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Abstract 
We present a method for synthesizing two dimensional (2D) element arrangements from an example. The main 
idea is to combine texture synthesis techniques based-on a local neighborhood comparison and procedural 
modeling systems based-on local growth. Given a user-specified reference pattern, our system analyzes neigh-
borhood information of each element by constructing connectivity. Our synthesis process starts with a single 
seed and progressively places elements one by one by searching a reference element which has local features 
that are the most similar to the target place of the synthesized pattern. To support creative design activities, we 
introduce three types of interaction for controlling global features of the resulting pattern, namely a spray tool, 
a flow field tool, and a boundary tool. We also introduce a global optimization process that helps to avoid local 
error concentrations. We illustrate the feasibility of our method by creating several types of 2D patterns. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, sha-
dowing, and texture. I.3.4 [Computer Graphics]: Paint Systems. 

 

1. Introduction 

We can often observe 2D arrangements of elements in ei-
ther man-made or natural environments, such as tiles, wall-
paper, hatching strokes, decorative arts, fabrics, flowers, 
honeycombs, animal fur, waves, and so on. The synthesis 
of arrangement patterns is not only useful for texture gen-
eration and non-photorealistic rendering (NPR), but it also 
poses an interesting challenge in computer graphics. These 
arrangements have a large variation; some of them may 
have regular or near-regular features throughout, others are 
not locally regular but they distribute irregular features 
uniformly (irregular uniform). To synthesize the arrange-

ment patterns, the system has to preserve local spatial rela-
tionships between elements in the global distribution.  

Two different groups of methods exist for generating 
general texture patterns; texture synthesis and procedural 
modeling. Pixel based texture synthesis is not well suited to 
the problem of element arrangement, because not each 
pixel but each element is individually perceptible in the 
element arrangements. The spatial relationships between 
elements are more important than those between pixels. In 
contrast, procedural modeling systems deal with an element 
as a unit module. The system starts from an initial feature, 
and progressively replaces and adds modules based on 
local generation rules. However, procedural frameworks 
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Figure 1: Our system takes the reference arrangement input by the user and analyzes the local structure by constructing the 
connectivity (a). We then synthesize a larger pattern which has a similar local relationship and topology (b). The user also 
can specify a local growth area, an underlying flow field or a boundary (c-f). Red strokes in (d) indicate user-specified flow 
field strokes and blue lines in (f) are user-specified boundary lines. 
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are limited to patterns, in which elements have explicit 
local structure such as trees. For instance, it is difficult to 
define the growth rules for irregular uniform arrangements. 

In this paper, we present a new technique for synthesiz-
ing element arrangement patterns from a user-input exam-
ple. The main idea is to combine texture synthesis methods 
based-on a local neighborhood comparison [EL99] and 
procedural modeling systems based on a local growth 
[PL90; WZS98]. Given the reference pattern, we construct 
connectivity to obtain the immediate neighborhood infor-
mation of each element (Figure 1a) [BBT*06]. The synthe-
sis process starts with a single seed and expands the pattern 
outward by placing a new element one by one. In this 
process, we apply local neighborhood comparison; we 
choose a reference element whose neighborhood is the 
most similar to the target neighborhood of the previously 
synthesized pattern. Figure 1(b) shows a synthesized pat-
tern, in which almost all elements are uniformly distributed 
but two gray blobs appear to be adjacent.  

To support an intuitive synthesis process, we provide 
three types of interaction tools for controlling global fea-
tures of the resulting pattern; a spray tool for specifying the 
growth area, a flow field tool for specifying an underlying 
flow field (Figure 1(c) and (d)), and a boundary tool for 
limiting growth (Figure 1(e) and (f)). We also introduce a 
global shape optimization of the distribution in synthesis 
process that helps to avoid errors’ concentrating local area 
and to get smooth result.  

