
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno Volume 27 (2008), Number 3
(guest editor)

submitted to EUROGRAPHICS 2008.

An Example-based Procedural System
for Element Arrangement

Takashi Ijiri†, Radomír Mĕch‡, Takeo Igarashi†*, and Gavin Miller‡
†The University of Tokyo, ‡Adobe Systems Incorporated, *PRESTO JST

Abstract
We present a method for synthesizing two dimensional (2D) element arrangements from an example. The main
idea is to combine texture synthesis techniques based-on a local neighborhood comparison and procedural
modeling systems based-on local growth. Given a user-specified reference pattern, our system analyzes neigh-
borhood information of each element by constructing connectivity. Our synthesis process starts with a single
seed and progressively places elements one by one by searching a reference element which has local features
that are the most similar to the target place of the synthesized pattern. To support creative design activities, we
introduce three types of interaction for controlling global features of the resulting pattern, namely a spray tool,
a flow field tool, and a boundary tool. We also introduce a global optimization process that helps to avoid local
error concentrations. We illustrate the feasibility of our method by creating several types of 2D patterns.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, sha-
dowing, and texture. I.3.4 [Computer Graphics]: Paint Systems.

1. Introduction

We can often observe 2D arrangements of elements in ei-
ther man-made or natural environments, such as tiles, wall-
paper, hatching strokes, decorative arts, fabrics, flowers,
honeycombs, animal fur, waves, and so on. The synthesis
of arrangement patterns is not only useful for texture gen-
eration and non-photorealistic rendering (NPR), but it also
poses an interesting challenge in computer graphics. These
arrangements have a large variation; some of them may
have regular or near-regular features throughout, others are
not locally regular but they distribute irregular features
uniformly (irregular uniform). To synthesize the arrange-

ment patterns, the system has to preserve local spatial rela-
tionships between elements in the global distribution.

Two different groups of methods exist for generating
general texture patterns; texture synthesis and procedural
modeling. Pixel based texture synthesis is not well suited to
the problem of element arrangement, because not each
pixel but each element is individually perceptible in the
element arrangements. The spatial relationships between
elements are more important than those between pixels. In
contrast, procedural modeling systems deal with an element
as a unit module. The system starts from an initial feature,
and progressively replaces and adds modules based on
local generation rules. However, procedural frameworks

(a) (f)(d)

(e)

(b)

(c)

Figure 1: Our system takes the reference arrangement input by the user and analyzes the local structure by constructing the
connectivity (a). We then synthesize a larger pattern which has a similar local relationship and topology (b). The user also
can specify a local growth area, an underlying flow field or a boundary (c-f). Red strokes in (d) indicate user-specified flow
field strokes and blue lines in (f) are user-specified boundary lines.

T Ijiri, R Mĕch, T Igarashi, & G Miller / An Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

are limited to patterns, in which elements have explicit
local structure such as trees. For instance, it is difficult to
define the growth rules for irregular uniform arrangements.

In this paper, we present a new technique for synthesiz-
ing element arrangement patterns from a user-input exam-
ple. The main idea is to combine texture synthesis methods
based-on a local neighborhood comparison [EL99] and
procedural modeling systems based on a local growth
[PL90; WZS98]. Given the reference pattern, we construct
connectivity to obtain the immediate neighborhood infor-
mation of each element (Figure 1a) [BBT*06]. The synthe-
sis process starts with a single seed and expands the pattern
outward by placing a new element one by one. In this
process, we apply local neighborhood comparison; we
choose a reference element whose neighborhood is the
most similar to the target neighborhood of the previously
synthesized pattern. Figure 1(b) shows a synthesized pat-
tern, in which almost all elements are uniformly distributed
but two gray blobs appear to be adjacent.

To support an intuitive synthesis process, we provide
three types of interaction tools for controlling global fea-
tures of the resulting pattern; a spray tool for specifying the
growth area, a flow field tool for specifying an underlying
flow field (Figure 1(c) and (d)), and a boundary tool for
limiting growth (Figure 1(e) and (f)). We also introduce a
global shape optimization of the distribution in synthesis
process that helps to avoid errors’ concentrating local area
and to get smooth result.

