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Abstract

It is difficult to communicate graphical ideas or images to computers using current

WIMP-style GUI. Users have to decompose the graphics desired in their minds into

simple elements such as points, lines, or boxes, and manipulate those elements using

click-and-drag operations. On the other hand, people have long used simple drawings

based on freeform strokes to express arbitrary visual messages quickly. Freeform User

Interfaces is an interface design framework that leverages the power of freeform strokes

to achieve fluent interaction between users and computers in performing graphical

tasks.

In Freeform UI, users express their graphical ideas as freeform strokes using pen-based

systems, and the computer takes appropriate actions based on the perceptual features

of the strokes. The results of processing are displayed in an informal manner to

facilitate exploratory thinking. Freeform UI is different from typical pen-based systems

in that it analyzes the perceptual structure of the drawings instead of applying simple

pattern-matching. This dissertation explores the concept of Freeform UI and shows its

possibilities with the following four example systems.

Beautification and prediction for 2D geometric drawing allow the user to construct

precise illustrations without using complicated editing commands.

Path-drawing technique for virtual space navigation enables the user to explore 3D

virtual space efficiently even when the rendering speed is slow.

Stroke-based architecture for electronic whiteboards provides a basic framework for

building task-specific applications using freeform strokes as the only input.

Sketch-based 3D freeform modeling allows the user to create natural-looking rotund 3D

models quickly just by drawing 2D outlines.

Independently, each of these systems contributes to the improvement of existing

applications. But taken together, they form a concrete basis for discussing the nature of

Freeform UI and clarifying its limitations and possibilities. While Freeform UI is not

suitable for precise, production-oriented applications because of its ambiguity and

imprecision, it does provide a natural, highly interactive computing environment for

pre-productive, exploratory activities in various graphical applications.
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Chapter 1

Introduction

1.1. Motivation

User interfaces evolve as the purpose of computing changes. When computers were first

introduced, their primary role was numerical calculation. At that time, the user

interface was “batch-based operation”: the user submits a job to a computer and waits

for the result of its calculations. The next stage was computers supporting corporate

information management, with applications such as databases. Interactive teletype and

command-line interfaces became dominant at this point, introducing more people to the

world of computation. As computers grew increasingly popular and inexpensive, the

primary purpose of computing became supporting knowledge workers in office

environments. Office productivity tools, such as spreadsheets and word processors, were

the most important applications. These applications could not have become wide-spread

without the invention of WIMP-style GUI (graphical user interfaces based on windows,

icons menus, and a pointing device, typically a mouse). GUI, originally designed by

Xerox and Apple, allows general knowledge workers to work with computers without

specific computer skills or training.

GUI has been the predominant user interface paradigm for almost 30 years. But

because the purpose of computing is changing, we clearly need next-generation user

interface framework. In the near future, computers’ main application will no longer be

as a tool for supporting knowledge workers in office environments. As they become

smaller and still less expensive, they will become ubiquitous and their goal will be to

support every aspect of human life. At that stage, a new form of user interfaces, post-

WIMP [139] or non-command [100] user interfaces, will be needed. In [100], Nielsen

argued that current GUI is essentially the same as command-line user interface in that
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users have to translate their tasks into machine-understandable sequences of

commands. Pressing buttons or selecting items in menus in GUI is essentially identical

to typing commands in command-line user interface. In non-command user interfaces,

computers take appropriate action based on the users activity, allowing the user to

concentrate on the task itself without worrying about commands.

Candidates for post-WIMP, non-command user interface include virtual realities and

augmented realities, multi-modal and multi-media interfaces, natural language

interfaces, sound and speech recognition, portable and ubiquitous computers. Each new

interface is designed to support specific new uses of computers. The increasing number

of applications dealing with three-dimensional information require virtual reality

techniques and various three-dimensional input devices. The need to support people in

situations where one cannot use hands or keyboards has spurred the growth of voice

input technologies. Highly complicated, spatial applications gave birth to the idea of

physical (graspable or tangible) interfaces that can provide more affordable, space-

multiplexed input channels. The essence of the next-generation user interface is its

diversity. While current user interfaces are characterized simply as “WIMP-style GUI,”

post-WIMP or non-command user interfaces will be characterized as collections of task-

oriented, tailored interfaces. An important task for user interface research is to identify

an emerging application domain and find the ideal user interface for that domain

beyond WIMP-style GUI.

This dissertation explores a user interface framework, Freeform User Interfaces, as a

post-WIMP, non-command user interface in the domain of graphical interaction.

Current point-click-drag style interaction is suitable for specific kinds of graphical

interaction, namely object-oriented graphics such as block diagrams or flow charts.

However, the point-click-drag interface does not work well for expressing arbitrary

graphical ideas or geometric shapes in computers. The user has to do this manually by

placing many control points one by one or combining editing commands in a nested

menu. On the other hand, people have been using pen and paper to express graphical

ideas for centuries. Drawing freeform strokes is a convenient, efficient, and familiar

way to express graphical ideas. Freeform UI is an attempt to bring the power of

freeform strokes to computing.
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1.2. Freeform User Interfaces

Freeform User Interfaces represent an interface design framework that uses pen-based

input devices for computer-supported activities in graphical domains. In Freeform UI,

the user expresses visual ideas or messages as freeform strokes on pen-based systems,

and the computer takes appropriate action by analyzing the perceptual features of the

strokes. This is based on the observation that freeform sketching is the most intuitive,

easiest way to express visual ideas. Freeform UI is an attempt to establish a non-

command user interface for two- and three-dimensional graphical applications in that

the user can transfer visual ideas into a computer without converting the ideas into a

sequence of tedious command operations.

Although Freeform User Interfaces assume pen-based devices as input channels, it

differs from traditional pen-based interfaces in that it extracts significantly richer

information from the user’s freeform strokes than does simple pattern-matching. Most

pen-based systems are based on handwriting character recognition and gesture

recognition, which are basically pattern-matching strategies. The system maps each of

the user’s freeform strokes to a predefined character or command, such as undo or

delete. This is essentially command-based interaction in that each operation in these

traditional pattern-matching systems is equal to pressing a button or selecting an item

in a menu. In contrast, Freeform User Interfaces transform the freeform strokes into

rich internal representations based on the perceptual characteristics of each stroke

instead of mapping them to predefined characters or commands.

This dissertation presents four independent example systems embodying the idea of

Freeform User Interfaces. While each of these systems contributes independently to the

improvement of existing applications, taken as a whole they form a concrete basis for

discussing the nature of Freeform UI, including its strengths and limitations. Below we

here introduce the four example systems. Each is described in detail later in this

dissertation.

1.2.1. Beautification and prediction for 2D geometric drawing

These techniques allow the user to construct precise illustrations such as shown in

Figure 1 without using complicated editing commands. The idea is to automate
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complicated drawing operations by having the computer infer possible geometric

constraints and the user’s next steps from the user’s freeform strokes. Interactive

beautification receives the user's free stroke input and beautifies it by considering

possible geometric constraints among line segments by generating multiple alternatives

to prevent recognition errors. Predictive drawing predicts the user's next drawing

operation based on the spatial relationships among existing segments on the screen. A

prototype system is implemented as a Java™ program, and our preliminary user study

showed promising results.

Figure 1. A diagram drawn using interactive beautification and predictive drawing.

1.2.2. Path-drawing technique for virtual space navigation

This technique allows the user to navigate through a virtual 3D space by drawing the

intended path directly on the screen. After drawing the path, the avatar and camera

automatically move along the path (Figure 2). The system calculates the path by

projecting the stroke drawn on the screen onto the walking surface in the 3D world.

Using this technique, with a single stroke the user can specify not only the goal position,

but also the route to take and the camera orientation at the goal. A prototype system is

tested using a display-integrated tablet, and experimental results suggest that the

technique can enhance existing walkthrough techniques.
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Figure 2. An example of a path-drawing walkthrough.

1.2.3. Stroke-based architecture for electronic whiteboards

This is a software architecture for our pen-based electronic whiteboard system, called

Flatland. Flatland is designed to support various activities for which personal office

whiteboards are used, while maintaining the outstanding ease of use and informal

appearance of conventional whiteboards. The GUI framework of existing window

systems requires too many, complicated operations to achieve this goal, and so we

designed a new architecture that works as a kind of window system for pen-based

applications.  Our architecture is characterized by its use of freeform strokes as the

primary element for both input and output, flexible screen space segmentation,

pluggable applications that can operate on each segment, and built-in history

management mechanisms. This architecture is carefully designed to achieve simple,

unified coding and high extensibility, which were essential to the iterative prototyping

of the Flatland interface. While the current implementation is optimized for large office

whiteboards, this architecture is useful for the implementation of various pen-based

systems.



6

Figure 3. Flatland example.

1.2.4. Sketch-based 3D freeform modeling

This technique allows the user to quickly and easily design freeform models, such as

stuffed animals and other rotund objects, using freeform strokes. The user draws

several 2D freeform strokes interactively on the screen and the system automatically

constructs plausible 3D polygonal surfaces. Our system supports several modeling

operations, including the operation to construct a 3D polygonal surface from a 2D

silhouette drawn by the user: the system inflates the region surrounded by the

silhouette, making wide areas fat and narrow areas thin. Teddy, our prototype system,

is implemented as a Java™ program, and the mesh construction is done in real-time on

a standard PC. Our informal user study showed that a first-time user typically masters

the operations within 10 minutes, and can construct interesting 3D models within

minutes.

Figure 4. Teddy in use on a display-integrated tablet.
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Freeform User Interfaces are characterized by the following three features: the use of

pen-based stroking as input, perceptual processing of strokes, and informal

presentation of the result. Pen-based stroking input allows the user to express their

graphical ideas quickly and intuitively. In addition, the informal nature of pen-based

sketching encourages the user to freely explore various possibilities without careful

consideration beforehand. Perceptual processing of strokes mimics the human ability to

infer a variety of meaningful information from simple drawings. Such information may

include, for example, implicit geometric relations among the strokes or a possible three-

dimensional shape represented by a two-dimensional drawing. It automatically infers

the user’s high-level idea and intention from the freeform drawing and can delegate

tedious fine-grained command operations. In short, perceptual processing allows the

user to perform complicated operations with a minimum of input. Informal presentation

is important to in creating for the user the appropriate impression and expectations

about the system’s behavior. Freeform UI is inherently ambiguous and transient to

encourage informal, pre-productive activities. Informal presentation can implicitly and

effectively present Freeform UI’s inherent qualities to the user and can avoid possible

frustration and confusion caused by misunderstanding.

Although ambiguity and imprecision are the major strengths of the Freeform User

Interface, they are at the same time its fundamental difficulty. The result of a

computation based on ambiguous strokes can be different from the user’s expectation.

This is also a problem of perceptual processing. Perception is personal in nature, and it

is impossible to represent everyone’s expectation correctly. The imprecise nature of

Freeform UI prevents it from application to activities of refinement and detailing.

Based on our implementation and user study experience, we found that the following

techniques are useful for mitigating the problem of ambiguity and imprecision. First,

the construction of multiple interpretations is useful to minimize the problems of

ambiguity. By presenting multiple interpretations, the probability increases that the

user will find the version she expected to find. Second, the informal presentation can

hide the details and thus prevent the user from expecting precise operation. The user

naturally understands the ambiguous nature of the system, and frustrations caused by

misconceptions can be minimized. Third, quickly responding fluent interaction allows

the user to explore various possibilities without heavy overhead. If it takes time for a

user to specify an operation and for a computer to return a result, it is frustrating to

repeatedly try various inputs when the system repeatedly returns the wrong result.
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Freeform UI can be applicable to a wide range of applications involving graphical

information processing that can be tedious when using standard GUI. Examples include

sketching on PDAs, taking notes on notebook computers, communicating over window-

size computers, supporting medical operations, or creating designs for 2D and 3D

presentations. Overall, Freeform UI is useful for creative, informal, and exploratory

thinking activities in the graphical domains.

1.3. Contributions

This dissertation introduces the concept of Freeform User Interfaces and discusses its

strengths and limitations using four stroke-based interaction techniques and systems

as examples. The thesis postulated by this dissertation is that the freeform stroke is a

powerful interface for communicating graphical ideas to computers. The contributions

of the research include the following:

The concept of Freeform User Interfaces. We characterize Freeform User Interfaces by

stroke-based input, perceptual processing of strokes, and informal presentation. This

combination is suitable for informal, creative activity using a computer in a graphical

application domain. The essential difficulties are inherent ambiguity and inaccuracy in

interpreting freeform strokes, but this problem can be minimized by presenting

multiple possibilities, controlling the user’s expectation by the informal presentation,

and providing a carefully designed quickly responding interaction style.

The four independently useful techniques and systems. Interactive beautification and

predictive drawing are useful techniques for drawing 2D geometric illustrations. Path

drawing navigation is a useful technique for navigating through virtual 3D space.