Barla et al. introduced a method to synthesize stroke pat-
terns dealing with a single stroke or a cluster of strokes as a 
unit element [BBT*06]. The main difference between their 
system and our system is in the synthesis process. Their 
system constructs a global distribution of seeds by Lloyd’s 
method [Llo82] at the beginning and places synthesized 
strokes at the seed positions. In contrast, we place elements 
one-by-one, generating a global distribution gradually. We 
also keep a local topology of each element. This difference 
provides several advantages and disadvantages. One advan-
tage is the ability to create a regular or near regular pattern 
that is difficult to be created by Lloyd’s method. We can 
also provide the spray and flow field tool; we think it is 
difficult for Barla’s method to combine these controls since 
their method fixes the global distribution at the beginning. 
One disadvantage of our approach is the difficulty of ob-
taining an optimized distribution. While Barla’s system 
generates an optimal distribution by Lloyd’s methods, it is 
sometimes difficult for our system to obtain a globally 
optimal distribution since we grow each element locally. 

In recent decades, many procedural modeling systems 
have been proposed for creating plants, buildings or decor-
ative art design. Although they have achieved impressive 
results, most of them require the user to write scripts to 
define the local growth rules, which makes it difficult for 
novice users to control the resulting model. In contrast, our 
system tries to obtain the rules from examples. We believe 
that our example-based procedural modeling system pro-
vides a more intuitive way to design element arrangements.  

2. Related Work 

In this section we briefly review representative work from 
procedural modeling, texture synthesis, and NPR.  

Procedural modeling: Recently a lot of procedural 
modeling systems have been developed for different pur-
poses. L-System was originally formulated by Lindenmay-
er [Lin68] to simulate the growth of plants and was intro-
duced to the computer graphics community later [PL90]. L-
Systems have been extended to simulate a wide variety of 
interactions between plants and their environments [MP96; 
PJM94]. Wong et al. applied procedural modeling to the 
creation of floral ornaments [WZS98]. Procedural model-
ing has been used in architectural models of cities [PM01], 
and buildings or facades [WWSR03; MWH*06]. While 
these systems have achieved impressive results, they re-
quire the user to write unintuitive scripts to define rules. 
Deussen et al. use a predefined set of rules, represented by 
icons. Instead of writing a script the user connects icons 
together and modifies their parameters [DL99]. This sys-
tem, however, still requires the user to choose rules from 
the predefined set and, as with any procedural system. It is 
often not obvious what the resulting structure will be for a 
given set of rules. Also, the rules are fixed and the system 
is suitable only for modeling plants and trees. We are more 
interested in an example-based system in which the user 
only specifies a small piece of the desired pattern.  

There are researchers focusing on interactions with par-
ticular types of procedural models. Esch et al. used a flow 
field to modify street pattern [EWMZ07]. Ijiri et al. apply 
free hand strokes to specify the growth direction of main 
axes of trees [IOI06]. 

Texture synthesis: Texture synthesis techniques that 
take an example image and generate a new texture are 
roughly categorized into four groups; frequency domain 
methods, tiling methods, pixel-based methods, and patch-
based methods. i) Heeger and Bergen used frequency do-
main techniques [HB95], but they can only deal with spe-
cific types of textures. ii) The tiling methods are used for a 
fast texture synthesis [CSHD03] or a near-regular texture 
synthesis [LLH04]. Some researches generate large object 
distributions by combining Poisson disk distributions and 
the tiling [CSHD03; LD05]. However these methods can 
only create irregular uniform patterns and it is difficult for 
them to combine the flow field control. iii) The pixel-based 
approaches work with neighborhood comparisons between 
the example and generated (target) textures [EL99; WL00], 
and various extensions have been developed [Ash01; 
HJO*01; Tur01]. iv) The patch based approach [KSE*03], 
which stitches the reference image along optimal seams can 
generate images quickly. These pixel and patch based tech-
niques achieve convincing results for more general textures. 
However, it is still difficult to directly apply these tech-
niques to element arrangements because each element is 
perceived individually. The local relationship between 
elements is more important than that between pixels.  

Non-photorealistic rendering: Stroke pattern synthesis 
is a popular topic in NPR field. Deussen et al. generated 
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stipple drawings [DHOS00], Winkenbach et al. [WS94] 
and Salisbury et al. [SABS94] generated a pen-and-ink 
effect by using stroke textures. These systems synthesized 
stroke patterns based on generating rules that were selected 
by authors or observed on traditional drawings.  

