., the graph can create structures other
than plants). Furthermore, the graph representation includes
geometric components such as FFD, so it is not possible to
separate structural and geometric definitions completely.

Over the past decade, sketch-based modeling has become popular;
instead of creating precise, large-scale objects, a sketching
interface provides an easy way to create a rough model that
quickly conveys a user’s intentions. The main focus is on inferring
3D shapes from two-dimensional (2D) sketches. Previous work
has reconstructed rectilinear models covered by planar faces by
solving constraints [Pugh 1992; Eggli et al. 1997] or by using
optimization-based algorithms [Lipson and Shpitalni 1996]. The
SKETCH system [Zeleznik et al. 1996] allows users to design 3D
scenes consisting of simple primitives, while the Teddy system
allows users to design freeform models [Igarashi et al. 1999].
Generating 3D curves through sketching is also a rich research
domain; Pentland and Kuo [1989] generated a 3D curve from its
2D projection using energy minimization, while Tanaka et al.
[1989] used symmetric relations. Another strategy for defining a

3D curve is to draw strokes twice, for example, a screen
projection of a curve and its shadow [Cohen et al. 1999; Tobita
and Rekimoto 2003].

Figure 3: Examples of inflorescence patterns. The two on the
left are indeterminate inflorescences: raceme(a) and corymb(b).
The next two are determinate inflorescences: dichasium(c) and
drepanium(d). The last is a compound inflorescence:
compound-raceme(e).

2.1 Floral Diagrams and Inflorescences

Floral diagrams and inflorescences are technical representations
used in the study of plant morphology, which uses plant structure
to explore their evolution, ecology, and systematics [Hara 1994;
Shimizu 2001; Bell 1991].

A floral diagram pictorially represents the layout of four kinds of
floral elements on a receptacle (the base of a flower): pistils,
stamens, petals, and sepals (Figure 2). A floral diagram also
describes additional information, such as the stem cross-section,
number of ovules, and whether petals are connate. However, it
does not describe the 3D geometry of floral components or their
relative sizes. There is no universal definition of a floral diagram,
and various forms of floral diagram exist.

An inflorescence represents a branch bearing multiple flowers. In
an inflorescence, flowers are generally arranged in one of a fixed
number of patterns specific to their species. There are three
inflorescence groups: indeterminate, determinate, and compound.
In indeterminate inflorescences, lower flowers bloom first and
higher flowers follow. In determinate inflorescences, top or
central flowers bloom first and lower or lateral flowers follow.
Compound inflorescences are a mixture of the other two patterns.
Simple 2D figures can be used to represent all branching patterns
(Figure 3). Here, black lines represent the central axis and its
branches, red circles represent flowers, and green crescents
represent bracts. Larger circles indicate older flowers.

3 Overview of the Modeling Process

Our system consists of a set of independent editors, which can be
basically categorized into two groups: structure editors and
geometry editors. The structure editor consists of a floral diagram
editor and an inflorescence editor. Users can alternate between
these two editors. A typical scenario is as follows (Figure 4).

The user first defines the flower’s structure in the floral diagram
editor by editing the layout of the floral components. The user
then models the shapes of the floral receptacle and floral
components using the sketching interface in the geometry editor.
The resulting receptacle model appears at the bottom of the floral
diagram editor and the component thumbnails are listed on the
right side of the window. Next, the user associates geometries of
floral components with corresponding elements in the floral
diagram using drag-and-drop operations. The system
automatically places geometric objects on the receptacle model.
The user can interactively adjust the angle of attachment, size, and
shape of the components in the geometry editor. The user can also
modify layout using the floral diagram editor.

After designing individual flowers, the user models the
inflorescence. The user first defines the structure in the
inflorescence editor, choosing one pre-defined inflorescence
pattern from the list and making basic adjustments to various
parameters. Then the user defines the central axis geometry by
drawing a freeform stroke in the geometry editor. The system
creates a three-dimensional inflorescence along the axis. The user
adjusts the angles of flower and branch attachment using the
geometry editor and can adjust parameters such as branching
angle, branch length, etc. using the inflorescence editor.