Flatland is a useful software system for personal electronic whiteboards. Teddy is a

powerful tool for constructing simple 3D models quickly. Each contributes innovative

ideas, strong implementation, and valuable insight into each application domain.

1.4. Organization

We first review related work in this field in Chapter 2. We briefly overview the various
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research projects to explore next-generation, non-command user interfaces. We also

review many pen-based techniques and systems in depth to clarify the context of this

research.

In Chapter 3, we propose the concept of Freeform UI as a pen-based non-command user

interface for graphical applications. We define the concept with three properties, and

discuss possible application domains where Freeform UI can be useful.

We then describe our example systems in detail. Chapter 4 describes our 2D geometric

drawing system, and introduces interactive beautification and predictive drawing. An

evaluation of the beautification technique is provided. Chapter 5 introduces the path

drawing technique for 3D virtual space navigation, and provides the results of an

informal user study. Chapter 6 presents the stroke-based software architecture for

personal electronic whiteboards. The architecture can be a platform for implementing

various applications based on Freeform UI. Chapter 7 introduces the sketch-based

interface for constructing freeform 3D models.

Next, in Chapter 8, we revisit the concept of Freeform UI and discuss its strengths and

limitations based on the example systems discussed in the preceding chapters. Several

guidelines for designing effective Freeform UI are presented.

Finally, Chapter 9 summarizes the dissertation and discusses several future directions.
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Chapter 2

Background

This chapter introduces the dissertation’s background. We first review various research

efforts aimed at designing next-generation user interfaces. These efforts are not

technically related to pen-based computing directly, but they broaden the context of our

efforts and illustrate general ideas and principles necessary for designing non-command

user interfaces. Then, we review existing technologies and previous efforts in pen-based

computing in detail. Some important related work is discussed again in Chapter 8.

2.1. Non-command User Interfaces

The goal of this dissertation is to explore next-generation, non-command user interfaces

in graphical application domains. Although research projects pursuing non-command

user interfaces in other domains are not directly related to our stroke-based techniques,

we briefly review representative projects to illustrate a broader perspective on the

entire user interface research area. The following research projects are just a small

sampling of the vast research efforts now underway to create next-generation user

interfaces beyond WIMP-style GUI.

The concept of non-command user interfaces was introduced in [100]. In that paper,

Nielsen argued that all previous generations of user interfaces, including batch-based,

time-sharing command line, and graphical user interfaces, are all characterized as

command-based interfaces, where the user explicitly commands the computer to do

something. In contrast, Nielsen wrote next-generation user interfaces can be

characterized as non-command user interfaces, where the interaction between humans

and computers is not based on explicit command operation by the user. In non-command
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user interfaces, the computer automatically interprets the user’s action and does

appropriate operations without having received explicit commands, allowing the user to

concentrate on the task itself rather than controlling the computer. Examples he listed

of next-generation, non-command user interfaces included virtual realities, head-

mounted displays, sound and speech, pen and gesture recognition, animation and

multimedia, limited artificial intelligence, and highly portable computers with cellular

or other wireless communication capabilities.

2.1.1. 3D Interface and Virtual Reality

WIMP-style GUI is basically designed for 2D desktop applications. The increasing

number of 3D applications necessitates post-WIMP, specialized interfaces [139]. The

WIMP interface for 3D applications today typically consists of a number of 2D widgets

around the 3D world view, causing a significant cognitive distance between the end user

action (2D widget control) and the system response (change in the 3D world). We will

review interaction techniques based on 3D input devices and stereo vision as examples

of post-WIMP user interfaces for 3D applications.

A natural approach for manipulating 3D objects is to use a six-degree-of-freedom

tracking device as input [111]. The user can translate and move objects in a 3D scene

simply by manipulating the physical handle with the tracker. This approach can be

more powerful when the system supports two-handed interaction using two six-degree-

of-freedom trackers [54, 110]. It is also possible to add force-feedback functionality to

these 3D input devices [107]. These interfaces can be called non-command user

interfaces because the user can manipulate 3D objects directly by moving their hands in

the air, without explicitly manipulating graphical interface widgets in the 2D screen.

Virtual reality systems with head-mounted display with trackers are one extreme of

these approaches [141]. There is also growing interest in room-size immersive

environments with 3D image projection to the walls around the user [25]. These

systems convince users that they are in the artificial three-dimensional space by

presenting stereoscopic vision and allowing them to interact with the environment by

moving their limbs or bodies. The important feature is that the view presented to the

user is calculated based on the user’s head position and orientation, rather than

depending upon the user’s explicit camera control using 2D widgets, such as sliders or
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buttons. The result is that the user can concentrate on the task in the three-

dimensional world without worrying about camera control or object manipulation.

2.1.2. Augmented Reality

The approach opposite from virtual reality is augmented reality, which uses computers

to augment objects in the real world instead of enclosing people in an artificial world

[150]. While a wide range of systems can be considered augmented reality systems, we

review some systems that overlay computer generated images onto everyday physical

objects in a scene using projectors and see-through displays.

The Digital Desk [149] is an attempt to computationally augment the physical desktop

with paper documents. A computer display is projected down onto a desk and video

cameras observe the user’s activity on the desk. The goal of the project is to seamlessly

merge physical and electronic artifacts. For example, users can specify drawings on a

physical paper using their fingers, and copy the drawings to some other area. The

duplicated image is synthesized by the computer and projected onto the desk surface.

The KARMA system [37] presents to the user additional information on top of physical

objects using a see-through, head-mounted display and tracking devices. For example,

the user can see the internal components of a laser printer or instructions to repair it.

The system accesses expert systems and knowledge bases to understand the properties

and behaviors of the physical artifacts. The main interest of the KARMA system is to

accurately align computational images to corresponding physical objects, but it is

important to note that their interface requires no explicit control of computers. The

system generates appropriate images automatically, based on the spatial relationships

between the user’s head and the objects without the user explicitly controlling the

computer.

While the KARMA system addresses the problem of presenting information accurately

to specific objects such as a printer, the NaviCam system [116] proposes an interface for

presenting corresponding information for spatially distributed objects across a room or

a building. This system uses a hand-held display with a video camera. The image

observed by the camera is presented on the display along with computer generated

image. This interaction is analogous to a magnifying glass: the user looks at the target
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object through the device to obtain additional information. The system uses a two-

dimensional bar code and vision-based recognition technique to recognize which object

the user is looking at and to determine what information to present.

From the viewpoint of non-command user interfaces, augmented reality systems use the

user’s natural interaction with physical objects as input to perform appropriate actions

without explicit command operations by the user. With the Digital Desk, the system

responds to the user’s manipulation of physical papers, while KARMA and NaviCam

present information attached to a physical object when the user looks at the object

through the see-through display. As a result, the user can focus on the task in the real

world, rather than on the abstract manipulation of the computer.

2.1.3. Multimodal Input

Human beings communicate with each other using various modalities, such as voice,

gaze, and bodily gestures. Multimodal interfaces try to take advantage of these

modalities beyond simple point-and-click operations.

Many commercial products based on voice recognition have appeared recently [97], but

their targets are dictation and simple command operations using word recognition.

Since voice recognition is essentially error-prone, it is important to design interfaces

considering this nature. A solution is to combine voice with another modality, such as

gesture. Bolz’s Put-That-There system [14] allows users to point at objects on a map

using their fingers and to speak commands to modify the objects. By using this pointing

gesture, a user can simply say “Put that there” instead of “put the orange square to the

right of the blue triangle,” thus minimizing the system’s recognition error and the user’s

cognitive overhead.

Gaze is a difficult modality to use as input because it is impossible to tell whether the

user is looking something intentionally or merely resting the gaze unintentionally [64].

A good solution is to use gaze as a secondary, supporting input. An interactive fiction

system called The Little Prince [132] changes its scenario based on the pattern of the

user’s eye movement. In this system, the computer modifies its behavior without the

user’s explicit command input.
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Bodily gesture has been used mainly for entertainment applications. The HoloWall

system [85] emits infrared light from a translucent wall, and recognizes the user’s

bodily gestures by observing the reflected light from the body. Applications include a

paddleball game using the body as a paddle, a “life” game using body shape as initial

input, and interaction with artificial animals reacting to the user’s body. MIT’s pfinder

system [157] is used to recognize the user’s bodily interaction with an artificial dog

“living” in a wall-sized display [20]. These systems allow the user to interact with

artificial animals without explicit command operations, by observing the user’s natural

bodily action.

2.1.4. Ubiquitous Computing

The ubiquitous computing project [145][146] proposes an environment that is

surrounded by hundreds of wireless, interconnected computers. In this environment,

the relation between the user and the computer is one-to-many, instead of the current

one-to-one relation. The project introduced several computing devices with varying

scales including active badge, PARC tab, pad, and LiveBoard. Active badge [144] is a

small device attached to individuals, and it constantly transmits the identity and

location of the person to the computing infrastructure. PARC tab is a palm-sized device

with a touch-sensitive screen that stores personal information. One can hand the

information to a colleague’s tab using a wireless infrared connection. The LiveBoard

[138] is a wall-sized electronic whiteboard system designed around pen-based input.

Compared with the WIMP-style interface for a single console, the ubiquitous computing

environment provides interfaces with a much wider bandwidth. The environment can

make use of rich information, such as the user’s location and the device the user is

interacting with, and thus it requires less explicit control by the user.

  

2.1.5. Summary

We reviewed a small representative sample of various research activities now underway

to develop next-generation user interfaces. The important observation is that most

systems reduce the amount of the user’s explicit control by automatically inferring the

user’s intention from the natural actions taken in each application domain; such actions

include head motion, gazing, manipulation of physical objects, speech, and movement in
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a physical world. Like these systems, Freeform UI infers the user’s intention from

freeform drawings using pen-based input.

We can learn several lessons from the systems we have just discussed. First, interfaces

must be specialized to their target application domains. While WIMP-style GUI is used

universally for every application today, next-generation interfaces are characterized by

their diversity. Freeform UI is designed for informal activities in graphical computing

domains, and we must be aware that it does not work well in other domains. Second, to

design effective interfaces, it is important to understand the essential strength of each

input stream. For example, gaze was not successful as an explicit cursor control. Gaze is

best suited to finding the target of the user’s attention in the screen. We focus on the

fact that pen-based sketching is the best way to express graphical ideas rapidly, instead

of using a pen for direct manipulation of objects. Finally, new forms of interfaces can

evolve only by implementing actual working prototypes and accumulating experience

with them. Prototyping and user studies are the only ways to innovate. We

implemented the four example systems and tested the ideas behind each using

prototype systems according to the lesson.

2.2. Pen-based Computing

Pen-based computing has a long history of research and development in both hardware

and software [86]. In this section, we briefly review existing products and technologies.

First, we explain the current status of commercial pen-based hardware products. Next,

we review basic interaction techniques in pen computing, including handwriting

recognition, fast text input methods, and gesture/shape recognition. Finally, we review

several experimental research projects related to pen computing. We divided the

projects into four categories (handheld, whiteboards, exploratory, and drawing) for

convenience’s sake, but these areas interrelate closely with each other.

2.2.1. Pen-based Input Devices

Today, several kinds of pen-based computing devices are available, including tablets,

display integrated tablets, electronic whiteboards, pen-based portable computers, and

PDAs. Illustrators and graphic designers use tablets to draw pictures. Tablets are small
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and relatively cheap, but they require additional cognitive overhead because the

graphical objects on the screen are distant from the physical location of the pen. Display

integrated tablets offer more natural interaction similar to real pen and ink, but they

are not widely used because they are currently quite expensive. The largest market for

display integrated tablets today is healthcare institutions. Physicians use these devices

to take notes on electronic medical records. Some commercial electronic whiteboards are

available including both rear-projected and front-projected ones. They are mainly used

in meeting situations to record, share, and print handwritten notes on a board. Pen-

based portable computers are mainly used in retail stores and warehouses with custom

software, such as car price calculations based on various options or counting goods in

stock. In most cases, people use standard window systems with these pen-based devices,

and they use pens to just press buttons or select menus other than for handwriting

recognition. Personal digital assistants (PDAs), which are palm-sized computers, have

become increasingly popular recently. People use these devices for personal information

management. Fast text input methods such as Graffiti are widely used on these devices.

     

a) Hand held PDA (Sharp Zaurus [160])   b) Pen-based portable computer (Mitubishi AMiTY [2])

     

c) Display integrated tablet (Mutoh MVT-14[92])  d) Electronic whiteboard (SMART Board[130])

Figure 5. Examples of pen-based devices.
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2.2.2. Handwriting Character Recognition

Handwriting recognition1 has been the primary interest of researchers from the

beginning of pen computing [27]. The idea was to let the user input texts into computers

without a keyboard. Handwriting recognition was expected to be intuitive as well as an

efficient text input method for novice users who are not familiar with keyboard typing.

The early systems required the user to write characters separately in a sequence of

boxes. Some commercial products still use this strategy for reliable recognition [160].