Some example-based systems have been published re-
cently. Hertzmann et al. presented curve analogies which 
learns a style of an example and modifies a target curve to 
have a similar style [HOCS02]. Jodoin et al. generated 
hatching patterns by examples [JEG*02]. They focused on 
a relatively simple case, in which all strokes are aligned in 
a linear order on a curve. Our system is particularly in-
spired by stroke pattern analysis and synthesis [BBT*06] 
that synthesize a vector-based 2D pattern from an example 
by extending a texture synthesis technique (See section 1).  

3. Overview 

Our system takes an arrangement of input elements which 
we call a reference arrangement and generates a new larg-
er pattern which is similar to the reference. We suppose 
that the reference arrangement uses symbols from a prede-
fined set. Each symbol in this set has a symbol id. In addi-
tion, each symbol in the reference arrangement has a 
unique sub-id that is used in the synthesis process to diffe-
rentiate between symbols of the same id. Since our focus is 
on element arrangements, we do not synthesize shapes of 
symbols. Instead, we allow the user to introduce random 
noises to modify the scale, rotation, and color of each syn-
thesized element so as to get a larger variation [BA06].  

 
Given a reference pattern, we analyze local relationships 

between neighboring elements by triangulating the refer-
ence pattern. The synthesis process begins with placing a 
single seed. We iteratively replace a seed with a reference 
element and several new seeds, similarly to the local 
growth of an L-System [PL90]. In each iteration step, we 
also construct connectivity for new elements and seeds. 
Figure 2 shows an example of a single iteration step. The 
system first chooses a seed (a), checks its neighborhood (b), 
and finds a reference element which has the most similar 
neighborhood condition to that of the seed (c). Next the 
system replaces the target seed with the copy of the found 
reference element (d). Finally, we get copies of the neigh-
boring elements of the found element (e) (f), place unpopu-
lated parts of them as new seeds (g), and construct edges 

(h). We also introduce a global relaxation after each growth 
step in order to get a smooth pattern. 

In the local growth process, we introduce three different 
modes. 1) In the non-rotation mode the system uses the 
reference element without rotation. 2) In the rotation mode 
the system searches the best fitting reference element con-
sidering the rotation, resulting in a better distribution.  3) In 
the flow field mode the system rotates the reference to ad-
just its local coordinate to the user-specified underlying 
flow field direction. This allows control of the global flow 
of the synthesized arrangement. 

To support creative design activities, we introduce three 
types of tools for controlling global aspects of the resulting 
arrangement. 1) The spray tool activates seeds under the 
cursor area. This tool allows the user to paint the arrange-
ment pattern [IOI06; RLAD06]. Our algorithm is fast 
enough to return immediate feedback. 2) The flow field 
tool allows the user to design flow fields by drawing a set 
of strokes. The system uses the directions of the input 
strokes as constraints and interpolates 2D space by radial 
basis functions [EWMZ07]. 3) The boundary tool allows 
the user to draw a set of boundary strokes which stop the 
local growth. 

4. Analysis 

Our approach differs from those used in the texture synthe-
sis that deals with pixels aligned on a grid. Our target is an 
element arrangement, in which elements are not supposed 
to be aligned. Thus, we need to consider a “spatial” neigh-
borhood characteristic of each element. 

To extract such a neighborhood feature, we use a similar 
idea to the one presented by Barla et al. [BBT*06]. Given 
an input reference arrangement of elements, we extract the 
connectivity by Delaunay triangulation. We use the center 
position of each element. Delaunay triangulation often 
generates skewed triangles around the boundary, thus we 
remove skewed triangles which have angles greater than 
2/3*π and we keep only edges which are a part of at least 
one un-skewed triangle. We then register relative positions, 
ids, and sub-ids of immediate neighborhoods of each ele-
ment. We do not use elements around the boundary of the 
reference arrangement, since they do not have enough 
neighborhood elements. 