4 Structure Editors

4.1 Floral Diagram Editor

A standard floral diagram represents not only the structure of a
flower but also some geometric information. However, our floral
diagram editor focuses on the layout of floral components, and
geometries are modeled separately in the geometry editor. Floral
components (pistil, stamen, petal, and sepal) are represented as
icons (Figure 5b). Users first specify the number of parts by
typing the number, then specify layout by dragging and moving
icons in the diagram.

Floral components are often arranged in radial symmetry, so our
editor provides a function to arrange them in radial symmetry.

There are four circular regions in the diagram editor and users can
modify their size by dragging borders. If users press the “layout”
button, the system distributes the parts uniformly in each region.
Some species (e.g., Ranunculus acris) have an indefinite number
of components. In this case, a specific region of the flower is
filled by as many corresponding components as possible. In our
system, if users check the “indefinite” box, the corresponding
region is filled by as many icons as possible (Figure 5c). We use a
filling algorithm introduced by Prusinkiewicz et al. [2001].

Figure 5: A snapshot of the floral diagram editor (a) and
examples of floral diagrams: Brassica rapa (b) and Ranunculus
acris (c). Pi: pistil, St: stamen, Pe: petal, Se: sepal.

Create Torus

Make Associations

Create Flower Components

Define Inflorescences Draw Axis Stroke Fine Tuning

Define floral diagram

Fine Tuning

Figure 4: Overview of the modeling process

Figure 6: Mapping the 2D diagram onto the 3D receptacle. A
stamen object on a floral diagram (a) and its position in 3D (b).

A floral diagram is a 2D representation of a layout, so in order to
construct the final 3D flower, the system has to convert the 2D
layout into a 3D composition of geometric objects. A floral
receptacle is represented as a surface of revolution, the outline of
which is drawn by the user. The system uses a polar coordinate
system on this surface, shown in Figure 6b. In our implementation,
the receptacle’s 3D view is located underneath the floral diagram
view (Figure 5a). A change using the floral diagram editor is
immediately reflected in the 3D view. We currently do not allow
users to use the 3D view to directly manipulate the layout; this
remains for future work.

4.2 Inflorescence Editor

In the inflorescence editor, users select a branching pattern from
the list and modify parameters by dragging handles in the visual
pattern display (Figures 7b, c). We have implemented 8 of 22
patterns reported in the literature [Bell 1991]. The variety of
adjustable parameters depends on the pattern selected. Figure 13
shows all patterns and their parameters. Using a raceme as an
example, branch angle, branch length, and flower size at the top
and bottom of the axis can be modified using the handles (Figure
7c). Values between the top and bottom are linearly interpolated.
Parameters such as the existence of tropism or stem hardness are
specified in dialog boxes, since these parameters are difficult to
represent in a 2D illustration. In future research, we plan to allow
for more flexible positional control [Prusinkiewicz et al. 2001].

To determine each branch’s 3D direction, the system must
compute branch angle to the stem; we call this the rotation angle
(Figure 7a). In certain inflorescences, branches have one rotation
angle value, which can be described as follows:

sequencefibonacciF

n
F
F

angle

n

n

n

:

3,2,1,0360
2

L=×=
+

This formula produces the following values: 180, 120, 144, 135,
138.45, 137.14, and 137.65, covering almost all species [Bell
1991]. These values are listed, and users can simply choose the
desired value. Users can also specify an arbitrary angle when
necessary.

Users associate flower models (created in the floral diagram
editor) with inflorescence branch terminals. Aging of a flower is
represented simply by multiple flower models; as shown in Figure
8a, users import multiple models of different ages into the
inflorescence editor top row in ascending order of age. The age is
also linearly interpolated depending on the pattern (see section
2.1). For instance, when two flower models are provided for an
indeterminate inflorescence pattern, the lower half is associated
with the old flower model and the upper half is associated with the
young flower model (Figures 8b, c).

After adjusting parameters, users add geometric information to the
inflorescence in the geometry editor. If desired, users can return to
the structure editor and adjust parameters. The system provides
immediate visual feedback to the 3D inflorescence model during
the parameter adjustment process.

There are special inflorescence patterns called head and spadix. A
head is a pattern in which small flowers cover a base called a disc,
e.g. sunflowers. A spadix is a pattern in which many flowers are
densely arranged on a thick stalk, e.g. Lysichiton camtschatcense.