Advanced recognition techniques allow the user to write printed characters in a free

space. In this case, the system has to divide the set of strokes into independent

characters first, which can introduce more recognition errors. Recent systems also allow

the user to write cursive, continuous texts freely [58]. This kind of technique was used

in the Apple Newton™ [19].

In spite of vast research efforts and commercial attempts, handwriting recognition has

not yet become widespread. The primary reasons are recognition errors and the fact

that handwriting text input is significantly slower than typing on a keyboard. In a

desktop computing environment, almost all use a keyboard. As a text input method for

small devices, such as PDAs and mobile phones, simplified character input (described in

the next section), software keyboards, and buttons are what most people use. It is not

clear whether character recognition will become dominant in the future, but it can be

said that the interface based on handwriting recognition should be designed in an

error-tolerant manner or should be used in applications in which a certain, if small,

amount of error is acceptable.

2.2.3. Fast Text Input Methods

Because handwriting recognition is too error-prone and slow, there have been several

                                                
1 In this dissertation, handwriting recognition refers to on-line handwriting recognition,
which recognize characters written on the electronic tablets in real-time. Off-line
recognition, which recognizes characters that have been scanned from paper, is not
discussed further. Good reviews on handwriting recognition can be found in [137].
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attempts to explore alternative methods for fast and reliable pen-based text input. One

way is to use simple, artificial “alphabets” that are easier for the computer to recognize,

and faster for the user to write. Unistrokes [47] uses symbols shown in Figure 6 for text

input. These symbols can be drawn with a single stroke, and common letters are

mapped to single line strokes for faster input. The problem is that it takes time for a

novice user to learn these special symbols. Graffiti [74] uses a similar approach, but it

uses symbols closer to an actual alphabet. Graffiti is widely used in commercial PDAs.

T-Cube [140] also uses single strokes to input characters, but it is based on piemenus

[55] and a stroke’s shape is not related to its corresponding alphabetic shape.

Figure 6. Unistroke [47].

These techniques allow the user to input single characters using single strokes, but

some recent techniques allow the user to input a sequence of characters (e.g., a word) at

a single stroke. In Cirrin [79], 26 characters of the Roman alphabet are laid out around

a circular region, and the letters passed through by a stroke will be entered (Figure 7,

left). A problem with this technique is that it requires precise control of pen movements

in passing through small regions. Quickwriting [106] uses a similar approach, but

minimizes the problem of fine control by introducing zoning traversal. The writing area

is divided into a grid of 3x3 character sections with a central resting zone (Figure 7,

right). The user draws a stroke visiting multiple zones, and a character is entered each

time the stroke returns to the central area. The character to be entered is determined by

the starting zone and the ending zone during a loop. For example, the path shown in

Figure 7 (right) types the word “the”. The user can gradually learn frequently used

words as single gestures and can thereby enter texts quickly. These systems are

distributed on the Internet, and are widely used.
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Figure 7. Cirring [79] and QuickWriting [106].

POBox [84] combines software keyboards with prediction. When the user types the first

few characters of a word on the software keyboard, the possible entire words are

automatically predicted based on the built-in dictionary, and they appear in whole form

below the software keyboard (Figure 8). If the desired word appears, the user can tap

the word to automatically complete the typing. If the desired word does not appear, the

user can continue typing, refining the prediction. This technique is especially useful for

languages with many characters such as Japanese, and it is widely used as a primary

text input method on PDAs.

Figure 8. POBox [84].

These predictions appear when the user types “i” in Japanese.

2.2.4. Gesture and Shape Recognition

While handwriting recognition allows the user to input texts, gesture recognition allows

the user to input commands, such as undo and delete, using freeform strokes. Gestures
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were used for document editing and mark-up in early research projects on electronic

paper systems [155, 18]. More recently, they have become widely used in commercial

pen-based products such as Apple’s Newton™ [99], Go’s PenPoint™ [45] and Microsoft

Windows for Pen Computing™ [88]. Using gestures, the user can input commands

quickly within the work space without moving the cursor (pen) to buttons or menus at

the periphery. The problem with gestures is that the user has to memorize them first.

Before memorizing all gestures, the user has to frequently consult a gesture chart,

which can be critically time-consuming.

Shape recognition allows the user to put graphical objects at a target location quickly.

For example, the user can sketch a rectangular shape to put a rectangle object on the

screen without having to choose a rectangle in a menu and then having to specify size

and location using direct manipulation. This kind of technique is used in object-oriented

diagram editors [159] and various applications involving the spatial arrangement of

objects [50,73].

Handwriting recognition, gesture recognition and shape recognition are based on

similar technologies. In general, these recognition techniques use pattern-matching

algorithms. The system classifies an input stroke as one of a number of predefined

characters, gestures, or shapes. A common approach is to use generic classification

methods, such as neural networks [82] or statistical methods [121]. In this case, the

system designer trains the classification engine first using massive examples. This

approach is much more powerful, robust, and generic than hard-coding a recognition

routine for each pattern. However, recognition accuracy still depends on the design of

the recognition engine (e.g., which feature of a stroke to extract as input) and of the

training set.

2.2.5. Handheld Devices

In this section, we review recent research projects targeted for pen-based handheld

devices. While early researches and products focused on recognition techniques for

handwriting recognition and gesture recognition, recent projects focus on various

application-specific interaction techniques.

FX Pal has several interesting projects related to handheld pen-based computing. The
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Dynomite project [151] introduced pen-based system for personal note-taking activities.

Dynomite is unique in that it synchronizes handwritten notes on the screen with

recorded sounds (voices). If the user clicks a part of a handwritten note, the system

plays a sound sequence recorded when that part was written. Xlibris [128] is a portable

document-reading device for “active reading,” where the user adds various notations,

such as underlines and comments, on top of the document. The system allows the user

to search and reorganize the document based on these notations. NotePals [28]

introduced networked system for sharing personal handwriting notes. The users take

notes on their PDAs in mobile environments, and upload their personal notes to a

shared server. As a result, any user can read any other user’s notes over the Internet.

Sony CSL introduced a pen-based interaction technique for exchanging information

across multiple devices [117,118]. As one drags and drops an icon within a single

computer, one picks up an icon from a device and drops it into another device. In this

way, one can transfer a file across computers without worrying about file names and

computer names, which was required when transferring files using floppy disks, email

or ftp. Using this pick-and-drop technique, one can hand a file from one’s PDA to a

partner’s PDA, can pick a file for one’s PDA from an electronic bulletin board, or can

select a color in a handheld electronic palette and paint a picture on an electronic

whiteboard as if using a physical palette and canvas.

2.2.6. Electronic Whiteboards

Some commercial electronic whiteboard systems are available, but people generally use

standard graphical user interfaces for various operations other than simple scribbling.

Research projects for electronic whiteboards explore interaction techniques specialized

for large screen spaces and beyond simple click-and-drag operations.

A research group at Xerox PARC has been working on pen-based meeting-support

software running on LiveBoard [36]. Tivoli [112] uses a combination of static interface

widgets and gestures for editing meeting notes. It introduced the “wipe” operation,

which allows the user to change the properties of strokes at once. Tivoli also introduced

an automatic grouping mechanism for the material on the board [89], and a set of

gesture-based techniques for organizing the materials [90]. Recently, it developed a

mechanism for defining semantic relations between the objects on a board [91]. Using
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this mechanism, the user can add desired computational support for a specific meeting.

These systems are deployed at Xerox PARC and used in actual meetings.

Nakagawa’s group at Tokyo University of Agriculture and Technology has developed an

experimental whiteboard system called IdeaBoard [96]. It introduced several interface

widgets optimized for pen-based operations on large surfaces. For example, they allow

the user to scroll the screen by dragging the scrolling area around the work space, and

to slide the screen by dragging the surface. Nakagawa’s group also implemented several

applications for use with the system, such as a word processor and an animation design

program.

Geissler et al. developed a wall-sized interactive display and introduced several

interaction techniques suitable for the extremely large display [43]. For example, they

designed a simple gesture set to throw a window to a distant location without dragging

it all the way manually.

Kramer discussed a mechanism for organizing information on electronic whiteboards

flexibly [69]. Instead of organizing visual elements by static windows, they used

dynamic, freeform patches for grouping relevant information on the board. These

patches are translucent, and the user can overlap multiple patches to construct a

desired workspace temporarily. This mechanism is appropriate for stroke-based

applications for meetings because the structure of information in these environments is

dynamic and changes constantly during the discussion.

2.2.7. Sketch-based Systems for Exploratory Thinking

Many research projects use pen-based input because it is a natural choice for special

computing environments, such as mobile computing on PDAs or meeting-support using

electronic whiteboards. In contrast, several projects use pen-based input because of its

ability to facilitate exploratory thinking.

SILK [73] is one of these experimental systems specifically designed for exploratory

activity. It is a system for a designer to design graphical user interfaces. The designer

quickly sketches the GUI widgets using freeform strokes on a tablet, and the

handwritten widgets become active immediately allowing the user to interact instantly
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with the sketched interface. For example, the “knob” in a sketched scroll bar can be

dragged up and down. The recognized widgets preserve their sketchy appearance

instead of being replaced by predefined graphics. The use of gesture-based input can

free the designer from tedious operations required in standard interface builders, and

the informal presentation prevents the designer from worrying about details too much.

The Electronic Cocktail Napkin [49,50] also uses pen-based drawing as input for

conceptual and creative design activities. It works as a front-end interface for

information retrieval, simulation, design critiquing, and collaborative work. It

recognizes simple primitives, such as boxes, lines, circles, and triangles, and also

recognizes the configuration of these primitives. This system’s designers emphasized

the importance of contextual recognition, where the meaning of a primitive relies on the

context surrounding it. For example, a blob can be recognized as a circle or a box

depending on the drawings around the blob.

The Music notepad [138] is a system for editing musical score using pen-based gestural

input. The user can input notes and rests, and edit them using simple gestures without

using a standard WIMP-style interface. Its designers argue that a sketch-based

interface is much closer to sketching music with a real pen and paper, and is thus

desirable for informal scoring of music than a WIMP-based UI.

Lakin’s vmacs [72] is an electronic design notebook for engineers. The designer draws

arbitrary sketches on a blank canvas, and the system later tries to find its hierarchical

structure in the drawing by applying various visual parsers. The idea of visual parsing

was derived from grammatical parsers for natural languages.

2.2.8. Drawing Applications

An important advantage of pen-based input, other than allowing handwritten text and

gestures, is that it is the most intuitive method for drawing pictures on computers.

People find it difficult to draw arbitrary shapes using a mouse, but pen-based

interaction is significantly closer to shape-drawing using pen-and-paper and thus

people find it intuitive and desirable. The user can benefit from pen-based drawing

significantly even in simple drawing programs designed for mouse-based interaction

(e.g., Microsoft’s Paint program in Windows), but researchers have been exploring
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various systems and interaction techniques to make the most of pen-based drawing.

Some commercial products such as Apple’s Newton™ [99], GO’s Penpoint™ [45], and

freeform stroke drawing mode in typical drawing editors (SmartSketch™ [131], Corel

Draw™, etc.) provide various computational supports for pen-based freeform drawings.

They convert freeform strokes into vector segments, automatically connect nearby

points, and recognize basic primitives, such as ovals and rectangles.

The PerSketch system [127] facilitates the editing of informal drawing by recognizing

perceptual structures in freeform drawings. In standard object-oriented drawing

systems, each primitive, such as an oval or rectangle, has a permanent identity. Even

when an oval overlaps a rectangle, they are still recognized as two separate objects

unless the user groups them together. However, in informal line drawings, the user

naturally can perceive multiple possible grouping structures in overlapping strokes

(Figure 9). To allow the user to interact with these perceptual groups efficiently, the

system decomposes the strokes into small elements and returns the appropriate group

of strokes upon the user’s request.

The user draws a diagram
consisting of an oval and a rectangle.

The user perceives multiple possible
grouping structures in the diagram.

Figure 9. PerSketch [127].

In common drawing programs, the user has to edit curves positioning control points

manually using a mouse, but it is difficult to design desired curve shapes using control

points. Baudel’s technique [6] allows the user to directly draw desired curve shape on

the screen using a pen-based device; the system calculates appropriate control points

and parameters. In addition to drawing a new line, the system also supports over

stroking for modifying an existing curve. Cohen et al. extended the technique for editing

3D curves [22]. The user can specify the 3D curves by drawing the curve as it appears
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from the current viewpoint and its shadow on the floor plane.

The SKETCH system introduced the gesture-based 3D scene construction technique

[161]. A simple gesture creates a 3D primitive object and places it in a 3D scene (Figure

10). The system calculates the object’s position based on the assumption that every

object in the scene should be on some other object. For example, when the user draws

three lines requesting a box in the 3D scene, the system put the box on top of the

existing box. In addition, the plate on the floor is automatically lifted in 3D space when

the user draws a leg under the plate, without changing the 2D appearance in the 2D

window. As a result of these implicit placing rules, the user can construct 3D scenes

without using 2D widgets and can concentrate on doing the task (constructing a 3D

scene) instead of spending time interacting with nested menus and commands.