When regular or near regular arrangements are input, 
Delaunay triangulation often generates undesired connec-

Figure 2: An overview of the local growth process. Each 
circle with a symbol id is a seed. The symbol id of the 
white stone is A and that of the gray stone is B.  

(a)

(d) (e) (f)

(b) (c)

Figure 3: The system automatically generates connectivity
(b) (e) for user input reference arrangement (a) (d). The 
user can manually modify the topology to reconstruct 
underlying regularity (c) (f).  
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tions. Figure 3 shows examples. In the top row, several 
generated edges connect blocks over one row (b). In the 
bottom row a near-regular arrangement is input (d); how-
ever generated edges have no regularity (e). Since our syn-
thesis algorithm is strongly affected by local connectivity 
of each element, these connections often break the regular 
pattern. Thus, we allow the user to correct the connection 
after the triangulation. The user can flip an edge by click-
ing it (c) and (f). This simple interface is enough to get 
desired connectivity in our experience. 

5. Synthesis by local growth 

We begin with an element at the center of the pattern and 
expand it outward by placing a new element one by one 
based on neighborhood comparisons on the previously 
synthesized elements. However, our target element ar-
rangements are not always supposed to have regular struc-
tures as in the case of pixels in a grid. The position for 
placing a new element and its neighborhoods is unclear. 
Also, the size and orientation of each element may differ. 
These are major differences between the texture synthesis 
technique and our method. To tackle this problem, we ap-
ply a procedural system that defines a local growth of seeds 
based on connectivity of elements [PL90]. In each growth 
step, we not only replace a seed with the best fitting refer-
ence element, but we also place new seeds by copying the 
immediate neighborhood of the chosen reference element. 

 

5.1 Seeding 

The seed is a candidate position of a new element. Option-
ally a seed has a symbol id associated with it. This id forces 
the seed to become a certain element but it could be any 
element of the same id from the reference arrangement.  

We begin the synthesis process by placing a single seed. 
We sort seeds by the distance from the initial seed and 
choose the nearest one in each growth step. In the spray 
tool mode, we generate an initial seed at the cursor position 
when the user starts painting and grow all the seeds which 
are in the user-specified distance from the cursor during 
painting.  

There are some arrangement patterns in which elements 
have different importance. Wong et al. [WZS98] designed 
floral ornament by placing the larger elements at first and 
filling spaces with the smaller elements later. We mimic 
this effect by specifying the priority of seeds based-on their 
symbol ids. The system only grows seeds with the highest 

or same priority in their neighboring area (i.e. we define 
the neighboring area as a circle with the radius 5 * l, where 
l is the average length of the edges in the reference ar-
rangement). For example, in Figure 1 (b), we specified the 
higher priority to the gray stones and white stones, and the 
lower priority to the small stones which we used as fillers 
only.  

5.2 Finding the Best Matching Element 

Let etar be a selected seed in the synthesized pattern and 
w(etar) be a set of its immediate neighborhood elements. 
Similarly we note eref and w(eref) for reference elements 
(Figure 4). We define an error function based on differenc-
es between w(etar) and w(eref), and examine all reference 
elements so that find one which minimize the error func-
tion: 

).)(),((min reftar

reference
ERROR

ref
ewew

e ∈
               (1) 

Note that if the target seed has a symbol-id we examine 
only corresponding reference elements. 

Neighborhood comparisons for the element arrangement 
are more complex than for the texture synthesis because the 
number and position of neighboring elements vary depend-
ing on distributions. We compute the difference in two 
steps, similar to those in [BBT*06]. First, we construct a 
matching f which matches each element of the target 
neighborhood to an element of reference neighborhoods. 
There are several candidate matching patterns so we need 
to construct a set of matching patterns F. Second we calcu-
late differences for the all relevant pairs and take summa-
tion of them with respect to each f ∈F. 