Barla et al. introduced a method to synthesize stroke pat-
terns dealing with a single stroke or a cluster of strokes as a
unit element [BBT*06]. The main difference between their
system and our system is in the synthesis process. Their
system constructs a global distribution of seeds by Lloyd’s
method [Llo82] at the beginning and places synthesized
strokes at the seed positions. In contrast, we place elements
one-by-one, generating a global distribution gradually. We
also keep a local topology of each element. This difference
provides several advantages and disadvantages. One advan-
tage is the ability to create a regular or near regular pattern
that is difficult to be created by Lloyd’s method. We can
also provide the spray and flow field tool; we think it is
difficult for Barla’s method to combine these controls since
their method fixes the global distribution at the beginning.
One disadvantage of our approach is the difficulty of ob-
taining an optimized distribution. While Barla’s system
generates an optimal distribution by Lloyd’s methods, it is
sometimes difficult for our system to obtain a globally
optimal distribution since we grow each element locally.

In recent decades, many procedural modeling systems
have been proposed for creating plants, buildings or decor-
ative art design. Although they have achieved impressive
results, most of them require the user to write scripts to
define the local growth rules, which makes it difficult for
novice users to control the resulting model. In contrast, our
system tries to obtain the rules from examples. We believe
that our example-based procedural modeling system pro-
vides a more intuitive way to design element arrangements.

2. Related Work

In this section we briefly review representative work from
procedural modeling, texture synthesis, and NPR.

Procedural modeling: Recently a lot of procedural
modeling systems have been developed for different pur-
poses. L-System was originally formulated by Lindenmay-
er [Lin68] to simulate the growth of plants and was intro-
duced to the computer graphics community later [PL90]. L-
Systems have been extended to simulate a wide variety of
interactions between plants and their environments [MP96;
PJM94]. Wong et al. applied procedural modeling to the
creation of floral ornaments [WZS98]. Procedural model-
ing has been used in architectural models of cities [PM01],
and buildings or facades [WWSR03; MWH*06]. While
these systems have achieved impressive results, they re-
quire the user to write unintuitive scripts to define rules.
Deussen et al. use a predefined set of rules, represented by
icons. Instead of writing a script the user connects icons
together and modifies their parameters [DL99]. This sys-
tem, however, still requires the user to choose rules from
the predefined set and, as with any procedural system. It is
often not obvious what the resulting structure will be for a
given set of rules. Also, the rules are fixed and the system
is suitable only for modeling plants and trees. We are more
interested in an example-based system in which the user
only specifies a small piece of the desired pattern.

There are researchers focusing on interactions with par-
ticular types of procedural models. Esch et al. used a flow
field to modify street pattern [EWMZ07]. Ijiri et al. apply
free hand strokes to specify the growth direction of main
axes of trees [IOI06].

Texture synthesis: Texture synthesis techniques that
take an example image and generate a new texture are
roughly categorized into four groups; frequency domain
methods, tiling methods, pixel-based methods, and patch-
based methods. i) Heeger and Bergen used frequency do-
main techniques [HB95], but they can only deal with spe-
cific types of textures. ii) The tiling methods are used for a
fast texture synthesis [CSHD03] or a near-regular texture
synthesis [LLH04]. Some researches generate large object
distributions by combining Poisson disk distributions and
the tiling [CSHD03; LD05]. However these methods can
only create irregular uniform patterns and it is difficult for
them to combine the flow field control. iii) The pixel-based
approaches work with neighborhood comparisons between
the example and generated (target) textures [EL99; WL00],
and various extensions have been developed [Ash01;
HJO*01; Tur01]. iv) The patch based approach [KSE*03],
which stitches the reference image along optimal seams can
generate images quickly. These pixel and patch based tech-
niques achieve convincing results for more general textures.
However, it is still difficult to directly apply these tech-
niques to element arrangements because each element is
perceived individually. The local relationship between
elements is more important than that between pixels.

Non-photorealistic rendering: Stroke pattern synthesis
is a popular topic in NPR field. Deussen et al. generated

T Ijiri, R Mĕch, T Igarashi, & G Miller / Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

stipple drawings [DHOS00], Winkenbach et al. [WS94]
and Salisbury et al. [SABS94] generated a pen-and-ink
effect by using stroke textures. These systems synthesized
stroke patterns based on generating rules that were selected
by authors or observed on traditional drawings.

