
 
   

Adaptive Unwrapping for Interactive Texture Painting 
Takeo Igarashi 

Computer Science Department 
Brown University 

takeo@acm.org 

Dennis Cosgrove 

School of Computer Science 
Carnegie Mellon University 
dennisc@cs.cmu.edu 

ABSTRACT 
We present a method for dynamically generating an efficient 
texture bitmap and its associated UV-mapping in an interactive 
texture painting system for 3D models. Typical 3D texture 
painting programs require the user to explicitly define the 
underlying UV-mapping from 3D geometry to 2D bitmap prior to 
painting. This mapping is unchanged by the painting process. 
However, a predefined UV-mapping can cause distortion at 
arbitrary locations and waste bitmap memory in unpainted areas. 
To solve these problems, we propose an adaptive unwrapping 
mechanism where the system dynamically creates a tailored 
UV-mapping for newly painted polygons during the interactive 
painting process. This eliminates the distortion of brush strokes, 
and the resulting texture bitmap is more compact because the 
system allocates texture space only for the painted polygons. In 
addition, this dynamic texture allocation allows the user to paint 
smoothly at any zoom level. This technique can be efficiently 
implemented using standard 3D rendering engines, and the 
painted models can be stored as standard textured polygonal 
models. We implemented a prototype system, called Chameleon, 
and our users’ experiences suggest that our technique is very 
useful for simple painting by casual users.  

Keywords 
Texture mapping, texture painting, interactive 3D graphics, 
multiresolution paint, zooming, 3D content creation. 

1. INTRODUCTION 
This paper addresses the problem of interactively creating and 
refining a hand-painted texture on a 3D polygonal model. 
Traditionally, the user first specifies the UV-mapping that maps 
3D geometry onto the 2D texture bitmap (the process is called 
unwrapping), and then paints on the 2D texture bitmap using 
various paint tools. 3D painting systems make the process easier 
by allowing the user to paint the object surface directly in the 3D 
view. The system re-projects the painted strokes in the 3D view 
to the 2D bitmap according to the predefined UV-mapping, and 
instantly presents the result in the 3D view.  

However, traditional 3D paint programs have a number of 
limitations. First, specifying the UV-mapping manually can be 
difficult and tedious. While manual unwrapping is the preferred 
solution for professional designers to obtain the best aesthetic 
results, this approach is too difficult for casual users. Mapping by 

Figure 1: A screen snapshot of Chameleon. The user 
paints strokes on the 3D model directly without 
specifying the UV mapping beforehand. 

 
Figure 2: Automatically generated texture and the
UV-mapping for the painted model in Figure 1.
Each patch corresponds to a meaningful visual
feature, and the bitmap memory is not assigned for
the areas that are not touched by the brush strokes.  



 
   

hand often takes longer than the painting itself. A standard set of 
predefined mappings, such as cylindrical and spherical, work 
well for simple shapes, but fail for models with extrusions and 
concavities. Several advanced automatic unwrapping methods 
are available in commercial systems [6], but they still require the 
user to manually adjust several parameters to get a customized 
mapping for a specific painting. Without explicit guidance from 
the user, the automatically generated mapping can place seams at 
important visual features and cause distortion. In addition, 
automatic methods usually distribute the bitmap evenly across 
the entire surface, but this can be wasteful when the user adds 
details to only a few polygons and fills the remaining areas with 
a solid background color. In such cases, it is desirable to allocate 
more bitmap memory for the detailed area, and a minimum 
amount for the remaining area.  

Our approach is to perform unwrapping on the fly during the 
user’s painting operation instead of constructing a static 
UV-mapping beforehand. The system assigns a new texture 
bitmap and UV-coordinates for newly painted polygons with 
each paint operation. This improves interactive 3D paint systems 
in several ways. First, the brush strokes are never distorted 
during the paint operation, and several useful behaviors can be 
added to the brush strokes such as the ability to paint both front 
and back surfaces simultaneously. Second, the resulting texture 
bitmap is compact and robust, because texture bitmap is assigned 
to painted areas only and most of the seams run through the gaps 
between these painted regions. Finally, dynamically allocating 
texture bitmap enables different levels of texture detail across the 
3D surface (multiresolution paint). We built a prototype system, 
Chameleon, to show that our adaptive unwrapping method can be 
efficiently implemented using a standard 3D rendering engine to 
provide the user with immediate feedback during painting 
operations. We performed a qualitative user study using a 
prototype system, and observed that Chameleon is particularly 
suitable for simple paintings by casual users that involve a 
limited number of strokes. 