 

Figure 10. The SKETCH system [161].

The user can construct 3D scenes such as shown at left using simple

gestures shown at right.

2.2.9. Summary

The strengths of pen computing can be summarized as follows.

1. The user can use handwriting characters for text input.

2. The user can use gestures for quick access to command operations.

3. The user can use a pen when a keyboard is not available (e.g. PDAs)
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4. Sketching is a casual interaction and is thus useful in supporting creative activities.

5. Drawing strokes using a pen is the best way to draw pictures.

Traditionally, the research has focused on the first three properties, aiming at the

development of pen-based techniques for doing things conventionally done by a mouse.

Handwriting recognition is an attempt to replace keyboard typing. Gesture recognition

was designed to replace menu selection and button clicking. Interaction techniques

developed for PDAs tried to achieve operations done on desktop computers.

In contrast, researchers have started working on the last two properties recently. These

are attempts to do something not possible or extremely tedious when using a mouse as

the input device. The goal of this dissertation is to push this effort further and present a

framework for making the most of these strengths. We discuss the relationship between

our Freeform UI framework and similar previous research efforts in Chapter 8.

To be specific here, however, it can be said that existing attempts have not achieved

fluent communication of graphical ideas as seen among human beings. A person can

communicate a significant amount of implicit messages to another person through a

simple drawing. For example, when one sees a drawing shown in Figure 11(left), one

can perceive many implicit messages, such as “this represents a bear,” “this is almost

horizontally symmetric,” “this consists of three parts, ” “this represents a certain 3D

geometry,” “this is cute.” Human-computer interaction can be much more fluent and

comfortable if computers can have this kind of ability. This dissertation introduces our

efforts to implement this ability in computers.

Symmetry 3 groups

3D geometry

Bear

Figure 11. A simple drawing communicates many ideas.
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Chapter 3

Freeform User Interfaces

In this chapter, we propose the concept of Freeform User Interfaces as pen-based

interface design frameworks for informal graphical computing beyond traditional GUI.

The concept defined in this chapter is examined further in the following four chapters

with various application-specific systems. Chapter 8 revisits the concept to analyze its

nature based on the four example systems.

3.1. Problems and Research Goals

This dissertation proposes the concept of Freeform UI with four example systems. In

this section, we explain the problems we try to address and goals to be fulfilled by the

body of work presented in this dissertation.

In the broadest context, the goal of this work is to explore the new form of user

interfaces beyond traditional command-based interfaces. As computers become more

powerful and ubiquitous, the applications running on them become more complicated

and diverse. Traditional command-based interfaces are not appropriate for these new

computing environments, and researchers are exploring alternative interface

frameworks that can achieve fluent human-computer interaction. However, one

important property of next-generation user interfaces is diversity. Although the

currently predominant WIMP-style GUI is used for almost all application domains,

next-generation user interfaces will be a collection of various interfaces specialized for

each application domain [100]. Our goal is to explore next-generation, non-command

user interfaces in the domain of pen-based graphical computing, and to provide insights

for designing better interfaces for emerging computing environments.



29

The problem we try to address is that it is still difficult to communicate arbitrary

graphical ideas to computers using WIMP-style GUI. Direct manipulation allows the

user to grab objects on the screen directly and move them to the desired places. This

strategy works well for object-oriented diagrams, such as flow-charts and node-link

diagrams. However, direct manipulation is not good for expressing arbitrary freeform

shapes rapidly because it requires explicit manipulation of multiple points to control

curves. Furthermore, traditional GUI-based diagram editors require the user to

combine various editing commands to impose additional structures to the drawings. For

example, to draw a symmetric diagram, the user has to duplicate a half of the diagram,

flip it, and move it. Selecting appropriate commands from a large menu causes both

operational and psychological overhead. Our research goal is to propose alternative

interaction techniques for expressing graphical ideas rapidly without tedious

manipulation of control points or complicated editing commands.

Another problem in current computing environments is that they do not support

exploratory, creative processes that occur in the early stages of intellectual activities

[72,95]. Computers are generally used in production activities, such as editing

documents, preparing presentations, and drawing diagrams for publication, because

computers make it possible to prepare professionally-looking cleaner documents than is

possible by pen and paper. However, these application programs are too complicated to

use in earlier processes, such as conceiving an idea, outlining long documents, or

sketching rough conceptual designs. People use traditional pen and paper in these kinds

of exploratory processes because of their simplicity, and move on to a computing

environment later, when basic ideas have gelled into some clear form. Our goal is to

remove this barrier and to design interfaces that can support exploratory, creative

activities.

Finally, another goal of this work is to bring out the real strength of pen-based input.

Pen-based devices are becoming popular and available to everyone, but interaction

techniques for pen-based computing have not been explored enough. Popular pen-based

computing environments support handwriting recognition and gesture-based control.

Other than that, pen-based systems still use standard GUI widgets, such as buttons,

scroll bars, and pull-down menus. Some pen-based systems use shape recognition but

the user’s strokes are limited to a predefined shape set. An important strength of a

pen-based interface is that it is easy to draw arbitrary freeform strokes representing
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various graphical ideas. Computers can use these freeform strokes as an interface

beyond simple scribbling programs, recording freeform strokes as-is, like with a

physical pen and paper.

3.2. Freeform User Interfaces

Freeform UI is an interface design framework using pen-based input for computer-

supported activities in graphical domains. In Freeform UI, the user expresses visual

ideas or messages as freeform strokes on pen-based systems, and the computer takes

appropriate action by analyzing the perceptual features of the strokes. This is based on

the observation that freeform sketching is the most intuitive, easiest way to express

visual ideas. The fluent, lightweight nature of freeform sketching makes Freeform UI

suitable for exploratory, creative design activities. Freeform UI embodies a non-

command user interface for two- and three-dimensional graphical applications in that

the user can transfer visual ideas into target computers without converting the ideas

into a sequence of tedious command operations.

Specifically, Freeform UI is characterized by the following three basic properties: the

use of pen-based stroking as input, perceptual processing of strokes, and informal

presentation of the result. We describe each property in detail in the following sections.

3.2.1. Stroke-based Input

Freeform UI is characterized by its use of strokes as user input. A stroke is a single path

specified by the movement of a pen and is represented as a sequence of points internally.

Stroking is usually recognized as a dragging operation in a standard programming

environment: it is initiated by “button press” event, followed by a sequence of “mouse

move” event, and terminated by “button release” event. However, stroking is actually a

significantly different interface model than dragging. In short, stroking corresponds to

physical drawing activity using real pen and paper, while dragging corresponds to a

physical grab-and-move operation of objects. During a stroking operation, the trajectory

of the pen’s movement is shown on the screen, and the system responds to the event

when the user stops stroking by lifting the pen. The system’s reaction is based on the

entire trajectory of the pen’s movement during the stroking, not just the pen’s position
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at the end (Figure 12). In contrast, in a typical dragging operation, the current cursor

position is shown on the screen. Possibly, the object shape specified by the current

cursor position is shown as a feedback object, but the trajectory of the cursor movement

is not shown. The system’s action is based on the final cursor position and possibly the

starting position of dragging. In stroking, the user first imagines the desired stroke

shape and then draws the shape on the screen at once, while the user constantly adjusts

the cursor position observing the feedback objects during dragging.

Start Intermediate End

Stroking

Dragging

Figure 12. Stroking vs. dragging.

Pen-based stroking is an intuitive, fast, and efficient way to express arbitrary graphical

ideas in computing environments. This is because a pen-based stroking operation, or

sketching, has been for centuries the primary interaction technique for expressing

graphical ideas, and is therefore familiar to us. Specifically, stroking is suitable for

quickly entering rough images that internally consist of many parameters from the

computer’s point of view. On the other hand, mouse-based dragging is suitable for

more-delicate control of simple parameters. Dragging has been the dominant

interaction technique because traditional computer-based drawing applications are

designed for the careful construction of precise diagrams. The argument of this

dissertation is that graphical computing in the future should support informal drawing

activities and thus require a pen-based stroking interface.

We use the term “pen-based input” to refer to pen devices based on various technologies
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[86], including light pens, pressure-sensitive tablets, electromagnetic digitizers, etc. It is

possible to use a tablet with a separate display, but a display-integrated device is the

best device for drawing strokes. Several input devices other than pens can be used for

Freeform UI. Users can draw freeform strokes using a finger on a pressure-sensitive

display surface or in a vision-based finger-tracking environment [149]. Small physical

handles may be used for drawing strokes on tablets. The important feature is one-to-one

correspondence between physical location in the input device and cursor location in

virtual space. Other pointing devices, such as a mouse, trackball, force-sensitive stick

[123] and pressure-sensitive touchpad, are not appropriate for drawing strokes because

they control virtual position by indirectly specifying the relative location or velocity of

the cursor movement. The input devices that are suitable for Freeform UI may be called

“drawing devices” in contrast to the more general “pointing devices.”

3.2.2. Perceptual Processing

The next important property that characterizes Freeform UI as a non-command user

interface, and that makes Freeform UI different from plain pen-based scribbling

systems, is its advanced processing of freeform strokes inspired by human perception.

Scribbling programs such as those used in commercial electronic whiteboards simply

convert the user’s pen movement into a painted stroke on the screen without any

further processing. Character-recognition and gesture-recognition systems convert a

stroke into a predefined character or command, using pattern-matching algorithms. In

these recognition systems, the output of the recognition is represented as a single

symbol. The stroking operation in these systems is essentially equivalent to key-typing

and button-pressing. “Perceptual processing” refers to mechanisms that infer

information from simple strokes that is richer than mere symbols. The idea behind

perceptual processing is inspired by the observation that human beings perceive rich

information in simple drawings, such as possible geometric relations among line

primitives, three-dimensional shapes from two-dimensional silhouettes. Perceptual

processing is an attempt to simulate human perception at least in limited domains.

The goal of perceptual processing is to allow the user to perform complicated tasks with

a minimum amount of explicit control. In traditional command-based interfaces, the

user must decompose a task into a sequence of machine-understandable, fine-grained

command operations, then input the commands one by one. As we discussed in Chapter
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2, non-command user interfaces try to avoid this process and allow the user to directly

interact with tasks without worrying about low-level commands. Freeform UI frees

users from detailed command operations by this perceptual processing of freeform

strokes. For example, Pegasus frees the user from tedious geometric operations such as

rotation and duplication by automatically inferring desired geometric constraints, and

Teddy eliminates the manual positioning of many vertices in 3D space by automatically

constructing 3D geometry from the input stroke. This simplicity also significantly

reduces the effort spent on learning commands. In traditional command-based systems,

the user has to learn many fine-grained editing commands to do something simple. In

Freeform UI, on the other hand, the user can do a variety of things simply after learning

a single operation.

It is important to consider the context surrounding a stroke in addition to the stroke

itself. A single stroke itself contains severely limited information, but human beings

perceive rich information from the spatial relationships among the target stroke and

other strokes in the scene. In Pegasus, the system infers possible geometric constraints

from the spatial relationship among the input stroke and existing line segments. The

path-drawing navigation system calculates the path in a 3D scene by projecting the

input stroke onto the walking surface. In Teddy, the resulting shape is defined by the

current object shape, camera angle, and input stroke.

To make perceptual processing work effectively, it is crucial to restrict an interface to a

specific target domain. Since freeform strokes have limited information and are highly

ambiguous, it is essentially impossible to infer the user’s intention correctly without

assuming a specific task domain. This limits the user’s freedom and reduces the

flexibility of the system in a sense: the user cannot draw freeform drawings in Pegasus

and cannot construct rectiliniear objects in Teddy. However, Freeform UI provides

greater freedom to explore a wider design space within each task domain than is

possible with command-based operations. The serious problem with typical command-

based interfaces is that massive freedom and flexibility overwhelm the users. As a

result, the interaction tends to be a combination of relatively obvious operations and the

user’s activity is constrained by the command set provided by the system. In contrast,

Freeform UI frees the users from having to learn numerous command operations and

lets them explore a large design space within each domain.

In addition to restricting the interface to a specific domain, it is also inevitable to
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impose certain implicit rules to make the perceptual processing work. The system

recognizes the user’s freeform stroke based on specific predefined rules, but it may go

against the user’s intuition. For example, in Teddy, the extrusion operation consists of

two strokes, but the user may want to extrude the surface using one or three strokes.