Some example-based systems have been published re-
cently. Hertzmann et al. presented curve analogies which
learns a style of an example and modifies a target curve to
have a similar style [HOCS02]. Jodoin et al. generated
hatching patterns by examples [JEG*02]. They focused on
a relatively simple case, in which all strokes are aligned in
a linear order on a curve. Our system is particularly in-
spired by stroke pattern analysis and synthesis [BBT*06]
that synthesize a vector-based 2D pattern from an example
by extending a texture synthesis technique (See section 1).

3. Overview

Our system takes an arrangement of input elements which
we call a reference arrangement and generates a new larg-
er pattern which is similar to the reference. We suppose
that the reference arrangement uses symbols from a prede-
fined set. Each symbol in this set has a symbol id. In addi-
tion, each symbol in the reference arrangement has a
unique sub-id that is used in the synthesis process to diffe-
rentiate between symbols of the same id. Since our focus is
on element arrangements, we do not synthesize shapes of
symbols. Instead, we allow the user to introduce random
noises to modify the scale, rotation, and color of each syn-
thesized element so as to get a larger variation [BA06].

Given a reference pattern, we analyze local relationships

between neighboring elements by triangulating the refer-
ence pattern. The synthesis process begins with placing a
single seed. We iteratively replace a seed with a reference
element and several new seeds, similarly to the local
growth of an L-System [PL90]. In each iteration step, we
also construct connectivity for new elements and seeds.
Figure 2 shows an example of a single iteration step. The
system first chooses a seed (a), checks its neighborhood (b),
and finds a reference element which has the most similar
neighborhood condition to that of the seed (c). Next the
system replaces the target seed with the copy of the found
reference element (d). Finally, we get copies of the neigh-
boring elements of the found element (e) (f), place unpopu-
lated parts of them as new seeds (g), and construct edges

(h). We also introduce a global relaxation after each growth
step in order to get a smooth pattern.

In the local growth process, we introduce three different
modes. 1) In the non-rotation mode the system uses the
reference element without rotation. 2) In the rotation mode
the system searches the best fitting reference element con-
sidering the rotation, resulting in a better distribution. 3) In
the flow field mode the system rotates the reference to ad-
just its local coordinate to the user-specified underlying
flow field direction. This allows control of the global flow
of the synthesized arrangement.

To support creative design activities, we introduce three
types of tools for controlling global aspects of the resulting
arrangement. 1) The spray tool activates seeds under the
cursor area. This tool allows the user to paint the arrange-
ment pattern [IOI06; RLAD06]. Our algorithm is fast
enough to return immediate feedback. 2) The flow field
tool allows the user to design flow fields by drawing a set
of strokes. The system uses the directions of the input
strokes as constraints and interpolates 2D space by radial
basis functions [EWMZ07]. 3) The boundary tool allows
the user to draw a set of boundary strokes which stop the
local growth.

4. Analysis

Our approach differs from those used in the texture synthe-
sis that deals with pixels aligned on a grid. Our target is an
element arrangement, in which elements are not supposed
to be aligned. Thus, we need to consider a “spatial” neigh-
borhood characteristic of each element.

To extract such a neighborhood feature, we use a similar
idea to the one presented by Barla et al. [BBT*06]. Given
an input reference arrangement of elements, we extract the
connectivity by Delaunay triangulation. We use the center
position of each element. Delaunay triangulation often
generates skewed triangles around the boundary, thus we
remove skewed triangles which have angles greater than
2/3*π and we keep only edges which are a part of at least
one un-skewed triangle. We then register relative positions,
ids, and sub-ids of immediate neighborhoods of each ele-
ment. We do not use elements around the boundary of the
reference arrangement, since they do not have enough
neighborhood elements.

When regular or near regular arrangements are input,
Delaunay triangulation often generates undesired connec-

Figure 2: An overview of the local growth process. Each
circle with a symbol id is a seed. The symbol id of the
white stone is A and that of the gray stone is B.

(a)

(d) (e) (f)

(b) (c)

Figure 3: The system automatically generates connectivity
(b) (e) for user input reference arrangement (a) (d). The
user can manually modify the topology to reconstruct
underlying regularity (c) (f).

T Ijiri, R Mĕch, T Igarashi, & G Miller / An Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

tions. Figure 3 shows examples. In the top row, several
generated edges connect blocks over one row (b). In the
bottom row a near-regular arrangement is input (d); how-
ever generated edges have no regularity (e). Since our syn-
thesis algorithm is strongly affected by local connectivity
of each element, these connections often break the regular
pattern. Thus, we allow the user to correct the connection
after the triangulation. The user can flip an edge by click-
ing it (c) and (f). This simple interface is enough to get
desired connectivity in our experience.