To build a set of matching patterns F, we consider only 
cases which have no skipping and flipping. We first sort 
elements ei

tar ∈ w(etar) and ej
ref ∈ w(eref) in counter-

clockwise order. For target neighbors, we start with the 
element which is on the boundary (Figure 4a). We choose 
e0

tar and e0
ref as an initial pair, and match the subsequent 

elements ei
tar and ei

ref incrementally, so as to obtain one 
correspondence f0. In the similar manner we obtain fk by 
choosing e0

tar and ek
ref as an initial pair. In the case of Fig-

ure 4, we obtain 6 matching patterns. This is different from 
the approach in [BBT*06] where they choose the nearest 
element based on the distance and they can skip some 
neighbors in between. 

We assumed that the size of w(etar) is equal to or less 
than that of w(eref), because the target seed is under growth 
and the number of its neighboring elements is relatively 
small. However, we occasionally observe exceptional cases. 
For instance, all neighboring elements of the seed have 
already been placed due to the difference of the priority or 
the use of the spray tool. When the size of w(etar) is greater 
than w(eref) we simply ignore such reference elements. 
These heuristics work well in practice. 

Once we obtain a set of matching patterns, we can define 
the error function with respect to each f ∈F as follows: 
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Figure 4: An example of matching patterns. The system 
constructs a set of matching patterns between neighbors of 
the target seed (a) and that of a reference element (b). 
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The d(etar, eref) is a Euclidean distance between the relative 
positions of etar and eref. The id(etar, eref) returns 1 if the 
symbol id of  etar is different from that of eref , or otherwise 
it returns 0. These two terms measure the local spatial rela-
tionship. The subid(etar, eref) is used to avoid the same ele-
ment recursively appearing again and again. This function 
returns 1 if sub-ids of ei

tar and eref are the same, or returns 0. 
w1, w2, and w3 are weighting values (e.g. if the weight w1 is 
large the structure of the reference arrangement is better 
preserved in the resulting patterns.). We set w1 = 1.0, w2 = 
1.0, and w3 = 100.0 to obtain the results in this paper. Fi-
nally we can define the error function: 

)).(),((min))(),(( reftarreftarERROR ewewerrorewew
Ff∈

=     (3) 

5.3 Rotation Modes 

We introduce three modes to generate different results for 
different purposes; the non-rotation mode generates pat-
terns that preserve the orientation of the reference neigh-
borhood, the rotation mode changes the orientation of the 
reference neighborhood and adjusts it to the local target 
neighborhood, resulting in a better distribution, and the 
flow field mode generates patterns following the user spe-
cified flow field. We achieve these effects by slightly 
changing the process of the finding best matching elements 
(Figure 5).  

In the non-rotation mode, we find the best fitting element 
without rotating the reference pattern; we solve the error 
function (1) as it is. In the rotation mode, we consider the 
best fitting rotation when calculating the error function (2).  
In other words we minimize the positional difference by 
rotating the reference elements;  

),)(,(min
,
∑
∈ f
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where Rθ(ej
ref) rotates the relative position of ej

ref. We apply 
the shape matching problem introduced in [MHTG05]. In 
the flow field mode, we consider the user specified flow 
field when finding the best match. We first obtain the 
orientation of the flow field at the target seed position. We 
then rotate the whole reference pattern so as to adjust its 
local x coordinate to the orientation. We use this rotated 
reference when finding the best match. 

5.4 Local Growth 

Now we found the best fitting reference element, and op-
tionally the best fitting rotation in the rotation mode or the 
flow field rotation in the flow field mode.  

The system first replaces the target seed with the found 
reference element (Figure 2d), including the symbol id and 
the sub-id. The system next places the new seeds by using 
the neighboring elements of the found element (these ele-

ments form the so called ring shape). We overlay a copy of 
the reference ring shape with the target seed neighborhood 
(Figure 2f), and then we delete every neighboring element 
which was paired to a target neighboring element when 
calculating the error function. The remaining elements will 
form new seeds with corresponding symbol ids (Figure 2g). 
Finally, we construct edges to connect the new seeds. 