The idea of perceptual processing is to design the interface to make the system’s

behavior conform to the intuitive expectations of most users, but it can be

counterintuitive to a specific user. Ultimately, each individual user needs his or her own

perceptual processing scheme to attain a desired result perfectly. Automatic adaptation

or explicit manual customization might be able to mitigate the problem to a certain

extent, but interface designers should be aware of this limitation when implementing

perceptual processing systems. This limitation also implies that the user must learn the

system’s behavior to a certain extent. The learning in Freeform UI is different from

learning in traditional command-based systems in that the system’s behavior varies

depending on each context, and the behavior is difficult to explain in the form of a static

document. It is important to provide appropriate feedback to the user to facilitate

learning by experience.

“Perceptual processing” does not mean a specific algorithm or technology. It is a kind of

design principle for making efficient, intuitive interfaces. A command-based operation

in traditional computer programs corresponds to a single-step operation against an

internal data structure. For example, in 3D modeling systems, a 3D model consists of

vertices, edges and faces; command operations were designed to manipulate these

elements directly. In contrast, perceptual processing encourages the system designers to

reorganize operation primitives so that each operation corresponds to the user’s single

procedure which may consist of multiple internal operations from the system’s point of

view. For example, the extrusion operation of Teddy is a simple procedure from the

user’s point of view, but it actually causes multiple operations, such as vertex deletion,

creation, or replacement, against the internal data structure.

3.2.3. Informal Presentation

The last property of Freeform UI is informal presentation of contents. The system

displays the materials to manipulate or the result of computation in an informal

manner, using sketchy representation without standard, cleaned-up graphics. This

informal presentation is important not only for an aesthetically pleasing appearance,
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but also to arouse appropriate expectations in the user’s mind about the system’s

functionality. If the system gives feedback in precise, detailed graphics, the user

naturally expects that the result of computation will be precise and detailed. In contrast,

if the system’s feedback is in informal presentation, the user can concentrate on the

general structure of the information without worrying about the details too much. The

importance of informal presentation in exploratory design activities has been discussed

in many papers [12,46,124,156].

Several experimental systems implemented sketchy presentation techniques.

Strothotte et al. introduced a non-photorealistic renderer for an architectural CAD

system [134]. The system used cubic lines for representing straight line segments to

make them appear hand-drawn. The SKETCH system [161] also used non-

photorealistic rendering to give a sketchy appearance to a 3D scene being constructed.

The system intentionally displaced the vertex position when rendering projected 2D line

segments. While these early systems addressed the rendering of silhouette lines and

edges only, more elaborate systems draw shadows and shades using pen-and-ink style

[154]. Teddy uses a real-time pen-and-ink rendering technique developed by Markosian

et al. [80]. It efficiently detects the silhouette lines of a 3D model, and renders the

silhouettes in various styles.

While these systems are designed for 3D graphics, some systems introduced sketchy

rendering for 2D applications. The EtchaPad system [87] used synthesized wiggly lines

for displaying GUI widgets in order to give them an informal look. It used Perlin’s noise

function [105] to create wiggly lines that look hand-written. Other systems employ the

user’s freeform strokes as-is to represent recognized primitives without cleaning up the

drawings. SILK [73] allows the user to interact with the GUI widgets sketched on the

screen. The Electronic Cocktail Napkin system [50] also retains and displays the as-

inked representation of hand-drawn graphical primitives. Pegasus used intentionally

thick line segments to show beautified drawings to give them an informal look.

3.3. Target Domain

The traditional graphical user interface has been predominantly used for almost all

applications running on desktop computational environments. However, as the forms of

computing devices and the purposes of computing get diverse, each application area
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requires a specific interface paradigm beyond WIMP-style GUI. 3D applications require

3D interfaces, and real world computing applications require special interfaces such as

augmented reality. This section discusses what kinds of applications require Freeform

UI.

First, Freeform UI is an interface for 2D and 3D graphical applications. While some

pen-based interface systems use handwriting characters and gestural commands for

textual applications [18], Freeform UI emphasizes drawing aspects of pen-based

computing. Freeform strokes are associated with specific graphical representations

through perceptual processing, and the resulting graphics are presented in an informal

manner.

Second, Freeform UI is for exploratory, informal activities such as note-taking,

brainstorming, the early stages of design, and real-time communication. This is in

contrast to the fact that traditional graphical user interfaces are suitable for more

production-oriented activities such as desktop publishing and editing presentation

slides. Freeform UI supports exploratory activities by its simple input stream (freeform

strokes) and its informal presentation. However, Freeform UI is not appropriate for

production-orientated applications because the combination of freeform strokes and

perceptual processing has inherent ambiguity.

More specifically, Freeform UI might be useful in the following applications and

situations: sketching on pen-based portable devices in mobile environments, graphical

note-taking on notebook computers in meeting environments, drawing diagrams during

presentations using electronic whiteboards, communicating and collaborating over pen-

based systems, supporting for the early stages of 2D and 3D design activity and novices’

exploring of graphical systems.

Examples of applications not suitable for Freeform UI are object-oriented diagram

editors, such as node-link diagrams, state transition diagrams, structured flow-charts

and binary trees. These diagrams essentially represent symbolic, abstract data

structures rather than some geometric information. In other words, the semantics

behind the diagram are important and not the specific appearance itself. Gesture-based

interfaces may be useful to edit these diagrams quickly, but they are not Freeform UI.

Professional CAD systems are another example application that is not suitable for

Freeform UI. Although Freeform UI is useful in the conceptual design phase, it is too
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ambiguous and informal to use in the final production stage. In this stage, detailed

precision operation is required and command-based operations are appropriate for it.

Another important question is whether Freeform UI is for novice users or experts. The

answer is that novices and experts both benefit from Freeform UI, but in different ways.

Freeform UI allows novice users to interact with the application without intensive

training. Freeform UI does require first-time users to learn a minimal number of

interaction rules, but the interaction style resembles real pen-and-paper sketching, and

it is much easier than learning many command-based operations. The novice users may

not be able to construct elaborate things at first, but they can do something interesting

soon, which is essential to ensuring that the first-time user can overcome the initial

psychological barrier.

On the other hand, expert users can benefit from Freeform UI because it allows them to

quickly construct rough sketches of the intended final product. Although experts can

control command-based applications fluently, command-based interfaces are too fine-

grained and require multiple complicated steps to get the final result. This is inevitable

in creating a detailed, precise final product, but it is completely undesirable in the early

stages of design. Experts can use Freeform UI initially for quick prototyping, and then

shift to a command-based interface for detailed production.

3.4. Approach

This chapter proposed the concept of Freeform UI. Freeform UI is an attempt to design

next-generation, non-command user interfaces for graphical applications beyond

traditional GUI. We defined Freeform UI according to three basic properties: the use of

pen-based stroking as input, perceptual processing of strokes, and informal

presentation of the result. We then explained exploratory activities in graphical

computing domains as the designated application area for Freeform UI.

The concept itself is essentially a collection of design guidelines for building better

interfaces for pen-based graphical applications, rather than a single, solid idea

representing a specific technology or algorithm. Our approach is to implement

independent example systems for specific application domains based on the concept of

Freeform UI, and analyze the strengths and limitations of the concept based on
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experiences with these example systems. In this dissertation, we introduce four

example systems based on Freeform UI. Their application domains include geometric

drawing, 3D virtual space navigation, electronic whiteboard, and 3D modeling. Each

system is useful in each application domain, but more importantly, they embody the

idea of Freeform UI as a whole and suggest the future of user interfaces. The following

chapters introduce the four example systems in detail, and Chapter 8 discusses the

strengths and limitations of Freeform UI based on these examples.
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Chapter 4

Beautification and Prediction for

2D Geometric Drawing

This chapter introduces two novel interaction techniques for rapid geometric design,

interactive beautification and predictive drawing, and a prototype system called

Pegasus. The motivation is to solve the problem with current drawing systems: too

many commands, and unintuitive procedures to satisfy geometrical constraints.

Interactive beautification receives the user's freeform stroke and beautifies it

considering geometrical constraints among segments. A single stroke is beautified at a

time, preventing accumulation of recognition errors or catastrophic deformation. The

system supports geometric constraints such as perpendicularity, congruence, and

symmetry, which were not seen in existing freeform stroke recognition systems. In

addition, the system generates multiple candidates as a result of beautification to solve

the problem of ambiguity. A user study showed that the users can draw the required

diagrams faster and more precisely using the interactive beautification than direct

manipulation techniques. Predictive drawing predicts the user's next drawing operation

based on the spatial relationship among existing segments on the screen. The user can

duplicate, flip, and repeat existing drawings just by clicking intended segments

displayed by the prediction mechanism. Using these techniques, the user can draw

precise diagrams with geometrical relations rapidly without using any editing

commands explicitly.

4.1. Introduction

Commercial Object-Oriented (OO) drawing editors, such as MacDraw and CAD systems,

have various editing commands and special interaction modes. A user can construct a
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diagram with geometric constraints by combining these commands appropriately. For

example, symmetry can be achieved by the combination of duplication, flipping, and

location adjustment, while perpendicularity can be achieved by duplication and 90

degree rotation. In addition, CAD systems often have special interaction modes such as

a mode for drawing perpendicular lines. However, invoking these commands or

switching to the special editing modes requires additional overhead, and selection of

appropriate commands or interaction modes is difficult, especially for novice users [59].

Figure 13. A diagram drawn on the prototype system Pegasus.

This diagram was drawn without any editing commands such as rotation,

copy, or gridding.

To solve these problems, we propose new interaction techniques for drawing, interactive

beautification [60] and predictive drawing [61]. Interactive beautification is a technique

for rapid construction of geometric diagrams (an example is shown in Figure 13)

without using any editing commands or special interaction modes. Interactive

beautification can be seen as an extension of freeform stroke vectorization [21] and

diagram beautification [104]. It receives a user's freeform stroke and beautifies the

stroke considering various geometric constraints among segments. The intuitiveness of

the technique allows novice users to draw precise diagrams rapidly without any

training.
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Interactive beautification is characterized by the following three features; 1) stroke by

stroke beautification, 2) automatic inference and satisfaction of higher level geometric

constraints, and 3) generation and selection of multiple candidates as a result of

beautification. These three features work together to achieve rapid and intuitive

drawing, avoiding the problem of ambiguity.

Predictive drawing further enhances interactive beautification by actively predicting

the user’s next drawings based on the spatial relationship among existing segments on

the canvas. When a new segment is added to the screen, the system searches the canvas

for reference segments whose shapes are identical to the new segment. Then, the

system copies the drawings around the reference segments to the vicinity of the newly

drawn segment. This simple prediction mechanism can efficiently support various

drawing patterns such as duplication, flipping, and iteration. The result of prediction is

displayed on the screen in form of multiple candidates, and the user can select desired

one by clicking on it. The user can draw precise diagrams just by continuously clicking

segments shown on the screen as long as the prediction finds appropriate candidates.

Interactive beautification and predictive drawing are currently implemented on a

prototype system named Pegasus (an acronym for “Perceptually Enhanced Geometric

Assistance Satisfies US!”), and user evaluations using it shows promising results. This

chapter introduces interactive beautification and predictive drawing, and describes the

implementation of the prototype system in detail.

The remainder of chapter is organized as follows: the next section describes related

work in diagram drawing on computers. Then, we describe interactive beautification

using several examples, and it’s algorithm detail. A user study performed to confirm the

effectiveness of the technique is described. Next, we describe the user interface and the

algorithm of predictive drawing in detail. We introduce the prototype system Pegasus

and example drawings. Finally, we consider the limitation of our current

implementation and conclude the chapter.

4.2. Related Work

At a glance, the system may seem similar to existing sketch-based interfaces including
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commercial products such as Apple Newton, GO Penpoint, and freeform stroke drawing

mode in typical drawing editors (SmartSketch, Corel Draw, etc.). These systems convert

freeform strokes into vector segments and satisfy primitive geometric constraints such

as connection. The difference is that interactive beautification considers complex, global

constraints such as parallelism, symmetry, or congruence, which enhances the range of

geometric models. In addition, the generation and selection of multiple candidates

is unseen in the existing systems.

Gesture based systems [3,159,122,73] also employ freeform stroke input, but they

convert input strokes into independent primitives, while interactive beautification

converts them into  simple line segments  satisfying  geometric relations. Gross et al.

pointed out the importance of context in solving the problem of ambiguity [49,50], which

has influenced our idea.

Beautification systems [104,15,71] are basically batch-based, which can lead to

unwanted results because of ambiguity in the user's input. Interactive beautification

prevents such results by interactively presenting multiple candidates and requesting

the user's confirmation.

While interactive beautification systems control the placement of two vertices (start and

end) simultaneously, many existing drawing systems assist the placement of a vertex by

controlling the movement of the mouse cursor. Snap Dragging systems [9,10,44] extends

gravity-active grids by letting users specify various geometric relations, and some

systems such as Rockit[67] and Aldus Intellidraw automatically infer possible gridding

constraints.

Compared to these techniques, the advantages of interactive beautification are as

follows: 1) Freeform stroke drawing is more intuitive and less cumbersome than careful

manipulation of the cursor, especially for a pen-based interface [6]; and 2) The system

can gather more information from a freeform stroke trace than cursor placement. For

example, equality of interval between parallel lines cannot be detected from the

placement of a single vertex.