5. Synthesis by local growth

We begin with an element at the center of the pattern and
expand it outward by placing a new element one by one
based on neighborhood comparisons on the previously
synthesized elements. However, our target element ar-
rangements are not always supposed to have regular struc-
tures as in the case of pixels in a grid. The position for
placing a new element and its neighborhoods is unclear.
Also, the size and orientation of each element may differ.
These are major differences between the texture synthesis
technique and our method. To tackle this problem, we ap-
ply a procedural system that defines a local growth of seeds
based on connectivity of elements [PL90]. In each growth
step, we not only replace a seed with the best fitting refer-
ence element, but we also place new seeds by copying the
immediate neighborhood of the chosen reference element.

5.1 Seeding

The seed is a candidate position of a new element. Option-
ally a seed has a symbol id associated with it. This id forces
the seed to become a certain element but it could be any
element of the same id from the reference arrangement.

We begin the synthesis process by placing a single seed.
We sort seeds by the distance from the initial seed and
choose the nearest one in each growth step. In the spray
tool mode, we generate an initial seed at the cursor position
when the user starts painting and grow all the seeds which
are in the user-specified distance from the cursor during
painting.

There are some arrangement patterns in which elements
have different importance. Wong et al. [WZS98] designed
floral ornament by placing the larger elements at first and
filling spaces with the smaller elements later. We mimic
this effect by specifying the priority of seeds based-on their
symbol ids. The system only grows seeds with the highest

or same priority in their neighboring area (i.e. we define
the neighboring area as a circle with the radius 5 * l, where
l is the average length of the edges in the reference ar-
rangement). For example, in Figure 1 (b), we specified the
higher priority to the gray stones and white stones, and the
lower priority to the small stones which we used as fillers
only.

5.2 Finding the Best Matching Element

Let etar be a selected seed in the synthesized pattern and
w(etar) be a set of its immediate neighborhood elements.
Similarly we note eref and w(eref) for reference elements
(Figure 4). We define an error function based on differenc-
es between w(etar) and w(eref), and examine all reference
elements so that find one which minimize the error func-
tion:

).)(),((min reftar

reference
ERROR

ref
ewew

e ∈
 (1)

Note that if the target seed has a symbol-id we examine
only corresponding reference elements.

Neighborhood comparisons for the element arrangement
are more complex than for the texture synthesis because the
number and position of neighboring elements vary depend-
ing on distributions. We compute the difference in two
steps, similar to those in [BBT*06]. First, we construct a
matching f which matches each element of the target
neighborhood to an element of reference neighborhoods.
There are several candidate matching patterns so we need
to construct a set of matching patterns F. Second we calcu-
late differences for the all relevant pairs and take summa-
tion of them with respect to each f ∈F.

To build a set of matching patterns F, we consider only
cases which have no skipping and flipping. We first sort
elements ei

tar ∈ w(etar) and ej
ref ∈ w(eref) in counter-

clockwise order. For target neighbors, we start with the
element which is on the boundary (Figure 4a). We choose
e0

tar and e0
ref as an initial pair, and match the subsequent

elements ei
tar and ei

ref incrementally, so as to obtain one
correspondence f0. In the similar manner we obtain fk by
choosing e0

tar and ek
ref as an initial pair. In the case of Fig-

ure 4, we obtain 6 matching patterns. This is different from
the approach in [BBT*06] where they choose the nearest
element based on the distance and they can skip some
neighbors in between.

We assumed that the size of w(etar) is equal to or less
than that of w(eref), because the target seed is under growth
and the number of its neighboring elements is relatively
small. However, we occasionally observe exceptional cases.
For instance, all neighboring elements of the seed have
already been placed due to the difference of the priority or
the use of the spray tool. When the size of w(etar) is greater
than w(eref) we simply ignore such reference elements.
These heuristics work well in practice.