To avoid too dense or sparse distribution or collisions of 
edges, we introduce several heuristics during the local 
growth process (Figure 6). After obtaining new seeds, we 
check the neighboring area of each new seed. If we find an 
existing element or seed in a distance lshort from the seed, 
we delete the seed and connect the edge to the found object 
(b). We choose a half of the shortest edge length in refer-
ence as lshort. We next check the angle between new edges, 
if the angle is less than 0.5 * original_angle, we delete the 
new seed and edge (c). The original_angle is the corres-
ponding angle in the chosen reference ring shape (a). We 
also check for a collision of the edge of the new seed; if it 
is detected, we remove the seed and the edge (d). When 
constructing new edges around new seeds, we check the 
length of each edge. If an edge is longer than llong, we gen-
erate an extra seed without a corresponding symbol id (e). 

Target seed

(a) (b)
Local x direction

(c)(c) (d)(d)

Flow field orientation

(e)

Flow field orientation

(e)(e)

Figure 5: The system fits a reference element (a) to a tar-
get seed (b) differently depending on three rotation modes; 
non-rotation (c), rotation (d), and flow field mode (e). 

Figure 6: The heuristic approach used to avoid undesired 
structures. 
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We place the seed at the end of a line segment which bi-
sects the corresponding angle and whose length is the aver-
age of two adjacent edges (e). We define llong = 1.5 * origi-
nal_length, where the original_length is the length of the 
corresponding edge in the ring shape (a). Then we check 
the edge collisions again. If a collision is detected, one or 
more objects must be in a triangle constructed by etar, s0 
and s1, and we construct edges as shown in (f). 

5.5 Relaxation 

Although we place a reference element with its neighbors 
that have the most similar shape to the target neighbors, the 
error accumulates in each local growth step because the 
system cannot always find an optimally fitting element 
which makes the error value zero. Here, we introduce a 
relaxation process that modifies the positions of the pre-
viously synthesized elements so as to keep the local feature 
of the synthesized pattern as similar as possible to that of 
the reference pattern. For each synthesized element, we 
adjust its ring shape to that of the corresponding reference 
element. 

 
Let xi be a position of a synthesized element ei

ref, and 
w(xi) be a set of its neighboring positions. We also refer to 
the relative position of the corresponding reference ring 
shape as rj

i, where rj
i is corresponding to xj ∈  w(xi) (Figure 

7(a) and (b)). We then minimize a distance between each 
neighbor’s positions xj and the position of the correspond-
ing reference ring shape (Figure 7c): 

.||)(||min
)(

2∑ ∑
∈

+−
i j

i
jij

ixwx
rxx                     (5) 

Since this representation is translation invariant, we should 
predetermine the position of one element in order to have a 
unique minimizer; we simply hold the initial element at the 
initial position. If there are user-specified boundaries, we 
constrain elements at their generated positions.  

s.constraintkkk ∈= 0xx                       (6) 

This quadratic minimization problem with linear con-
straints can be solved in closed form. We apply the La-
grange multiplier method. Note that there are elements 
which lose an edge or get an extra edge during growth. 
These elements no longer have same topology as the cor-
responding reference element. All seeds do not have cor-
responding reference elements yet. For these objects, we 
use their current neighboring shapes as their target ring 
shapes. 

6. Results and Discussion 

Synthesis is fast enough to return immediate feedback 
when the user paints using the spray tool. It took about 5 
seconds to synthesize 1000 elements on a Windows XP 
notebook PC with Intel Core 2 Duo CPU. The bottleneck 
of the synthesis is the relaxation process; it took less than a 
second to synthesize 1000 elements without the relaxation. 

Figure 8 shows synthesized arrangements with reference 
patterns in the three different classes; a regular pattern (a), 
a near regular pattern (b), and an irregular uniform distribu-
tion (c). In the case of (b), we introduced small randomness 
to the scale, rotation, and color of each symbol. Since our 
system attempts to keep local spatial relationship and to-
pology between neighbors, it can cover these three classes 
in the same framework. Figure 8 (d) is a pattern synthe-
sized by the rotation mode. This example indicates that our 
system successfully synthesizes a pattern in which gray 
stones are linked each other in rows.  