These inflorescence patterns can be compactly represented in
floral diagrams, so we work with them in the floral diagram editor,
allowing users to arrange flowers on the receptacle as well as
arranging standard floral components.

Figure 7: (a) Down angle and Rotate angle. (b) Inflorescence
editor. (c) Inflorescence pattern of a raceme with various
parameters.

5 Geometry Editors

Flower model components are 3D freeform shapes. We use a
sketch-based interface to allow quick and intuitive modeling.
Sketch-based modeling systems [Zeleznik et al. 1996; Igarashi et
al. 1999] allow users to design interesting 3D geometry by
drawing strokes on the screen; by contrast, traditional modeling
systems require users to work with menus and many control
points. A key aspect of sketch-based systems is that they make
strong assumptions in interpreting user input to maintain a simple
user interface. Our system simplifies the interface by providing a
customized modeling interface for each floral component.
Traditional modeling interfaces are generally suitable for careful
editing by expert users; sketching interfaces are suitable for quick
exploration by novices or casual users.

5.1 Floral Receptacles and Floral Components

In the geometry editor, users can create the geometries of the
floral receptacle, pistil, stamen, petal, and sepal.

A floral receptacle is defined as a surface of revolution, the profile
of which is given by a user as a freeform stroke. A pistil is
modeled using an inflation algorithm similar to “extrusion” in the
Teddy system [Igarashi et al. 1999]. A stamen is defined as the
sweep surface of a circle along a central axis drawn by the user.
The user then draws another stroke to describe the axis of the
stamen’s anther and the system creates a mesh by warping an
ellipsoid along this stroke.

Figure 8: (a) Bud and blooming flower models (A and B) are
specified. (b) (c) Buds are placed on the higher (younger) half
of the branches. Blooming flowers are placed on the lower
(older) half of the branches.

The petal and sepal share a common user interface (Figure 9). A
user first draws three strokes to represent the outline and central
vein of the petal (the central stroke may be omitted). The system
returns a flat petal object (Figure 9a). Next, the user draws
modifying strokes; these strokes are interpreted as cross-sections
of the object (Figures 9b, c, d). Modifying strokes have two
modes: global and local. In the global mode, a modifying stroke
deforms the entire object, while in the local mode, only part of the
object is deformed (Figure 9d). Users can switch between the two
modes by selecting a button. To add realism, users can also add
noise and texture.

Figure 9: Petal modeling. (a) Initial creation. (b) Transforming
an object along the center vein. (c) Transforming an object in
global mode and (d) in local mode.

Figure 11: The geometry editor for inflorescences. The user
draws the axis of the inflorescences freehand and the system
provides the real time feedback during drawing.

A petal object is implemented as a B-spline surface. When the
initial three outline strokes are drawn, the system generates
control points of the B-spline surface, shown in Figure 10a. We
parameterize the surface using u and v coordinates, where the
u-axis corresponds to horizontal direction and the v-axis
corresponds to vertical direction. The system saves the plane on
which the initial surface lies as a base plane. Modifying strokes
move control points perpendicular to this base plane. If a user
draws a modifying stroke in the u direction, the system first finds
the control point nearest to the stroke’s starting point on the screen.
Control points that have the same v value as the base point are
marked as target control points. The system projects the stroke on
a plane that passes through target control points and is
perpendicular to the base plane (Figure 10b). Next, the system
moves target control points to the projected stroke (Figure 10c). In
the global mode, the system moves all control points on the
surface, and in the local mode it moves only neighboring points
(Figure 10d). The displacement amount smoothly decays toward
the petal’s top and bottom. When a modifying stroke is drawn in
the v direction, the system projects the stroke to a plane containing
the central axis, perpendicular to the base plane (Figure 10e). The
system then moves control points so that all points with the same
v-coordinates move the same amount. In this case, there is no
difference between global and local modes.

Figure 10: Petal modeling. (a) Initial creation. (b) (c) The
system maps the 2D stroke. (d) Resulting geometry in global
and local modes. (e) An example of a modifying stroke along
the vertical direction.