The rest of this paper is organized as follows: we first describe 
the background of this research. Second, we introduce the 
Chameleon system from the user’s point of view. Third, we 
describe the implementation of Chameleon in detail. We then 
present some results from our user study. Finally, we discuss the 
limitations of our approach and our planned future work before 
concluding the paper.  

2. BACKGROUND 
Texture mapping applies a 2D bitmap image to 3D geometry to 
represent additional visual features without increasing the 
complexity of the underlying geometry [8]. A fundamental 
difficulty of texture mapping is finding a good surface 
parameterization (UV-mapping) that minimizes distortion. A 
typical approach is to define an energy function for the mapping 
and to minimize it through an optimization process [3][13]. The 
problem with these approaches is that the result is a general 
solution and may not be appropriate for individual paintings. 
Therefore, professional artists prefer to manually specify the 
UV-mapping to obtain the best aesthetic results. Our approach is 
to incorporate the user’s painting operation as an input to 
generate a customized mapping tailored for the particular 

painting sequence. 
3D texture painting was first introduced by Hanrahan and 

Haeberli [9], but they stored painted color information at the 
mesh vertices instead of using a separate texture bitmap. Today, 
many commercial programs provide 3D painting features, where 
the user can paint directly in a 3D view to edit a 2D texture 
bitmap [2][6][16]. In these systems, the user first prepares a 
UV-mapping manually or automatically (e.g. V.A.M.P. mapping 
in [6]), and the system subsequently re-projects the user’s strokes 
in the 3D view to the corresponding position in the 2D bitmap 
based on the predefined UV-mapping. The problem is that the 
brush strokes are often distorted because of the underlying 
UV-mapping. If an area of the 3D surface is stretched out in the 
2D bitmap, the brush stroke becomes small in the 3D view, and 
vice versa. If an area of the 3D surface is split in the 2D bitmap, 
the discontinuity becomes visible when the user’s stroke runs 
across the seam (Figure 3). These problems can be mitigated by 
adaptively adjusting the brush size [12], or by drawing strokes on 
the screen first and then re-projecting them onto the texture 
bitmap on a per pixel basis (e.g. projection paint in [6]), but the 
problems cannot be easily solved comprehensively as long as the 
underlying UV-mapping remains unchanged.   

Our work is inspired by the notion of 3D graphics for casual 
users (including children) introduced in [4][11]. In general, 
traditional 3D graphics tools and techniques are designed for 
professional users, and the quality of resulting imagery is more 
important than the usability of the system. However, the ease of 
use is most important for casual users, and the technological 
challenge is to produce the best possible results from minimum 
user effort. Based on this principle, our technique tries to 
generate ideal textures based on the user’s natural painting 
operation.  

 

  

3D view           2D bitmap    
Figure 3: A problem with traditional 3D texture 
painting. The user’s painting operation is 
re-projected onto the 2D bitmap, and the system 
draws a brush stroke on the 2D bitmap. As the result, 
a distorted stroke appears in the rendered 3D view.  

 

3. THE CHAMELEON SYSTEM 
This section describes the behavior of Chameleon from the user’s 
point of view. We also clarify the benefits of our approach. 

Basically, the Chameleon system works as a standard 3D paint 
program except that it does not require the user to specify the 
UV-mapping beforehand. The user loads a polygonal model into 
the system, specifies brush size and color, and draws strokes on 



 
   

the 3D model directly as shown in Figure 1. Currently, the left 
mouse button paints strokes, and the right mouse button controls 
the camera. Dragging on the model rotates it [10], and dragging 
on the background moves the model parallel to the screen. 
Dragging immediately after a click by the right mouse button 
changes the zoom level. 

The brush size and shape remain constant wherever the user 
paints. This is in contrast to traditional 3D paint systems where 
the effective brush size and shape can change in the 3D view 
because of a distorted UV-mapping [12]. In addition, the brush 
works intelligently based on the structure of underlying geometry. 
When a brush stroke paints near a boundary edge, the ink does 
not spill across the edge (Figure 4, left). The boundary edges can 
be given by the modeling system (for example, the Teddy system 
[11] creates boundary edges as a result of cutting or extrusion 
operation), or explicitly specified by the user. Chameleon also 
allows the user to paint areas that are partially hidden by other 
surfaces (Figure 4, right).  