Rockit is similar to our system in that both automatically infer possible constraints and

provide easy access to alternative possibilities. However, Rockit is suitable for

specification of perpetual spatial relationships among movable objects, while we focus
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on construction of static line-based illustrations.

Saund et al.'s work [127] shares our motivation, to support natural human perception of

underlying spatial structures, but does not support the  construction of precise

diagrams.

Constraint based systems [16,17,53,66,98,136] facilitate the construction of complex

diagrams with many constraints, but require considerable amount of effort to specify

the constraints. Interactive beautification aims at an opposite goal: to reduce the effort

by focusing on relatively simple diagrams.

Prediction mechanisms have been explored in several research efforts [26,83], but their

predictions are mainly based on the regularity found in the operation sequence

(repeated operation, etc.). Our prediction mechanism is different in that we make use of

regularities found in static spatial configurations in a given drawing.

Graphical search and replace [71] and visual rule based system [52] search for diagrams

that match the reference pattern specified by the user, and replace them with the

specific goal pattern. Our predictive drawing works in a similar way, but is unique in

that it performs the search implicitly to assist simple drawing activity.

4.3. Interactive Beautification

4.3.1. User Interface

Basically, interactive beautification is a freeform stroke vectorization system; it receives

a freeform stroke and converts it into a vector segment, inferring and satisfying

geometric constraints.

First, the user draws an approximate shape of his desired segment with a freeform

stroke using a pen or a mouse (Figure 14a). Then, the system infers geometric

constraints the input stroke should satisfy by checking the geometric relationship

among the input stroke and existing segments (Figure 14b). Finally, the system

calculates the placement of the beautified segment by solving the simultaneous

equations of inferred constraints, and displays the result to the user (Figure 14c). In
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addition, the system generates multiple candidates to deal with the ambiguity of the

freeform stroke (Figure 14d).

Freeform stroke input

a)

Inferred constraints

b)

Beautified segment

c)

d)

Perpendicularity
Connection
Horizontal alignment

Multiple candidates

Figure 14. Basic operation of interactive beautification.

The characteristics of interactive beautification are 1) stroke by stroke beautification,

satisfying higher level constraints such as congruence, perpendicularity, or symmetry,

and 2) generation and selection of multiple candidates. We describe the details of the

interaction in the following subsections.

4.3.1.1. Stroke by Stroke Beautification Satisfying Geometric Constraints

This subsection describes how diagrams are constructed using stroke by stroke freeform

stroke beautification, satisfying various geometric constraints. To make it simple, we

assume that the system generates only one candidate as a result of beautification in this

subsection. The next subsection describes the generation of multiple candidates in

detail.
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a)
Connection
(to a vertex)

Input Stroke Beautified Segment

b)
Connection
(to a segment)

c)
Parellelism

d)
Perpendicularity

e)
Alignment

f)
Congruence

g)
Symmetry

h)
Interval
Equality

Figure 15. Supported geometric relations.

Figure 15 shows some examples of supported constraints, input strokes, and beautified

segments & feedback. Figure 15a,b describe the connection constraint. If the user draws

a freeform stroke whose start or end point is located near a vertex of an existing

segment, the system automatically detects the adjacency and connects the point to the

vertex or the body of a segment.

Figure 15c,d illustrate parallelism and perpendicularity constraints. The system

compares the slope of the input stroke and those of existing segments, and if it finds an

existing segment with approximately the same slope, it makes the slope of the

beautified segment identical to the detected slope. Similarly, if the system finds an
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existing segment approximately perpendicular to the input stroke, it converts the stroke

into a precisely perpendicular segment.

Figure 15e shows vertical and horizontal alignment constraints. When a freeform stroke

is drawn, the system individually checks the x and y coordinates of the vertices of the

input stroke, and makes the coordinates precisely identical to the existing ones if they

are near.

Figure 15f,g illustrate congruence and symmetry constraints. When a new input stroke

is drawn, the system searches for a segment almost congruent to the stroke among the

existing segments. If such a segment is found, the system makes the input stroke

exactly congruent to the segment (Figure 15f). Similarly, the system searches for a

segment that is similar to the vertically or horizontally flipped input stroke. If such a

segment is found, the system makes the input stroke exactly congruent to the flipped

one (Figure 15g).

Figure 15h describes interval equality. This relation is detected by comparing the

interval between the input stroke and an existing line segment parallel to the stroke,

and intervals between existing parallel segments. This mechanism can be used to draw

a pipe with a constant width or to draw cross stripes or grids (Figure 16). Construction

of these diagrams is particularly difficult with menu-based systems, where the user

must copy, rotate, and move the segments.

a) b)

Figure 16. Example use of interval equality among segments.

In actual drawing, the geometric constraints described above are combined and work

together to produce a precise diagram. In Figure 17a, relations such as connection,

perpendicularity, and y-coordinate alignment are simultaneously satisfied. In Figure

17b, interval equality, y-coordinate alignment and flipped congruence (symmetry) work

together to generate the arch (the unnecessary line fragments can be removed easily by

an `erasing' gesture, which is explained later).
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a)

b)

Figure 17. Construction of a diagram with many constraints

Drawing Process Inferred Constraints

Connection
Symemtry

Connection
Alignment

Connection
Congruence

Connection
Alignment

Connection
Congruence
Alignment

Figure 18. Construction of a symmetric diagram.

Figure 18 illustrates how a symmetric diagram is constructed using interactive

beautification. For each input stroke, the system infers appropriate constraints and
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returns a beautified segment. Notice that, except for the slope sides which constitute

the arrowhead, the symmetry for the rest of the arrow shape is achieved solely by locally

defined relationships (alignment, congruence and connection constraints) without

resorting to some special constraints to achieve global symmetry.

4.3.1.2. Generation and Selection of Multiple Candidates

The inherent difficulty with any freeform stroke recognition system is that a freeform

stroke is ambiguous in nature. The user draws an input stroke with an intended image

in mind, and the system must infer the intended image based on the shape of the

freeform stroke. However, it is not an easy problem to reconstruct the intended image

from the ambiguous input stroke. For example, when the system observes an input

stroke shown in Figure 19a, it is difficult to guess which segment in Figure 19b is the

one the user intended. Existing systems do not consider these multiple possibilities, and

just return a single segment as a result. If the user is not satisfied with the result, he

must draw the stroke again, but the revised stroke may also fail.

To solve the problem, interactive beautification infers all possible candidates and allows

the user to select one among them (Figure 19c). If the user is not satisfied with the

primary candidate, he can select other candidates by tapping on them directly (Figure

19e). During the selection, the system visually indicates what kinds of constraints are

satisfied by the currently selected candidate. Visualized constraints ensure that the

desired constraints are precisely satisfied. In addition, they assist the selection of a

candidate in a cluttered region, where it is difficult to find the desired one. The selection

completes when the user taps outside the candidates or draws the next stroke  (Figure

19d,f).



49

a)

c) d)

e) f)

b)

Multiple candidates are
generated.

Select a candidate by
tapping.

Confirm

Confirm
(tapping outside)

Multiple possibilities

Existing segment

Primay or currently selected candidate

Multiple candidate

Geometric constraints satisfied by the current candidate

Figure 19. Interaction with multiple candidates.

The user can select a candidate by tapping on it, and satisfied constraints

are visually indicated.

Generation of multiple candidates, together with visualization of the satisfied

constraints, greatly reduces the failure in recognition, and makes it possible to

construct complex diagrams such as Figure 13} using freeform stroke only. Additional

overhead caused by candidate selection is minimized because the user can directly go to

the next stroke without any additional operation when the primary candidate is

satisfactory.
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4.3.1.3. Auxiliary Interfaces

In addition to freeform stroke drawing and selection by tapping, the current system

supports a floating menu and an erasing gesture. The floating menu is a button on the

screen, and the user can place the button anywhere by dragging it. Menu commands

appear when the user taps on the button, similar to a pie menu [55]. Currently, “clear

screen” and “undo” commands are implemented in the menu.

Figure 20. Trimming operation.

The erasing gesture is made by scribbling. If the system detects the gesture, it deletes

the nearest line segment to the start point of the scribbling gesture. As the system

partitions the line segments at every cross point and contact point beforehand, the user

can easily trim the unnecessary fragments (Figure 20). Trimming is a frequently used

operation on any drawing system, and this easily accessible trimming operation greatly

contributes to the efficient construction of complex geometric diagrams.

4.3.2. Algorithm

This section describes the algorithm of interactive beautification in detail. From a

programmer's point of view, the interactive beautification system works as follows

(Figure 21) When the user finishes drawing and lifts the pen from the tablet, the system

first checks whether the stroke is an erasing gesture or not. 2) If the input stroke is not

an erasing gesture, the beautification routine is called. It receives the stroke and the

scene description as input and returns multiple candidates as output. Then, the

generated candidates are indicated to the user, allowing him to select one. 3) The

settlement routine is called when the user finishes selection, that is, starts to draw the

next stroke or taps on outside the candidates. The settlement routine adds the selected

candidate to the scene description and discards all other candidates. 4) If an erasing

gesture is recognized, the erasing routine detects the segment to be erased and removes
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the segment from the scene. The settlement routine is called after the erasing routine to

refresh the scene description. The settlement routine also performs some preliminary

calculations to accelerate the beautification process (sorting the vertex coordinates, for

example).

Straight stroke

Scribbling

Generate multiple candidates

Erase a segment

Confirm the selection

Select a candidate

Draw a freeform stroke

Tapping outside or
drawing a new stroke

User action

System action

Legend

Figure 21. Operational model of interactive beautification.

We now describe the algorithm of the beautification routine in detail. The beautification

routine consists of three separate modules (Figure 22). First, a constraint inference

module infers the underlining constraints the input stroke should satisfy. Next, a

constraint solver generates multiple candidates based on the set of inferred constraints.

Finally, an evaluation module evaluates the certainty of generated candidates and

selects a primary candidate. The separation of the constraint inference and the

constraint solving remarkably improves the efficiency of multiple candidates generation,

because the system performs the most time-consuming task of checking all

combinations of segments only once, instead of performing the task for each candidate.
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Generated Candidates

Ordered Candidates

Segment Coordinates
Input (1,50, 9,51),
Exist (0,50,0,52),(10,50,10,52)

(x0=0, x1=10, y0=50, y1=52, y0=y1)

(0,50,10,50),(0,50,10,52)

Constraint inference module

Constraint solver module

Candidate evaluation module

A Set of Inferred Constraints

primary (0,50,10,52),
secondary (0,50,10,50)

Figure 22. Structure of the beautification routine.

Constraints are represented as numerical equalities binding four variables (coordinates

of the new segment). The constraint inference module communicates the inferred

geometric relations in a form of numerical equalities, and the constraint solver solves

the simultaneous equations. Figure 23 shows the currently supported geometric

relations and the corresponding numerical equalities.
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x0 = const 
y0 = const

x1 = const
y1 = const

Alignment (start -x ) x0 = const

Alignment (start -y ) y0 = const

Alignment (end -x )

Alignment (end -y )

x1 = const

y1 = const

Congruence x1 - x0 = const
y1 - y0 = const

y1 - y0 = const * ( x1 - x0 )Parallelism
  ( Perpendicularity)

y0 = const * x0 + const

y1 = const * x1 + const

y0 = const * x0 + const
y1 = const * x1 + const

Geometric Relations Corresponding 
Equalities

Vertical line x0 = x1

Horizontal line y0 = y1

Interval equality

Connection
(end point on a vertex)

Connection
(start point on a vertex)

Connection
(start point on a line)

Connection
(end point on a line)

(Symmetry)

Figure 23. Relation between geometric relations and equalities.

4.3.2.1 Constraint Inference module

First, the system searches the table of parameters of all the existing segments, in order

to find values that are `adjacent' to those of the input stroke and  generates constraints

that would constrain the parameters of the input stroke variables. To be specific, the

system examines and compares the 5 parameters of the input stroke (x, y coordinates of

start/end vertex, and the slope of the stroke). As a result, constraints to represent

geometric relations such as x and y coordinate alignment, parallelism, and

perpendicularity, are generated. As the parameters of all segments in the scene are

sorted in the settlement routine, the computational complexity of this routine is O(log n)

while n is the number of existing segments. Perpendicular segments are found by

storing 90 degrees rotation of the existing slopes.



54

Next, all the segments in the scene are examined to find various geometric relations

between the existing segments and the input stroke, such as congruence, connection

and symmetry. In addition, to find the equality of intervals among segments, this

routine calculates the interval between the input stroke and each approximately

parallel segment in the scene, and searches for stored intervals that are adjacent. The

computational complexity of this routine is O(n log n).

This two-phased constraint inference process generates a set of constraints to be

satisfied. To reduce unnecessary overhead in constraint solving, the system checks for

duplication whenever a new constraint is created during the inference.