5.2 Inflorescence

The interface for modeling the geometry of an inflorescence is
very simple. After selecting an inflorescence pattern and adjusting
its parameters in the structure editor (Figure 7), the user draws the
selected inflorescence’s central axis as a 2D freeform stroke. The
system then creates the 3D geometry of the inflorescence,
displaying the curves that represent the axis and branches during
the drawing operation. When the user completes drawing the
stroke, the system creates a mesh for the stem and places the
flower objects on branch terminals (Figure 11).

Our system automatically adds appropriate depth to a user-drawn
2D stroke. Typical existing approaches first define a work plane
that is almost perpendicular to the view direction and project the
user-drawn stroke onto it [Cohen et al. 1999; Tobita and Rekimoto

2003]. A drawback of this approach is that it cannot create the
typical shapes of stems such as spirals, and it requires that strokes
be drawn twice. Our approach requires input of a single stroke and
generates a 3D curve with a similar appearance regardless of
viewing direction around the axis. For example, when a user
draws a sine curve, it creates a 3D spiral stroke. We achieve this
effect by adding depth to the curve, so that the resulting curve has
a constant curvature in 3D space (Figure 12). Our algorithm is a
specialized version of the energy-minimizing curve reconstruction
proposed by Pentland and Kuo [1989]. The detailed algorithm is
as follows.

Figure 12: (a) A stroke drawn by the user and the resulting 3D
geometry models. (b) The model viewed from the right side. (c)
The model viewed from higher perspectives.

We assume that a user draws a stroke on the x-y plane and that the
viewing direction is in the positive z direction. The initial stroke is
represented as follows:

(){ }0,,, === iiiiii zzyxvvstroke

where the y-axis corresponds to the vertical direction. We
resample the input stroke so that vertices are equally spaced along
the y direction. Our algorithm receives the stroke with x and y
values as input and returns a new stroke with appropriate z values.
To achieve this, our algorithm assumes that the resulting stroke
has a constant curvature in 3D space along the y-axis, i.e.:

const
dy

zd
dy

xd
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2

2

22

2

2

We compute z values by solving this equation. We first decide the
constant value by taking the maximum squared value of the
second derivatives of x along the axis. Given the constant value
and the second derivatives of x, we can calculate absolute values
of the second derivative of z by solving the above equation.

Direct solution of this formula yields only absolute values. The
next task is to determine the signs of the second derivatives of z.
We assume that the second derivative of z0 is positive and

determine the signs sequentially, so that successive signs change
when the first derivatives of x cross zero.

Given the signed second derivatives of z, we calculate values for z
by integrating them twice. We set z0 to be 0 and adjust the first
derivative of z0 (the initial branch slope in the depth direction) so
that the last z also becomes zero.

6 Discussion

In this paper, we propose a system for efficiently modeling
flowers with correct botanical structures. We introduce floral
diagrams and inflorescences, which were developed by botanists
to describe structural information about flowers. We also propose
a specialized sketch-based geometry editor for floral elements.
Our current implementation supports eight inflorescence
branching patterns, shown in Figure 13. These are typical patterns
selected from three inflorescence groups: indeterminate,
determinate, and compound. Our results show that we can model
plants successfully using these patterns, and it is probable that
other branching patterns can be supported in a similar manner.

Figure 14 shows flower models designed using our system with
the corresponding floral diagrams and inflorescence patterns.
Since our system provides a simple, intuitive user interface for
defining complex structures and geometries, it took less than 40
minutes to design these complete flower models from scratch. We
also performed a preliminary user study to test the usability of our
prototype system. We tutored four university students who were
novice users for less than 20 minutes, and then asked them to
create 3D flower models. Subjects were allowed to consult books
to learn the structure of the target plants. It took less than 40
minutes for them to design the complete flower models shown in
Figure 14 from scratch.

One limitation of the current system is that our inflorescence
editor is not able to support the creation of a gradual progression
of developmental flower stages. In addition, there are a few
shapes that our geometry editor cannot create; for example, it is
impossible to create petal-like shapes that do not have an elliptical
outline.

The basis of our approach is the importance of separating
structure editing from geometry editing. Our approach could be
useful for modeling other targets with complicated structures and
geometry, such as trees, insects, four-footed animals, etc.; in the
future we would like to deal with these targets. Another
interesting direction would be to extend our system to support
entire plant structures. We are also interested in creating a flower
arrangement application; this application would require a
combination of biological and artistic knowledge, and would
therefore be an interesting challenge.