 

  

Figure 4: Smart brush. The brush does not spill 
across boundary edges (left). The brush remains on 
the surface being painted (right). The structural 
information can be automatically provided by a 
modeling system or explicitly specified by the user. 
 

The buttons at the bottom of the panel (Figure 1) allow the 
user to choose brushes and to perform various operations. The 
second button from the left, flood fill, allows the user to specify 
the color for an entire area with a single step. The area is the set 
of polygons contiguous to the polygon the user clicks that are 
either enclosed by boundary edges or are all the same color 
(whichever is smaller). The third button, dunk fill, fills the entire 
model with the target color. The fourth button, eye dropper, picks 
a color from the model surface and sets it to be the current 
painting color. The fifth button is a laser brush. While this button 
is on, the user’s strokes penetrate the model and paint both front 
and back surfaces. This makes it convenient to, for example, 
paint wings or a tiger’s tail (Figure 5). The sixth button is undo. 
Our current implementation supports unlimited undo operations. 
The seventh button allows the user to rotate the model to a fixed 
viewing angle (we provide predefined front, left, right, back, top, 
and bottom views for convenience). The final button is not 
functional in the current implementation.  

 
 

  

  
Figure 5: Laser paint. When the user paints strokes 
in laser mode (left), the strokes penetrate the model 
and are visible from both sides (right). 

 
Zooming in our system works differently from standard 3D or 

2D painting systems where the predefined texture resolution 
limits the ability to represent details. With these systems, as the 
user zooms in, the brush strokes exhibit aliasing. In Chameleon, 
the user can paint with constant smoothness even in an extremely 
zoomed-in view (called multiresolution paint [7]) (Figure 6). As 
a result, the user can add as much detail as is desired to specific 
areas of the model.  

 

 
Figure 6: Multiresolution paint. In any zoom level, 
the user can always paint smooth strokes.  

 
When the user finishes painting, the system stores the texture 

bitmap and the geometry with the assigned UV coordinates. The 
resulting bitmap has a number of good characteristics (Figure 2). 
The seams mainly run through the gaps between important visual 
features. This prevents distortion when reducing the size of the 
bitmap later (Figure 13). The bitmap is assigned mainly for the 
areas where the user painted with brush strokes, and the rest of 
the surface does not waste texture memory. In addition, the 
system assigns an appropriate amount of bitmap according to the 
visual complexity of each area (e.g. eyes typically consume a 
large area, while the identically colored belly consumes a smaller 
area). 

4. IMPLEMENTATION 
This section describes the implementation details of Chameleon. 
We emphasize how we achieve fast feedback to the user during 
the painting operations using a standard texture mapping engine. 
We wrote our prototype system in Java using Microsoft’s 
DirectX libraries [14]. 

4.1  Painting Strokes 
The essential idea is to construct the UV-mapping and the 



 
   

corresponding texture bitmap on the fly during the user’s 
painting operation instead of using a predefined UV-mapping 
throughout the painting process. The system identifies the 
painted polygons each time the user paints strokes, and assigns 
new UV-coordinates and a new texture bitmap to them. Figure 7 
illustrates an overview of the process. Internally, the system uses 
the standard textured polygonal model, and renders it using a 
standard 3D rendering engine.  

 

 
Figure 7: Overview of the painting process. As the 
user paints strokes (above), the system assigns new 
texture bitmap and new UV-coordinates to the 
painted polygons (bottom). 

 
When the user loads an unpainted model or dunks a model, the 

system sets the UV-coordinates to (0.5, 0.5) and associates all 
polygons with an initial blank texture bitmap. The initial blank 
texture bitmap is of 1x1 pixels, and the system sets its color to 
the base color specified by the user. When the user paints strokes, 
the system stores these strokes as incoming strokes until the user 
rotates the model. The system represents the incoming strokes as 
independent 2D strokes on the screen. When the user starts 
rotating the object, the system projects the incoming strokes to 
the object surface (Figure 8). This idea is similar to projection 
paint in [6], but they create a 2D bitmap representation of 
incoming strokes, and re-project each pixel to the texture bitmap 
according to a predefined UV-mapping.  

 
Figure 8: Projection of incoming strokes. Incoming 
strokes are represented as independent 2D strokes on 
the screen until the user starts rotation. When the 
user starts rotation, the incoming strokes are 
projected onto the 3D surface.  
 