Once we obtain a set of matching patterns, we can define
the error function with respect to each f ∈F as follows:

ref
oe

ref
1e

ref
3e

ref
2e

ref
5e

ref
4e

refe

ref
oe

ref
1e

ref
3e

ref
2e

ref
5e

ref
4e

refe

tare
tar
1e

tar
1e tar

2e

tar
3e

tare
tar
1e

tar
1e tar

2e

tar
3e

refrefreftar

refrefreftar

refrefreftar

refrefreftar

2433

1322

0211

5100

510

eeee

eeee

eeee

eeee

fff

L

L

L

L

L

−

−

−

−

(a) (b)

Figure 4: An example of matching patterns. The system
constructs a set of matching patterns between neighbors of
the target seed (a) and that of a reference element (b).

T Ijiri, R Mĕch, T Igarashi, & G Miller / Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

).,(),(),(

))(),((

321
reftar

i
ji,

ref
j

tar
i

ref
j

tar
i

reftar

www eesubideeideed
ewewerror

f

++

=

∑
∈

 (2)

The d(etar, eref) is a Euclidean distance between the relative
positions of etar and eref. The id(etar, eref) returns 1 if the
symbol id of etar is different from that of eref , or otherwise
it returns 0. These two terms measure the local spatial rela-
tionship. The subid(etar, eref) is used to avoid the same ele-
ment recursively appearing again and again. This function
returns 1 if sub-ids of ei

tar and eref are the same, or returns 0.
w1, w2, and w3 are weighting values (e.g. if the weight w1 is
large the structure of the reference arrangement is better
preserved in the resulting patterns.). We set w1 = 1.0, w2 =
1.0, and w3 = 100.0 to obtain the results in this paper. Fi-
nally we can define the error function:

)).(),((min))(),((reftarreftarERROR ewewerrorewew
Ff∈

= (3)

5.3 Rotation Modes

We introduce three modes to generate different results for
different purposes; the non-rotation mode generates pat-
terns that preserve the orientation of the reference neigh-
borhood, the rotation mode changes the orientation of the
reference neighborhood and adjusts it to the local target
neighborhood, resulting in a better distribution, and the
flow field mode generates patterns following the user spe-
cified flow field. We achieve these effects by slightly
changing the process of the finding best matching elements
(Figure 5).

In the non-rotation mode, we find the best fitting element
without rotating the reference pattern; we solve the error
function (1) as it is. In the rotation mode, we consider the
best fitting rotation when calculating the error function (2).
In other words we minimize the positional difference by
rotating the reference elements;

),)(,(min
,
∑
∈ f

eRed
ji

ref
j

tar
i θθ

 (4)

where Rθ(ej
ref) rotates the relative position of ej

ref. We apply
the shape matching problem introduced in [MHTG05]. In
the flow field mode, we consider the user specified flow
field when finding the best match. We first obtain the
orientation of the flow field at the target seed position. We
then rotate the whole reference pattern so as to adjust its
local x coordinate to the orientation. We use this rotated
reference when finding the best match.

5.4 Local Growth

Now we found the best fitting reference element, and op-
tionally the best fitting rotation in the rotation mode or the
flow field rotation in the flow field mode.

The system first replaces the target seed with the found
reference element (Figure 2d), including the symbol id and
the sub-id. The system next places the new seeds by using
the neighboring elements of the found element (these ele-

ments form the so called ring shape). We overlay a copy of
the reference ring shape with the target seed neighborhood
(Figure 2f), and then we delete every neighboring element
which was paired to a target neighboring element when
calculating the error function. The remaining elements will
form new seeds with corresponding symbol ids (Figure 2g).
Finally, we construct edges to connect the new seeds.

To avoid too dense or sparse distribution or collisions of
edges, we introduce several heuristics during the local
growth process (Figure 6). After obtaining new seeds, we
check the neighboring area of each new seed. If we find an
existing element or seed in a distance lshort from the seed,
we delete the seed and connect the edge to the found object
(b). We choose a half of the shortest edge length in refer-
ence as lshort. We next check the angle between new edges,
if the angle is less than 0.5 * original_angle, we delete the
new seed and edge (c). The original_angle is the corres-
ponding angle in the chosen reference ring shape (a). We
also check for a collision of the edge of the new seed; if it
is detected, we remove the seed and the edge (d). When
constructing new edges around new seeds, we check the
length of each edge. If an edge is longer than llong, we gen-
erate an extra seed without a corresponding symbol id (e).

Target seed

(a) (b)
Local x direction

(c)(c) (d)(d)

Flow field orientation

(e)

Flow field orientation

(e)(e)

Figure 5: The system fits a reference element (a) to a tar-
get seed (b) differently depending on three rotation modes;
non-rotation (c), rotation (d), and flow field mode (e).