We consider this work to be an example of an
application-customized sketch-based interface; the success of the
interface depends in part on balancing correct choice in expressive
interface components against application needs: too-general
components may allow users to make mistakes easily; too-limited
ones may restrict user ability to reach goals, and may require a
greater variety of components, which will be difficult to learn.
The proper design rules for making such choices have yet to be
elucidated; we hope that our system provides an instance from
which such rules may someday be drawn.

Acknowledgements
We would like to thank Prof. John F. Hughes, Prof. Etsuya
Shibayama, Dr. Shin Takahashi, Prof. Katsuhiko Kakei, and Prof.
Ikuo Takeuchi for their comments and advice based on their
experience and deep insights. This work was funded in part by
grants from the Japanese Information-Technology Promotion
Agency (IPA).

References
BELL, A. D. 1991. Plant Form: An Illustrated Guide to Flowering Plant

Morphology. Oxford University Press.

BOUDON, F., PRUSINKIEWICZ, P., FEDERL, P., GODIN, C., and KARWOWSKI,

R. 2003. Interactive Design of Bonsai Tree Models. In Proceedings of
Eurographics 2003: Computer Graphics Forum, 22, 3, 591-599.

COHEN, J., MARKOSIAN, L., ZELEZNIK, R., HUGHES, J., and BARZEL, R.

1999. An Interface for Sketching 3D Curves. In Proceedings of ACM
I3D 99, 17-21.

DEUSSEN, O. and LINTERMANN, B. 1997. A Modeling Method and User

Interface for Creating Plants. In Proceedings of Graphics Interface 97,
189-197.

DEUSSEN O. and LINTERMANN, B. 1999. Interactive Modeling of Plants.

IEEE Computer Graphics and Applications, 19, 1, 56-65.

EGGLI, L., HSU, C., ELBER, G., and BRUDERLIN, B. 1997. Inferring 3D

Models from Freehand Sketches and Constraints. Computer-Aided
Design, 29, 2, 101-112.

HARA, N., 1994. Syokubutu Keitaigaku (Plant Morphology). Sasakura

Shoten 1994 (In Japanese).

IGARASHI, T., MATSUOKA, S., and TANAKA, H. 1999. Teddy: A Sketching

Interface for 3D Freeform Design. In Proceedings of ACM SIGGRAPH
99, ACM, 409-416.

LINDENMAYER, A. 1968. Mathematical Models for Cellular Interactions in

Development, I & II. Journal of Theoretical Biology, 280-315.

LINTERMANN, B. and DEUSSEN, O. 1996. Interactive Modelling and

Animation of Branching Botanical Structures. In Proceedings of
Eurographics Workshop on Computer Animation and Simulation 96,
139-151.

LIPSON, H. and SHPITALNI, M. 1996. Identification of Faces in a 2D Line

Drawing Projection of a Wireframe Object. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 18, 10, 1000-1012.

MĚCH, R. and PRUSINKIEWICZ, P. 1996. Visual Models of Plants

Interacting with Their Environment. In Proceedings of ACM
SIGGRAPH 96, ACM, 397-410.

PENTLAND, A. and KUO, J. 1989. The Artist at the Interface. Vision and

Modeling Technical Report 114, MIT Media Lab.

PRUSINKIEWICZ, P., and LINDENMAYER, A. 1990. The Algorithmic Beauty

of Plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D.
Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

PRUSINKIEWICZ, P., HAMMEL, M., HANAN, J., and MĚCH, R. 1996.

L-systems: From the Theory to Visual Models of Plants. In Proceedings
of the 2 CSIRO Symposium on Computational Challenges in Life
Sciences.

nd

PRUSINKIEWICZ, P., JAMES, M., and MĚCH, R. 1994. Synthetic Topiary. In

Proceedings of ACM SIGGRAPH 94, ACM, 351-358.

PRUSINKIEWICZ, P., MÜNDERMANN L., KARWOWSKI, R., and LANE, B.
2001. The Use of Positional Information in the Modeling of Plants. In
Proceedings of ACM SIGGRAPH 2001, ACM, 289-300.