The projection is done by the following procedure (Figure 9). 
First, the system identifies the polygons that are painted by the 
strokes (Figure 9a). The system searches for the painted polygons 
starting from the polygon where each stroke starts, and 
recursively checking the distance between the adjacent polygons 
and the stroke in screen space. If the distance is shorter than the 
stroke radius, the polygon is identified as painted. This recursive 
search along the surface prevents the stroke from affecting 
irrelevant polygons, and the search stops at the boundary edges to 

prevent spilling. Second, the system generates a new texture 
bitmap, and re-projects any existing texture for the painted 
polygons onto the new texture (Figure 9b). The size of the new 
texture bitmap is identical to the bounding box of the painted 
polygons in the screen space. Third, the system paints the 
incoming strokes on the new texture using a standard 2D drawing 
procedure (Figure 9c). Finally, the system updates the 
UV-coordinates of the painted polygons and associates them with 
the new texture (Figure 9d). This projection is simple and fast 
because it does not require complicated pixel level operations. 
All operations are performed using a standard rendering engine 
and standard 2D brush drawing.  

 
Figure 9: Projection of the incoming strokes onto the 
model surface. 

 
The system re-projects the existing texture (Figure 9b) using a 

standard rendering pipeline. The system renders the painted 
polygons as a 3D scene to an off-screen image buffer with an 
ambient light of maximum brightness (called bright light 
rendering). In the actual implementation, we render additional 
polygons around the painted polygons to prevent the boundary 
from becoming visible in the 3D scene. This is also important to 
prevent aliasing when the bitmap is scaled down later (Figure 
13).  

In laser paint mode, the system applies the projection 
procedure to both the front and back facing polygons. Both 
polygons share an identical texture bitmap to minimize memory 
consumption. This causes problems when different images are 
already painted on the front and back facing surfaces. We could 
avoid this problem by assigning independent texture bitmaps for 
front and back facing polygons, but we chose to minimize bitmap 
usage in the current implementation.  

We automatically achieve multiresolution paint in this 
framework because the resolution of the new texture bitmap is 
determined by the apparent screen resolution. However, the size 
of underlying polygons does impose a limitation. When the user 
zooms in too much and the strokes are much smaller than the size 
of the painted polygon, the system wastes a large amount of 
bitmap space, as each texture bitmap must be larger than the 
polygon. A potential solution is to sub-divide the polygon to 
generate a finer mesh, but we have not tested this yet.  

4.2  Feedback for Incoming Strokes 
The simplest approach for presenting feedback for the incoming 
strokes is to paint them as a 2D overlay on top of the rendered 
3D scene. This is fast and easy to implement, but cannot reflect 
the characteristics of painted surfaces correctly (Figure 10, left). 
Because the users in our informal user tests universally 
responded negatively to this initial implementation, we 
implemented the following technique to provide accurate 
feedback. Using this technique, the incoming strokes are properly 



 
   

shaded, and they do not appear outside the appropriate places.  

    

Figure 10: Feedback for the incoming strokes. The 
simplest approach is to paint the incoming strokes as 
2D overlay over the 3D scene (left). We paint the 
incoming strokes on temporary texture to add 
appropriate effects (right). 

 
When the user finishes rotation, the system prepares a 

temporary texture bitmap for the incoming strokes. The system 
temporarily associates all polygons with the temporary texture 
and assigns them temporary UV coordinates. The temporary 
texture is identical to the 3D view of the model on the screen 
except that the temporary texture is rendered using bright light 
rendering to suppress shading effects (Figure 11). The system 
assigns UV coordinates accordingly to make the resulting 3D 
image indistinguishable from the image rendered using the 
original textures.  

The system then paints incoming strokes on this temporary 
texture bitmap using a standard 2D brush. As a result, the strokes 
appear as shaded strokes on the model surface, and they never 
appear outside the object in the 3D view (Figure 10, right). When 
the user starts rotation, the system discards the temporary texture 
and the temporary UV coordinates. This also allowed us to 
implement the eye dropping by picking the color from this 
temporary texture bitmap at the desired location.  

  
Figure 11: 3D view on the screen (left) and the 
temporary texture (right). The incoming strokes are 
painted on the temporary texture bitmap, and 
appear in the 3D view as shaded strokes. 