Figure 6: The heuristic approach used to avoid undesired
structures.

T Ijiri, R Mĕch, T Igarashi, & G Miller / An Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

We place the seed at the end of a line segment which bi-
sects the corresponding angle and whose length is the aver-
age of two adjacent edges (e). We define llong = 1.5 * origi-
nal_length, where the original_length is the length of the
corresponding edge in the ring shape (a). Then we check
the edge collisions again. If a collision is detected, one or
more objects must be in a triangle constructed by etar, s0
and s1, and we construct edges as shown in (f).

5.5 Relaxation

Although we place a reference element with its neighbors
that have the most similar shape to the target neighbors, the
error accumulates in each local growth step because the
system cannot always find an optimally fitting element
which makes the error value zero. Here, we introduce a
relaxation process that modifies the positions of the pre-
viously synthesized elements so as to keep the local feature
of the synthesized pattern as similar as possible to that of
the reference pattern. For each synthesized element, we
adjust its ring shape to that of the corresponding reference
element.

Let xi be a position of a synthesized element ei

ref, and
w(xi) be a set of its neighboring positions. We also refer to
the relative position of the corresponding reference ring
shape as rj

i, where rj
i is corresponding to xj ∈ w(xi) (Figure

7(a) and (b)). We then minimize a distance between each
neighbor’s positions xj and the position of the correspond-
ing reference ring shape (Figure 7c):

.||)(||min
)(

2∑ ∑
∈

+−
i j

i
jij

ixwx
rxx (5)

Since this representation is translation invariant, we should
predetermine the position of one element in order to have a
unique minimizer; we simply hold the initial element at the
initial position. If there are user-specified boundaries, we
constrain elements at their generated positions.

s.constraintkkk ∈= 0xx (6)

This quadratic minimization problem with linear con-
straints can be solved in closed form. We apply the La-
grange multiplier method. Note that there are elements
which lose an edge or get an extra edge during growth.
These elements no longer have same topology as the cor-
responding reference element. All seeds do not have cor-
responding reference elements yet. For these objects, we
use their current neighboring shapes as their target ring
shapes.

6. Results and Discussion

Synthesis is fast enough to return immediate feedback
when the user paints using the spray tool. It took about 5
seconds to synthesize 1000 elements on a Windows XP
notebook PC with Intel Core 2 Duo CPU. The bottleneck
of the synthesis is the relaxation process; it took less than a
second to synthesize 1000 elements without the relaxation.

Figure 8 shows synthesized arrangements with reference
patterns in the three different classes; a regular pattern (a),
a near regular pattern (b), and an irregular uniform distribu-
tion (c). In the case of (b), we introduced small randomness
to the scale, rotation, and color of each symbol. Since our
system attempts to keep local spatial relationship and to-
pology between neighbors, it can cover these three classes
in the same framework. Figure 8 (d) is a pattern synthe-
sized by the rotation mode. This example indicates that our
system successfully synthesizes a pattern in which gray
stones are linked each other in rows.

Figure 9 illustrates different effects of three rotation
modes. The system takes the same input example (a) and
generates different results in non-rotation (b) and rotation
(c) mode. In both case, two gray stones appear close to
each other. While an orientation of each two stones is re-
tained in the non-rotation mode, it is locally rotated in the
rotation mode. The user can also control the arrangements
by specifying underlying flow fields. When the user draws
strokes by using the flow field tool (red curves in (e)), the
system generates flow fields along to the strokes (e). The
system then takes this flow fields as well as a reference
arrangement (d), and it synthesizes a new pattern (f) in
which scales are aligned along to the flow. Our system can
change the topology to keep the uniform distribution. Two
scales at which topology changes happen are highlighted
by red circles (f). We show the resulting connectivity in (g).

Finally, we show results created by using three UI tools.
In Figure 1 (d), we control the orientation of feathers by
using the flow field tool and the growth area using the
spray tool. In Figure 1 (f), we limit the growth area of the
blocks by the boundary tool. We also painted four charac-
ters “Euro” with an arrangement pattern by using the spray
tool and flow field tool in Figure 10. In these feathers and
scales examples, we arranged 3D objects which have a
rounded shape and are slightly slanted, so that they natural-
ly express an overlapping effect. These effects are difficult
to create with a 2D vector based approach [BBT*06] be-
cause it is required to specify the rendering order of ele-
ments explicitly. We also have a capability to modify the
local orientation or size of each element after obtaining the
arrangement. This type of control is difficult for pixel
based texture synthesis.