4.3.2.2 Constraint Solver

After the constraint inference, the system calculates the coordinates of the beautified

segment based on the inferred constraints. As the inferred constraints are usually over-

constrained (they cannot be under-constrained because all variables are automatically

bound to the original coordinates of the input stroke), the system searches for all the

possible combinations of inferred constraints to generate multiple candidates.

The constraint solver is a modification of the equality solver of CLP(R)[65] with an

extension to generate multiple candidates from over-constrained equalities. Similar to

the equality solver of CLP(R), the initial state consists of an empty valuation, and the

system tries to apply the constraints one by one to the intermediate valuation. The

difference is that the system maintains a set of valuations instead of a single valuation,

and the new valuation is added to the valuation set without discarding the previous

valuation when a constraint is successfully applied.

Figure 24 shows how the solver works using a simplified example with two variables

and four constraints. First, the solver creates an empty valuation (1), and then, applies

the first constraint (x=1) to the valuation. Naturally, the constraint is successfully

applied and a new valuation is created (1,-)(2). Note that the initial valuation (-,-)

is preserved instead of being replaced by the new valuation (3). When the solver tries to

apply the constraint (x-y=0) to the valuation (1,2), the application fails and no new

valuation is created (4). On the other hand, the constraint can be successfully applied to

the empty valuation (-,-), creating a new valuation with a suspended (delayed)
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constraint (5). The suspended constraints are solved when enough variables are ground

or enough equalities are given (6). Identical valuations are detected and unified by the

solver to prevent redundant calculations (7). Finally, the system returns the fully

grounded valuations as multiple candidates (8).

(-,-)

(1,-)

(-,-) (1,2)

(1,-)

(-,2)

(1,1)(2,2)

(-,-)

(-,-)

(1,-)

(-,2)(-,-) (1,2)

(1,1)(2,2)(-,-) (-,2)(-,-) (1,2)
x-y=0

x=1

y=2

x-y=0

x+y=2

(-,-)
x+y=2

(0,2) (1,-)

(0,2) (2,2) (1,1) (1,2)

x-y=0

Final valuation

1

2
3

45

6
7

8

Constraints Intermediate Valuations

Figure 24. Algorithm for constraint solving.

To improve efficiency, intermediate valuations are stored in a tree structure whose root

node is the initial empty valuation. This representation is natural because every

valuation is created as a child of another valuation with additional grounded variables

or additional suspended constraints. If a constraint fails to be applied to a valuation, it

means that the constraint cannot be applied to all of its descendants, and the system

can avoid wasteful calculations.

The basic method to solve simultaneous equations is Gaussian elimination, because the

current implementation supports only linear equations. Other algorithms (e.g. Newton's

method [23,53]) would be required to support non-linear constraints, such as line length

equality or tangency of curved segments. Pair equalities for such constraints as

connection to a vertex, congruence, and interval equality (see Figure 23) are bound by

an and condition; both equalities fail if one of them is not satisfied.

In summary, our constraint solver is a multi-way numerical equality solver with an

extension to generate multiple solutions efficiently from over-constrained constraints.

The complexity of computation is O(2n), but  is substantially reduced by pruning
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wasteful calculations using a tree structure and unifying identical intermediate

valuations, and has not caused problems in interaction so far in our prototype system.

4.3.2.3 Candidate evaluation module

The evaluation process must follow the solver because it is necessary to consider the

resulting coordinates as well as the satisfied constraints to calculate the certainty of a

candidate. That is, candidates located close to the input stroke should be scored highly,

but the location is unknown until the constraints are solved.

Currently, we use an ad-hoc scoring function to calculate the certainty of candidates

considering type of satisfied constraints and the distance between resulting coordinates

and original input stroke. A candidate with the highest score is selected as a primary

one, and those whose scores are under a specific threshold are discarded.

4.3.3. Evaluation

This section describes an experiment performed to evaluate the interactive

beautification using the prototype system compared to existing drawing systems in

some diagram drawing tasks. We were particularly interested in whether or not

interactive beautification would improve the task performance time (rapidness) and the

completeness of the geometric constraint satisfaction in the diagrams (precision).

4.3.3.1. Method

Systems

The experiment was conducted on a Mitsubishi pen computer AMiTY SP (i486DX4

75MHz, Windows95) [2]. Along with our prototype system, we used a CAD system (Auto

Sketch by AutoDesk Inc.) and an OO-based drawing system (Smart Sketch [131]). The

CAD system is used as a representative for precise geometric design systems, and the

OO-based editor is selected as a representative for easy-to-use rapid drawing editors.
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Task

Subjects were required to draw three diagrams shown in Figure 25 using the editors.

They were instructed to 1) draw as rapidly as possible, satisfying the required geometric

relations as much as possible, 2) to quit drawing when drawing time exceeds the limit of

5 minutes, and 4) give the completion of drawing priority over the complete constraint

satisfaction, if it appears to be too difficult.

parallelism (b,d)

perpendicularity (a,b)

a

b c

d

connection

symmetry (triangle)

symmetry (horns)

connection (all vertices)

(all vertices)

connection (all vertices)

parallelism (slopes)

parallelism (horizontal lines)

parallelism (a,c)

vertical and horizontal alignment interval equality between
                 the parallel lines

Figure A Figure B Figure C

Figure 25. The diagrams used in the experiment, and required geometric relations.

Subjects

18 student volunteers served as subjects in the experiment. They varied in their

proficiency in using computers and each software. 8 subjects were accustomed to typical

window-based GUIs, but other subjects had little experience with computers.

Procedure

To avoid the effect of learning, the order of editor usage was changed for each subject

in a balanced way. The experiment consisted of 18 (subjects) × 3 (systems) × 3

(diagrams) = 162 diagram drawing sessions in total. Each session lasted less than 5

minutes and they were video-recorded and examined later.

Prior to performing the experiment with each system, each subject was given a brief

explanation of each system and a practice trial. This tutorial session lasted 5 - 10

minutes varying among systems and subjects. The CAD system generally required more
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tutorial time than the others.

4.3.3.2. Result and discussion

Rapidness

Figure 26 shows the time required for each subject to complete each task. Each column

corresponds to a drawing session of a subject. The order of subjects is sorted by the

drawing time. As the drawing time was limited to 300sec., drawing sessions which

exceeded the limit are indicated as 300sec. The time required with the prototype system

was clearly shorter than with other systems, and all sessions finished within the limit,

while many sessions exceeded the limit with the CAD system and the OO-based

drawing editor.
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Draw
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Figure 26. Drawing time required for each task.

Each column corresponds to a drawing session of a subject.

The order of subjects is sorted by the time required.
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Figure 27 shows how many sessions finished within the limit. Many subjects failed to

finish drawing tasks within the limit using the CAD system and the OO-based editor,

while all subjects finished drawing using our prototype. Whether the required

constraints are precisely satisfied or not is not considered in this graph.
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Figure 27. The ratio of finished sessions.

This figure shows in how many sessions subjects finished

drawing within 300sec. among each  3 × 18 = 54  sessions.

It is impossible to calculate the exact mean drawing time and the mean variance

because the recorded drawing time was limited to 300sec., but Figure 28 gives an

approximation of the mean drawing time. Drawing time is averaged for each diagram-

editor combination over those sessions that finished within the limit, and the averaged

time for each editor is summed to estimate “total drawing time for a subject to draw

three diagrams on each editor.” According to the calculations, subjects were able to draw

the three diagrams at least 48 % faster than the OO-based editor and 54 % faster than

the CAD system. As the averages do not include sessions exceeding 300sec., the actual

differences are greater.
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Figure 28. Estimation for time required for a subject to draw the three diagrams.

The prototype system exhibits considerable advantage.

Precision

Even if task performance time might be improved, the benefit could be nullified if the

precision of the resulting diagrams is considerably worse. Figure 29 shows how many

sessions finished satisfying all the required geometric relations shown in Figure 25. The

sessions where the subjects finished drawing within 300sec. but failed to satisfy the

required geometric relations completely are not counted. It is interesting to see that the

OO-based system is superior to the CAD system in time performance, but the opposite

holds true concerning the precision, which is in accordance with the natural expectation.

Our prototype system showed better performance in both criteria than either the CAD

or OO-based system.
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Figure 29. The ratio of diagrams where required constraints are perfectly satisfied.

This graph shows in how many sessions subjects successfully satisfied all

the required geometric constraints among each 3 × 18 = 54 sessions.

We must note, however, that this experiment is still a preliminary evaluation. Many

important aspects of diagram drawing are not accounted for, such as line pattern

variation, scaling, rotation. Curves, circles, and text did not appear in the diagrams.

Also, various kinds of diagrams must be considered, such as node-link diagrams,

informal illustrations and complex mechanical diagrams. In spite of these limitations,

this preliminary experiment clearly shows a promising potential of the interactive

beautification system, particularly its significant advantage in rapid and precise

construction of simple geometric diagrams. Time performance and constraint

satisfaction rate were considerably improved, even though interactive beautification is

rather new for the subjects compared with other systems.

4.4. Predictive Drawing

Geometric illustrations often contain numerous identical local configurations.

Duplicate command is used in existing drawing editors to generate identical

configurations. By contrast, by using interactive beautification, duplication is implicitly
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achieved by drawing a similar sketch. Predictive drawing mechanism further assists

the construction of identical configurations actively. If the user draws a line segment

whose shape is identical to some existing segment, the system automatically predicts

that the user may draw similar segments around the newly drawn segment. The

predicted segments are displayed on the screen, and the user can select one by tapping

on it if it happens to be the intended segment.

In the following subsections, we first describe the behavior of predictive drawing from

the end user’s point of view, and then describe its algorithm using several examples.

4.4.1. User Interface

Predictive drawing mechanism works in combination with interactive beautification.

We describe how predictive drawing works from the user’s point of view using the

example shown in Figure 30. In the figure, thick lines indicate line segments added to

the scene most recently, and gray line segments indicate predicted segments.

A new segment is added
to the scene. Predicted segments

are displayed.

The user clicks one of
predicted segments.

The user draws a stroke. The result of beautification. The user clicks one of
multiple candidates.

a) b) c)

d) e) f)

g) h) i) j)

The user clicks one of
predicted segments. Predicted segments

 are displayed.

Predicted segments
 are displayed.

Predicted segments
are displayed.

Figure 30. Predictive drawing: the user’s view.
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1. A new segment is added to the scene as the result of interactive beautification or

predictive drawing (Figure 30a).

2. The system predicts the next drawings and shows them (predicted segments)

around the newly added segment (trigger segment) (Figure 30b).

3. User can click a predicted segment to add it to the scene (Figure 30c).

4. The selected segment now works as the new trigger segment, and next drawings are

predicted (Figure 30d).

5. The user can continue drawing operation by repeating step 3 and 4 (Figure 30e,f).

6. If the user does not like any of the predicted segments, he draws desired segment

using a freeform stroke to switch to interactive beautification process (Figure 30g-i).

7. Predictive drawing restarts when a new segment is added to the scene (Figure 30j).

The most important feature of predictive drawing is that the user can construct various

drawings just by successive clicks as long as prediction succeeds. It is also important

that the user can smoothly switch to interactive beautification process when prediction

fails. As the result of these implicit invocation and termination of prediction, it

augments interactive beautification without imposing additional input. The user can

also start prediction by clicking existing segment in the scene (Figure 31). In that case,

the system generates candidate segments around the clicked segment.

Original diagram Clicking starts prediction. The result of
prediction

Figure 31. Starting prediction by clicking an existing segment.

4.4.2. Algorithm

We describe the algorithm we use in the current implementation. However, this

algorithm is independent of the interface described in the preceding subsection, and it is

possible to use various algorithms other than this particular example.
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This algorithm is based on the following simple idea: when the user draws a new

segment that is identical to a part of some existing diagram, he may want to draw

similar diagrams around the new segment. Specifically, the algorithm works as follows

(Figure 32)

  

1. When a new segment (trigger segment)(g) is added to the scene, the system

searches for the existing segments (reference segments)(a) whose length and angle

are identical to the trigger segment.

2. The system records the spatial relationships among the reference segments and the

segments (context segments)(b,c,d) directly connected to the reference segments.

3. The system generates predicted segments(h,i,j) around the trigger segment in such

a way that the relation between each predicted segment and the trigger segment is

identical to that of the context segment and the reference segment.

4. The user clicks a predicted segment (j). i and n  is generated because j is identical to

d. k,l,m are generated because j is identical to d.

1)

2)

a b
c

d e
f

g h

i
j

j

i
k

l

m n

a b
c

ef
d

Figure 32. The algorithm of predictive drawing.

In this way, the user can duplicate an independent diagram, and can draw repetitive

diagrams by successive clicking.