Figure 9 illustrates different effects of three rotation 
modes. The system takes the same input example (a) and 
generates different results in non-rotation (b) and rotation 
(c) mode. In both case, two gray stones appear close to 
each other. While an orientation of each two stones is re-
tained in the non-rotation mode, it is locally rotated in the 
rotation mode. The user can also control the arrangements 
by specifying underlying flow fields. When the user draws 
strokes by using the flow field tool (red curves in (e)), the 
system generates flow fields along to the strokes (e). The 
system then takes this flow fields as well as a reference 
arrangement (d), and it synthesizes a new pattern (f) in 
which scales are aligned along to the flow. Our system can 
change the topology to keep the uniform distribution. Two 
scales at which topology changes happen are highlighted 
by red circles (f). We show the resulting connectivity in (g).  

Finally, we show results created by using three UI tools. 
In Figure 1 (d), we control the orientation of feathers by 
using the flow field tool and the growth area using the 
spray tool. In Figure 1 (f), we limit the growth area of the 
blocks by the boundary tool. We also painted four charac-
ters “Euro” with an arrangement pattern by using the spray 
tool and flow field tool in Figure 10. In these feathers and 
scales examples, we arranged 3D objects which have a 
rounded shape and are slightly slanted, so that they natural-
ly express an overlapping effect. These effects are difficult 
to create with a 2D vector based approach [BBT*06] be-
cause it is required to specify the rendering order of ele-
ments explicitly. We also have a capability to modify the 
local orientation or size of each element after obtaining the 
arrangement. This type of control is difficult for pixel 
based texture synthesis.  

7. Conclusion and Future Work 

We presented a new system for synthesizing 2D element 
arrangements by combining non-parametric texture synthe-
sis techniques based on local neighborhood comparison and 
procedural modeling systems based on local growth. Our 
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Figure 7: We fit an immediate neighborhood shape of 
each vertex (a) to its desired shape (b). We minimize a gap 
between each vertex and its desired position (c). 
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system takes a user-input reference arrangement, analyses 
local relationship between reference elements by construct-
ing connectivity and synthesizes a larger pattern by locally 
growing a seed one by one. Since we attempt to keep the 
connectivity (i.e. topology) between neighboring elements, 
our system can generate various regular patterns and irre-
gular uniform patterns. To support creative design activities, 
we present three UI tools which allow control of global 
features of the synthesis. We also introduce the relaxation 
process in order to adjust a ring shape of each synthesized 
element to be closer to that of the corresponding reference 
element. 

Our current system considers only immediate neighbor-
hoods, so we would like to extend our matching function to 
handle more than 1-ring elements in the future. While our 
flow field mode generates fine results with relatively sim-
ple flow fields, if complicated flow fields containing sever-
al peaks or edge lines are given, the system often fails to 
keep the local topology at the peaks or the edges and 
breaks local spatial relationships. Another limitation is 
local error concentration. Even if we introduce the relaxa-
tion, our synthesis algorithm is based on local best match-
ing, thus it is difficult to obtain globally optimized results. 
We believe that this problem can be solved by hierarchical 
representation introduced in texture synthesis frameworks 
[WL00; Tur01]. Future work might include more compli-
cated patterns such as tree structures [PL90; WZS98] or 2D 
arrangements which vary the scaling of each element.  

Finally we would like to emphasize that our approach is 
one of the first trials to combine the example based system 
and procedural modeling system. We hope that our tech-
nique could be a first step towards an answer the problem 
of inverse procedural modeling, which is one of the biggest 
problems in procedural modeling research. 
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Figure 8: Synthesized arrangements and input example patterns (right button for each figure).  
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Figure 9: Effects of three rotation modes. The system takes the same reference pattern (a) and generates different results in 
the non-rotation (b) and the rotation (c) mode. In these examples, we assign the higher priority to the gray stone. In the flow 
field mode, the system takes user-specified reference (d) and flow field (e), and synthesizes a pattern along the flow (g). The 
red circles highlight the positions at which the local topology changes. (g) shows the resulting connectivity. 

 
Figure 10: Four characters “Euro” painted with scales. We first designed the underlying flow fields and then specified the 
growth area using spray tool. 