7. Conclusion and Future Work

We presented a new system for synthesizing 2D element
arrangements by combining non-parametric texture synthe-
sis techniques based on local neighborhood comparison and
procedural modeling systems based on local growth. Our

O
i
jr

(b) (c)(a)

ix
jx

(a)

ix
jx

Figure 7: We fit an immediate neighborhood shape of
each vertex (a) to its desired shape (b). We minimize a gap
between each vertex and its desired position (c).

T Ijiri, R Mĕch, T Igarashi, & G Miller / Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

system takes a user-input reference arrangement, analyses
local relationship between reference elements by construct-
ing connectivity and synthesizes a larger pattern by locally
growing a seed one by one. Since we attempt to keep the
connectivity (i.e. topology) between neighboring elements,
our system can generate various regular patterns and irre-
gular uniform patterns. To support creative design activities,
we present three UI tools which allow control of global
features of the synthesis. We also introduce the relaxation
process in order to adjust a ring shape of each synthesized
element to be closer to that of the corresponding reference
element.

Our current system considers only immediate neighbor-
hoods, so we would like to extend our matching function to
handle more than 1-ring elements in the future. While our
flow field mode generates fine results with relatively sim-
ple flow fields, if complicated flow fields containing sever-
al peaks or edge lines are given, the system often fails to
keep the local topology at the peaks or the edges and
breaks local spatial relationships. Another limitation is
local error concentration. Even if we introduce the relaxa-
tion, our synthesis algorithm is based on local best match-
ing, thus it is difficult to obtain globally optimized results.
We believe that this problem can be solved by hierarchical
representation introduced in texture synthesis frameworks
[WL00; Tur01]. Future work might include more compli-
cated patterns such as tree structures [PL90; WZS98] or 2D
arrangements which vary the scaling of each element.

Finally we would like to emphasize that our approach is
one of the first trials to combine the example based system
and procedural modeling system. We hope that our tech-
nique could be a first step towards an answer the problem
of inverse procedural modeling, which is one of the biggest
problems in procedural modeling research.

References

[Ash01] ASHIKHMIN, M.: Synthesizing Natural Textures. In
Proc. the Symposium on Interactive 3D Graphics 2001,
217-226.

[BA06] BAXTER W., ANJYO K.: Latent Doodle Space. Com-
puter Graphics Forum, 25 (2006), 3, 477-485.

[BBT*06] BARLA P., BRESLAV S., THOLLOT J., SILLION F.,
MARKOSIAN L.: Stroke Pattern Analysis and Synthesis.
Computer Graphics Forum, 25 (2006), 3, 663-671.

[CSHD03] COHEN, M. F., SHADE, J., HILLER, S., DEUSSEN,
O.: Wang tiles for image and texture generation. ACM
Trans. Graph., 22(2003), 3, 287-294.

[DHOS00] DEUSSEN O., HILLER S., VAN OVERVELD C.,
STROTHOTTE T.: Floating points: A method for compu-
ting stipple drawings. Computer Graphics Forum, 19
(2000), 3, 40-51.

[DL99] DEUSSEN O. AND LINTERMANN, B.: Interactive
Modeling of Plants. IEEE Computer Graphics and Ap-
plications, 19 (1999), 1, 56-65.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by
nonparametric sampling. In IEEE Int. Conf. on Comput-
er Vision (1999), 1033-1038.

[EWMZ07] ESCH G., WONKA P., MÜLLER P., ZHANG E.:
Interactive procedural street modeling, SIGGRAPH 2007
Sketches.

[HB95] HEEGER, D. J., BERGEN, J. R.: Pyramid-based tex-
ture analysis and synthesis. In Proc. SIGGRAPH ’95
(1995), 229-238.

[HJO*01] HERTZMANN, A., JACOBS, C. E., OLIVER, N.,
CURLESS, B., SALESIN, D. H.: Image Analogies. In Proc.
SIGGRAPH ’01(2001), 327-340.

[HOCS02] HERTZMANN A., OLIVER N., CURLESS B., SEITZ S.
M.: Curve analogies. In Proc. the 13th Eurographics
Workshop on Rendering(2002), 233-246.