PUGH, D. 1992 Designing Solid Objects Using Interactive Sketch

Interpretation, Computer Graphics, 25, 2, 117-126.

SHIMIZU, T., 2001. Syokubutu Yougo Jiten (Dictionary of Botanical

Terms). Yasaka Shobou (in Japanese).

TANAKA, T., NAITO, S., and TAKAHASHI, T. 1989. Generalized Symmetry
and its Application to 3D Shape Generation. Visual Computer, 5, 83-94.

TOBITA, H., and REKIMOTO, J. 2003. Flat3D: A Shared Virtual 3D World

System for Creative Activities and Communication, IPSJ JOURNAL, 44,
2, IPSJ, 245-255 (in Japanese).

ZELEZNIK, R. C., HERNDON, K. P., and HUGHES, J. F. 1996. SKETCH: An

Interface for Sketching 3D Scenes. In Proceedings of ACM SIGGRAPH
96, ACM, 163-170.

d* . Flower size
c* . Internode length
b* . Branch length
a* . Down angle

d* . Flower size
c* . Internode length
b* . Branch length
a* . Down angle

Raceme Corymb Spike Umbel

DrepaniumDichasium

・ Head length ratio
・ Flower size ratio

・ Base length ratio

d . Flower size
・ Down angle ratio

c . Head length
b . Base length
a . Down angle

・ Head length ratio
・ Flower size ratio

・ Base length ratio

d . Flower size
・ Down angle ratio

c . Head length
b . Base length
a . Down angle

Compound RacemeCompound Umbel

・ Base length
For Branch stalk
・ down angles
・ branch Length
・ Base length
・ Flower size

・ down angles
・ branch length

For Axis stalk

・ Base length
For Branch stalk
・ down angles
・ branch Length
・ Base length
・ Flower size

・ down angles
・ branch length

For Axis stalk

・ Internode length
For Branch stalk
・ Down angles
・ Branch Length
・ Internode length
・ Flower size

・ Down angles
・ Branch length

For Axis stalk

・ Internode length
For Branch stalk
・ Down angles
・ Branch Length
・ Internode length
・ Flower size

・ Down angles
・ Branch length

For Axis stalk

d* . Flower size
c* . Internode length
b* . Branch length
a* . Down angle

d* . Flower size
c* . Internode length
b* . Branch length
a* . Down angle

d* . Flower size
c* . Internode length
b* . Branch length
a* . Down angle

d* . Flower size
c* . Internode length
b* . Branch length
a* . Down angle

d* . Flower size
c . Base length
b* . Branch length
a* . Down angle

d* . Flower size
c . Base length
b* . Branch length
a* . Down angle

・ Head length ratio
・ Flower size ratio

・ Base length ratio

d . Flower size
・ Down angle ratio

c . Head length
b . Base length
a . Down angle

・ Head length ratio
・ Flower size ratio

・ Base length ratio

d . Flower size
・ Down angle ratio

c . Head length
b . Base length
a . Down angle

Figure13: Inflorescence patterns and their parameters in our current implementation. The parameters with the superscript '*' are pair of
numbers to be linearly interpolated along the stem. There are also some common parameters that are not shown in the figure:
phototropism direction, stem hardness, stem width, rotate angle, and the number of branches. Dichasium and Drepanium patterns have
additional “ratio” parameters for all parameters that determine the ratio of a child branch’s parameter values to those of a parent branch.

(a) Lycoris radiate (40 min) (b) Cimicifuga acerina (30 min) (c) Hydrangea (40min)

(e) Saxifraga
stolonifera (15min)

(d) Sun flower (40min) (f) Allium roseum
(30min)

(g) Clematis terniflora
(30min)

(h) Brassica rapa
(30min)

Figure 14: Example models and the approximate time to complete each model. (a), (b), (d), and (e) are modeled by the author. (c), (f), (g),
and (h) are designed by the test users.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Floral Diagrams and Inflorescences
	3 Overview of the Modeling Process
	4 Structure Editors
	4.1 Floral Diagram Editor
	4.2 Inflorescence Editor
	5 Geometry Editors
	5.1 Floral Receptacles and Floral Components
	5.2 Inflorescence
	6 Discussion
	Acknowledgements
	References