 
One remaining problem is that this approach cannot give 

appropriate feedback when the user paints strokes across 
boundary edges or behind other parts (Figure 4). To solve this 
problem, the system generates multiple copies of the temporary 
texture bitmap, and assigns a copy to each part separated by 
boundary edges. When the user draws an incoming stroke, the 
system identifies the part to be painted and renders the incoming 
stroke on the appropriate copy of the temporary texture bitmap.  

4.3  Packing 
When the user finishes painting and attempts to save the result, 
the system generates a single texture bitmap (texture atlas [17]) 

by assembling the number of texture bitmaps created during the 
painting process. We call this process packing. The system 
adjusts the UV coordinates to match the packed texture, and 
stores the result in a standard textured polygonal model format, 
making the completed painted model readable by various 
graphics applications.  

 

Figure 12: Packing algorithm. 

   

A texture created using Chameleon. 

  

A texture created using an automatic unwrapping [6].  
Figure 13: Scaling the packed texture from 128x128 
(left) to 32x32 (right). The texture created by 
Chameleon is robust against scaling because the 
texture bitmap is dedicated to the important visual 
features and the seams run through the gaps among 
the painted regions. 

 
The difficult part is to arrange the small texture bitmaps 

(patches) inside the final texture compactly. This problem of 
packing a set of polygons into a given 2D domain is called “pants 
packing” [15] and is well studied in computational geometry. 



 
   

However, an exact solution cannot generally be computed 
because the problem is NP-hard. A typical approach is to ask the 
user to do the task manually when high quality packing is 
required. 

In our current implementation, we use a simple heuristic 
algorithm. This algorithm is a temporary solution and we plan to 
investigate more sophisticated implementations in the future. 
However, the algorithm described below is easy to implement, 
fast, and produces reasonable results, which is sufficient for our 
prototype. 

As a preprocessing step, the system obtains the bounding box 
of each patch, and handles each as a rectangular box throughout 
the packing process (Figure 12a). The system calculates the total 
area of the patches, and gets the square root of the total area. The 
system defines the target size (L) of the resulting texture as 
slightly longer than the square root (multiplied by 1.2). After this, 
the system first finds the patches whose width is longer than their 
height and rotates them 90 degrees. As a result, all patches are 
taller than they are wide (Figure 12b). Then the system sorts the 
patches by their height, and lines them up horizontally (Figure 
12c). The system then folds the line as shown in Figure 12d to fit 

within a square whose side length is L, and pushes each patch 
upward until it hits another patch to minimize the gap (Figure 
12e). We found that this simple algorithm works reasonably well 
for the typical sets of patches we see in our experiment (Figure 
14,15). 

The result of this straightforward packing algorithm can be too 
large for certain purposes. If the user wants to send the painted 
model over the network, a smaller texture bitmap would be 
preferable. In these cases, it is necessary to shrink the packed 
texture bitmap to a lower resolution. However, reducing the 
texture resolution can make seams visible, and this damages 
rendered images because patches start to be affected by the 
surrounding pixels. The texture atlas created by Chameleon is 
more robust against this aliasing problem because more seams 
are arranged in unpainted areas, unlike an automatically 
generated UV mapping in traditional 3D paint systems (Figure 
13). It is possible to prevent the aliasing problem by 
implementing a dedicated scaling procedure that takes cares of 
the patch boundaries, but we have not worked on this yet.  

 
Figure 14: Example 3D models painted by one of the authors using Chameleon, and resulting texture mapping. 
Chameleon is suitable for simple paintings with a limited number of strokes. 



 
   

5. RESULTS 
Figure 14 shows several models painted by one of the authors 
using Chameleon. It took less than a few minutes to paint each of 
them from scratch. The rendered images are clear and the texture 
bitmap is compact and efficient. We used a 500 MHz Pentium III 
PC without any hardware acceleration, and the computing time is 
almost unnoticeable during the painting operation. These models 
also represent the target class of paintings for Chameleon. Only a 
few areas are touched, and most areas are covered by the base 
color. Different areas require different levels of detail. They are 
informal paintings rather than professional models to be used in 
production. 

We performed a user study to observe how users react to the 
system, and to obtain insights about their paintings. Fifteen 
participants from various backgrounds took part in the study: 
four digital artists/designers, four computer scientists and seven 
casual users. We first asked them to try Chameleon on a practice 
model without any instruction. Then, we provided them with 
complete tutorial and asked them to freely paint five models (cat, 
chicken, elephant, monkey, and bear). As a result, we got 75 
paintings in total. Average time for a subject to complete a 
painting was approximately 4.8 minutes. Figure 15 shows some 
of the paintings by the subjects. In general, the subjects found 
Chameleon intuitive, and painted the models without difficulty. 