[IOI06] IJIRI T., OWADA S., IGARASHI T.: The sketch L-
System: global control of tree modeling using free-form
strokes. In Proc. SmartGraphics 2006, 138-146.

[JEG*02] JODOIN P. M., EPSTEIN E., GRANGER-PICHE M.,
OSTROMOUKHOV V.: Hatching by example: a statistical
approach. In Proc. NPAR 2002, 29-36.

[KSE*03] KWATRA, V., SCHODL, A., ESSA, I., TURK, G.,
BOBICK, A.: Graphcut textures: Image and video synthe-
sis using graph cuts. ACM Trans. Graph. 22 (2003), 3,
277-286.

[Lin68] LINDENMAYER A.: Mathematical models for cellu-
lar interactions in development, I & II. Journal of Theo-
retical Biology 18, 3 (1968), 280-315.

[Llo82] LLOYD S. P.: Least squares quantization in pcm.
IEEE Trans. Information Theory 28, 2(1982), 129-137.

[LD05] LAGAE A., DUTRE P.: A procedural object distribu-
tion function. ACM Trans. Graph., 24(2005), 4, 1442-
1461.

[LLH04] LIU Y., LIN W. C., HAYS J. H.: Near regular tex-
ture analysis and manipulation. ACM Trans. Graph.,
23(2004), 3, 368-376.

[MHTG05] MULLER M., HEIDELBERGER B., TESCHNER M.,
GROSS M.: Meshless deformations based on shape
matching. ACM Trans. Graph., 24(2005), 3, 471-478.

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of
plants interacting with their environment. In Proc.
SIGGRH ’96(1996), 397-410.

[MWH*06] MULLER P., WONKA, P., HAEGLER, S., ULMER,
A., GOOL, L. V.: Procedural modeling of buildings. ACM
Trans. Graph., 25(2006) 3, 614-623.

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Synthetic
topiary. In Proc. SIGGRAPH ’94(1994), 351-358.

[PL90] Prusinkiewicz P., Lindenmayer A.: The Algorithmic
Beauty of Plants. Springer–Verlag, New York, 1990.
With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M.
de Boer, and L. Mercer.

[PM01] PARISH Y. I. H., MULLER P.: Procedural modeling
of cities. In Proc. SIGGRAPH ‘01(2001), 301-308.

[RLAD06] RITTER L., LI W., AGRAWALA M., CURLESS B.,
SALESIN D.: Painting with Texture. In Proc. 17th Euro-
graphics Symposium on Rendering (2006), 371-376.

[SABS94] SALISBURY M. P., ANDERSON S. E., BARZEL R.,
SALESIN D. H.: Interactive pen-and-ink illustration. In
Proc. SIGGRAPH ’94(1994), 101-108.

[Tur01] TURK G.: Texture Synthesis on Surfaces. In Proc.
SIGGRAPH ’01(2001), 347-354.

T Ijiri, R Mĕch, T Igarashi, & G Miller / An Example-based Procedural System for Element Arrangements

submitted to EUROGRAPHICS 2008.

[WL00] WEI L-Y., LEVOY M.: Fast Texture Synthesis using
Tree-structured Vector Quantization. In Proc.
SIGGRAPH’00 (2000), 479-488.

[WS94] WINKENBACH G., SALESIN D. H.: Computer gener-
ated pen-and-ink illustration. In Proc. SIGGRAPH ’94
(1994), 91-100.

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. ACM Trans. Graph., 22 (2003),
3, 669-677.

[WZS98] WONG M. T., ZONGKER D. E., SALESIN D. H.:
Computer-generated floral ornament. In Proc.
SIGGRAPH ’98 (1998), 423-434.

(c)(c)(a)(a)

(b)(b) (d)(d)

Figure 8: Synthesized arrangements and input example patterns (right button for each figure).

(a)

(e)

(d)(b)

(c) (g)

(f)

Figure 9: Effects of three rotation modes. The system takes the same reference pattern (a) and generates different results in
the non-rotation (b) and the rotation (c) mode. In these examples, we assign the higher priority to the gray stone. In the flow
field mode, the system takes user-specified reference (d) and flow field (e), and synthesizes a pattern along the flow (g). The
red circles highlight the positions at which the local topology changes. (g) shows the resulting connectivity.

Figure 10: Four characters “Euro” painted with scales. We first designed the underlying flow fields and then specified the
growth area using spray tool.