  

subject #0, 22% are painted, 4 minutes. 

  
subject #3, 48% are painted, 11 minutes. 

  

subject #10, 26% are painted, 6 minutes. 

Figure 15: Examples of paintings by the subjects.  
We are very encouraged that while those with experience in 

using commercial 3D painting tools are impressed with the 

various features of Chameleon, casual users simply take it for 
granted that one can interactively paint directly on a 3D model 
and receive the correct feedback in real-time. The laser tool 
turned out to be very useful. Several users struggled with 
repeatedly brushing and rotating to cover all sides of an 
extremity or complete a stripe on the tail of the practice model. 
They were all pleased when shown the laser tool in the tutorial 
portion of the study, and they proceeded to use it extensively 
throughout the remainder of the study.  

In order to verify our assumption that the casual users paint 
only limited areas of the surface in informal paintings, we 
counted the number of polygons that were painted by brush 
strokes and calculated the percentage of the painted polygons for 
each painting. Polygons filled by flood fill and dunk fill are not 
included in the painted polygons. Figure 16 shows the histogram 
of the result. Although we did not provide any direction on how 
to paint the model, most users painted only a limited percentage 
of the entire surface (the average was 24.3%). 

0

5

10

15

20

25

0-10% 10-20% 20-30% 30 - 40% 40 - 50% 50-60% 60-70%

# of paintings

Percentage of painted polygons  
Figure 16: The percentage of painted polygons in the 75 
paintings by the subjects. The average is 24.3%. In most 
cases, only 20-30% of the entire surfaces are painted by 
brush strokes. 

6. LIMITATIONS AND FUTURE WORK 
Chameleon is specifically designed for casual users to quickly 
paint simple paintings such as those in Figure 14. Chameleon is 
not appropriate for professional designers to paint highly detailed 
models. New paint strokes affect the appearance of previously 
drawn textures, and the resulting texture is not necessarily 
efficient if almost all surfaces are painted. Seams become visible 
when the user covers the entire surface with complicated patterns 
such as wood or bricks.  

In addition to this fundamental limitation, there are many 
problems to be fixed in our current implementation. The biggest 
problem is with flood fill. Our current implementation simply 
applies standard 2D flood fill to the corresponding texture bitmap, 
but the result can be inconsistent in the 3D view because the 
region to be filled can be spread across multiple patches. We 
need to extend the flood fill algorithm to recursively search for 
adjacent patches on the polygonal surface. 



 
   

A second problem is that repeated re-projection of existing 
texture gradually degrades the quality of the bitmap image. A 
possible solution is to apply multiple layered textures to the 
surface with transparency. When the user paints new strokes on 
already-painted area, the system could convert new strokes into a 
2D texture bitmap with transparency, and add them to the surface 
on top of the existing texture. Limitations of this approach are 
that it requires a special 3D rendering engine with support for 
multiple layered textures, and that it consumes a lot of resources 
when the user paints strokes over and over.  

There is also much room for improvement in our packing 
algorithm. We need an algorithm that can arrange polygons in a 
square more efficiently using various optimization techniques. In 
addition, we need to implement a dedicated scaling procedure to 
shrink the packed texture while taking care of the patch 
boundaries. 

Another important future direction is to re-mesh the 
underlying geometry as the user paints. In the current 
implementation, a tiny stroke can affect a large polygon even 
when the stroke affects only a small area of the polygon. In this 
case, it would be desirable to sub-divide the polygon to minimize 
the area to be re-projected. Re-meshing could also make 
multiresolution painting work better in an extremely zoomed-in 
view. 

Finally, it is possible to represent all strokes as 3D strokes on 
the object surface instead of using standard texture mapping 
methods [1][5]. This approach is superior in that there will be no 
sampling problem and the strokes are always smooth. We chose 
our current implementation because it is relatively easy to 
implement and runs robustly on a standard rendering 
environment, but we plan to investigate this approach in the 
future. 

7. CONCLUSIONS 
We have introduced a technique for creating an efficient UV 
mapping for interactive texture painting programs. While 
traditional 3D paint programs use a predefined UV-mapping, our 
system dynamically creates a tailored UV mapping for newly 
painted polygons during the painting process. As a result, the 
user can paint undistorted brush strokes all over the surface from 
any viewing direction. The resulting texture bitmap is compact 
because the bitmap is dedicated to the painted areas only, and it is 
robust against scaling because seams run through the gaps among 
the painted regions. In addition, dynamically assigning the 
texture allows the user to paint smooth strokes at any zoom level. 

This technique can be implemented efficiently using standard 
3D rendering capabilities without writing code for pixel level 
operations. The result of painting is stored as a standard textured 

polygonal model and is readable by a variety of graphics 
applications. Our informal user study showed that novice users 
easily understand the technique and that the system can generate 
appropriate UV mappings for their paintings. 

References 
[1] Akleman, E., Implicit Surface Painting, Proceedings of 

Implicit Surfaces’98, pp.63-68, 1998. 
[2] AMAZON 3D Paint, Interactive Effects, Inc., www.ifx.com 
[3] C. Bennis, J-M. Vezien, G. Iglesias, A. Gagalowics. 

Piecewise surface flattening for non-distorted texture 
mapping. SIGGRAPH 91 conference proceedings, 
pp.237-246. 

[4] M. Conway, et. al. Alice: Lessons Learned from Building a 
3D System for Novices. Proceedings of CHI 2000, pp.486 - 
493, 2000. 

[5] E.Daniels , Deep canvas in Disney's Tarzan, SIGGRAPH 
99: conference abstracts and applications, pp. 200, 1999. 

[6] Deep Paint 3D (Texture Weapons), Right Hemisphere Ltd., 
www.righthemisphere.com 

[7] A. Finkelstein, C.E. Jacobs, D.H. Salesin. Multiresolution 
Video. SIGGRAPH 96 Conference Proceedings, pp. 
281-290, 1996. 

[8] P. Heckbert. Survey of Texture Mapping, IEEE Computer 
Graphics and Applications. Nov. 1986, pp.56-57. 

[9] P. Hanrahan, P. Haeberli, Direct WYSIWYG Painting and 
Texturing on 3D Shapes, SIGGRAPH 90 Conference 
Proceedings, pages 215-224, 1990. 

[10] J. Hultquist. A virtual trackball. Graphics Gems (ed. A. 
Glassner). Academic Press, pages 462-463, 1990. 

[11] T. Igarashi, S. Matsuoka, H. Tanaka. Teddy: A Sketching 
Interface for 3D Freeform Design, SIGGRAPH 99 
Conference Proceedings, pp. 109-116, 1999. 

[12] D.E. Johnson, T.V. Thompson II, M. Kaplan, D. Nelson, 
E. Cohen, Painting Textures with a Haptic Interface, 
Proceedings of Virtual Reality '99, pp. 282-285, 1999. 

[13] J. Maillot, H. Yahia, A. Verroust, Interactive texture 
mapping. SIGGRAPH 93 Conference Proceedings, 
pp.27-34, 1993. 

[14] Microsoft DirectX APIs Supported by Java Classes, 
http://www.microsoft.com/Java/sdk/40/relnotes_sdk/directx
.htm 

[15] V.J. Milenkovic. Rotational polygon containment and 
minimum enclosure. Proc. of the 14th Annual Symposium 
on computational Geometry, 1998. 

[16] Painter 3D, Metacreations, www.metacreations.com 
[17] E. Praun, A. Finkelstein, H. Hoppe, Lapped Texture, 

SIGGRAPH 2000 conference proceedings, pp.465-470.  



 
 

Adaptive Unwrapping for Interactive Texture Painting, Takeo Igarashi and Dennis Cosgrove 

 
Figure 1: A screen snapshot of Chameleon. 
 

 
Figure 2: Automatically generated texture and the 
UV-mapping for the painted model in Figure 1.  

 

Figure 6: Multiresolution paint.  

 
Figure 7: Overview of the painting process.  

 
Figure 9: Projection of the incoming strokes onto the 
model surface. 

  

Figure 11: 3D view on the screen and the temporary texture. 

 

   

A texture created using Chameleon. 

  

A texture created using an automatic unwrapping [6].  
Figure 13: Scaling the packed texture from 128x128 
(left) to 32x32 (right).  

 

 
Figure 14: Example 3D models painted by one of the 
authors using Chameleon, and resulting texture 
mapping.  