In addition, the system automatically supports the construction of symmetric diagrams

and rotated diagrams by adding flipped and rotated segments to the reference segments

(Figure 33). e and f are predicted because d is horizontally symmetric to a . h  and g are

predicted because d is vertically symmetric to a . j,k,l, and m are predicted because i is
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±90-degree rotation of a . p and q are predicted because n  is identical to a, while r and q

are predicted because n  is 180-degree rotation of a .

a b

c

d
e

f

g

h

Flip

90 degrees 
rotation

n
o

p

r

180degrees
rotation

qi

m

l

k

j

Figure 33. Extension to the basic prediction.

It is also possible to use the newly added segment (target segment) itself as a reference

segment (Figure 34). In this case, It is not necessary that reference segments exist in

the scene beforehand.

1) 2) 3)

1) 2) 3)

Existing 
segment

A new segment
is added.

Predicted segments
(self reference)

Figure 34. Prediction based on self reference.

In the actual drawing process, multiple segments in the scene matches as reference

segments, and many candidate segments are generated as predicted segments. Figure

35 shows how the user draws repetitive diagram and symmetric diagram using this

prediction mechanism.
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1) 2) 3) 4)

1) 2) 3) 4)

Newly added segment
Existing segment

Predicted segment

Figure 35. Construction of various diagram using prediction.

4.5. Prototype System Pegasus

The prototype system, Pegasus, was first developed under Microsoft Visual Basic and

Visual C++ on Windows 95. The user interface part of the code that manages the input

operations and visual feedback was written in Visual Basic for ease of implementation

and frequent revision. The beautification routine was written in Visual C++ in order to

accelerate the most time consuming process. Recently, we ported the entire program to

Java™ to add miscellaneous features such as zooming, and opened it to the public as a

Java applet at www.mtl.t.u-tokyo.ac.jp/~takeo/java/pegasus/pegasus.html.

Pegasus can work on any computing environment that supports Java 1.1. However, as

Pegasus is basically designed for pen-based input, Pegasus is developed and tested

mainly on portable pen computers (Mitsubishi AMiTY SP) and pen-based electronic

blackboard system (Xerox Liveboard). As pen-based freeform stroke input and mouse

based freeform stroke have considerably different characteristics, the preprocessor of

the recognition algorithm needs to be tuned to some degree to be used with mouse based

input.

We show some of pictures that have been produced with Pegasus. Figure 36 implies the

usage of the technique in classrooms. Menu-based operations have prevented the use of

precise diagrams on electronic whiteboard systems during verbal communication, but

the simplicity of interactive beautification may encourage the use of more precise
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diagrams. Figure 37 shows 3D illustrations. The construction of these diagrams is

achieved using parallelism and congruence among segments. It is notable that these

diagrams are easily constructed using simple 2D constraints, instead of some special

techniques for 3D models. Figure 38(left) shows an example of geometric design. Figure

38 (right) gives an example of symmetric illustration. As horizontal symmetry is

achieved without any additional operation, a designer can concentrate on design itself,

instead of struggling with complex operations.

 

Figure 36. Diagrams for Physics and Mathematics.

 

Figure 37. 3D Illustrations.
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Figure 38. Geometric Illustrations.

4.6. Limitations and Future Work

A unsolved problem with interactive beautification and predictive drawing is that it is

difficult to select the intended candidate among many overlapping candidates. This

problem becomes serious when one draws complex diagrams. Possible solutions are to

reduce the number of generated candidates and to improve the user interface for

candidate selection.

The number of candidates can be reduced by restricting the number of inferred

constraints in the constraint inference module and the number of valuations in the

constraint solving module, and removing the unwanted candidates in the evaluation

module. Various heuristics and user adaptation may be required to find intended

constraints and candidates.

Improvement of the user interface is also required. One solution is to magnify the

cluttered region to help the user to distinguish the desired one from the others. Another

technique is to let the user specify the reference segment and display those candidates

that satisfy constraints related to the specified reference segment.

We plan to implement curves, text, and line pattern variations to see whether

interactive beautification can work as an established interaction technique.

Implementation of arcs and curves give rise to various difficulties, but is strongly

desirable because satisfaction of curve-related constraints is especially difficult with
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conventional menu based editors.

We would like to perform more user studies to answer various questions: what kinds of

constraints are required for rapid geometric design, how fast users can master the

effective use of the technique, and to what extent the generation of multiple candidates

facilitates the interaction, etc.

Integration of interactive beautification into 3D scene construction systems such as

[161] is also being considered. The most challenging issue may be how to display half-

constructed 3D models and multiple candidates without confusing the user.

4.7. Conclusion

We have proposed interactive beautification and predictive drawing, techniques for

rapid geometric design. Interactive beautification receives a freeform stroke and

converts it into a precise segment. The technique is characterized by stroke-by-stroke

beautification, recognition of global geometric constraints, and generation and selection

of multiple candidates. Predictive drawing predicts the user’s next drawings

automatically based on the spatial relationship among the segments on the canvas.

These techniques support precise geometric design preserving considerable dexterity.

Our prototype system, Pegasus, is implemented on pen computers, and user evaluations

showed promising results.

This technique can be used for geometric modeling on traditional CAD systems, but

more informal, simple drawing using pen-based input seems to be the most promising

target. To be specific, interactive beautification and predictive drawing appear to be an

ideal technique for note-taking on pen-based PDA systems and graphical explanation on

electronic whiteboards during meeting or in classrooms. Finally, these techniques can

be used to support creative design processes [72], which has been done with traditional

pen and paper rather than on computers because of complex operations.
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Chapter 5

Path-drawing for Virtual Space Navigation

This chapter introduces an interaction technique for walkthrough in virtual 3D spaces,

where the user draws the intended path directly on the scene, and the avatar

automatically moves along the path. The system calculates the path by projecting the

stroke drawn on the screen to the walking surface in the 3D world. Using this technique,

the user can specify not only the goal position, but also the route to take and the camera

direction at the goal with a single stroke. A prototype system is tested using a display-

integrated tablet, and experimental results suggest that the technique can enhance

existing walkthrough techniques.

5.1. Introduction

Efficient 3D navigation techniques are required to meet the increasing popularity of

virtual spaces. Existing walkthrough techniques can be divided into roughly two

categories. One is driving, where the user continuously changes the camera position

using advancing and turning buttons (arrow keys, joysticks, or button widgets on the

screen). The other is flying, where the camera automatically jumps to the goal position

that the user had specified using a pointing device [78]. Driving is commonly used for

computer games, but can cause unwanted overhead when the walking is not the

primary purpose of the interaction, because the user has to continuously press buttons

during the movement. This problem gets serious especially when the rendering speed is

slow, which is often the case with current desktop VR on PCs. Flying provides a solution

to the problem, freeing the user from continuous control. All the user has to do is to click

the target, then he can arrive at the target position instantly. However, flying suffers

from its limited expressive power. The user cannot specify which route to take during



71

the movement, nor can he control the orientation of the camera directly.

5.2. Path drawing for 3D walkthrough

We propose a path drawing technique [62] for 3D space navigation, which is an

extension of the flying technique. It allows the user to draw the desired walkthrough

path directly on the screen using a free stroke. Then, the system automatically

calculates the moving path in the 3D world by projecting the stroke onto the walking

surface, and presents the movement of the avatar and the camera in an animated

manner. The avatar’s direction is fixed to the tangent of the projected stroke. The user

can draw a new stroke during the movement to modify the path, which is important

because the far end of a stroke can easily get out of control. Figure 39 illustrates an

example of path drawing navigation.

The user can draw either a long stroke specifying the detailed intermediate route to

follow, or just a short stroke near the goal position. Long strokes are useful when the

user is interested in how to get to the target position, while the user can conveniently

specify the goal position and camera direction at once using short strokes. The user can

also turn at the current position by drawing a short stroke at his foot in the intended

direction.

 

Figure 39. An example of path drawing walkthrough.

The user draws the desired path directly on the screen (left), and the avatar and camera

move along the projected path (right).

This technique can work more effectively when the system is given a detailed structure
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of the virtual space. For example, it is possible to achieve the automatic avoidance of

obstacles when the direct projection of the user’s stroke intersects the obstacles

[108,158]. Climbing slopes and going through a gate can be detected by checking the

polygon connectivity along the projected path (Figure 39).

A prototype system is developed using Inventor 2.1 on SGI graphics workstations.

Automatic obstacle avoidance, slope climbing, and gate through are implemented and

tested. However, these additional functions are turned off during the following

evaluation.

5.3. Evaluation

5.3.1. Task

An experiment is performed to clarify the characteristics of path drawing against

driving and flying techniques. Twelve subjects (computer science researchers)

participate the study. Their expertise in 3D interaction is varied. Subjects are

instructed to get to the specified goal as rapidly as possible, navigating through a

virtual space while avoiding obstacles. Figure 40 shows the map of we used in the study.

During the navigation, the camera is fixed just behind the avatar (Figure 41), and the

avatar stops when it collides with an obstacle while traversing.

Figure 40. The world map used in the experiment.
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Figure 41. An example of subject’s view in the experiment.

The subjects perform the task under the following six conditions, in a balanced order.

Each subject performs the task in each condition for three times (which means that a

subject performs the task 3×6=18 times in total). A standard keyboard is used for

“driving”, while a display integrated tablet is used for “flying” and “drawing”.

1) Driving (fast): the user controls the avatar using arrow keys. The left and right keys

correspond to turn operations. Each movement occurs every 0.1 sec. (assumed to be the

best setting). The subjects were allowed to move and turn simultaneously.

2) Flying (animated): the user clicks the intended position directly, and the avatar

smoothly moves toward the target in an animated manner. The moving speed is

identical to that in 1). If an obstacle exists between the current position and the target

position, the avatar stops in front of the obstacle.

3) Drawing (animated): the avatar moves along the drawn path in an animated manner.

The speed is identical to that in 1). If an obstacle exists on the path, the avatar stops in

front of the obstacle.

4) Driving (slow): The same condition as 1), except that the each movement occurs every

0.2 sec.

5) Flying (no animation): flying without animation. The avatar instantly jumps to the

target position after a click. If an obstacle exists between the current position and the

target position, the avatar stops in front of the obstacle.

6) Drawing (no animation): path drawing navigation without animation. The avatar’s

position and direction change instantly to the final state. If an obstacle exists on the

path, the avatar stops in front of the obstacle.

First three conditions are designed to simulate normal navigation set-up. Last three
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conditions are designed to simulate special condition where the screen rendering speed

is extremely low because of poor computer performance or slow network connection. In

this condition, driving technique requires constant control throughout the slow

movement, which is significantly frustrating. Flying and drawing techniques use

alternative “instant jump” technique to achieve efficient move in this condition.

5.3.2. Result

Figure 42 shows the averaged elapsed time to get to the goal. A subject performed the

task three times each, and the fastest among the three was selected and averaged.

Among the first three conditions, driving is the fastest and drawing is the slowest

(statistically significant (p<0.05)). Among the last three conditions, flying and drawing

are significantly faster than driving (p<0.05). There is no significant difference in flying

and drawing.
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Figure 42. Averaged time to get to the goal.

Figure 43 shows the users’ subjective evaluation of each technique. Subjects gave relative

scores ranging from 1 to 5 depending on the extent they like each technique as a general

navigation technique. Drawing exhibits the highest scores in both fast and slow

condition. Flaying technique in slow condition gets the lowest score.
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Figure 43. Subjective evaluations.

5.3.3. Summary

In the first three conditions, drawing and flying were slower in performance, but they

got higher scores in subjective evaluations. This result suggests that drawing and flying

can be optimal solutions in applications where the user’s satisfaction has priority over

efficiency, such as entertainment applications.

In the last three conditions, drawing and flying significantly improved the performance.

Drawing and flying rendered the screen approximately 1/8 times of that in driving

during the task. Rendering speed can be much slower in some computing environments,

and this result suggests that drawing and flying can be a good solution.

Drawing and flying showed similar results in general. This is not surprising because

drawing is an extension of flying. To be precise, drawing was slower a little in

performance, but it showed better scores in subjective evaluations. Especially, the result

suggests that drawing can improve the user’s satisfaction when the rendering speed is

not enough.
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5.4. Discussion

Path drawing can be used with any pointing device, but is most suitable for a pen-based

or touch panel system. It is also possible to use this technique in immersive VR

environments with HMD and data gloves, where the user draws the path using the

finger [40,109].

A limitation of path drawing is that it cannot be directly applied to completely free 3D

movements (not constrained to a walking surface). However, path drawing is expected

to be applicable to most applications because human activity in real world is

constrained on 2D walking surface. A surface with small ups and downs or stairs can be

handled by path drawing technique without any additional complications.

Another limitation is that the avatar must be present on the screen in order for a path

to be drawn at the avatar’s feet. However, this problem may not be so serious because

path drawing can naturally coexist with flying and driving in real applications. The

user can press arrow buttons or keys to move to a near target.

5.5. Conclusions and future work

We presented a technique for 3D virtual space walkthrough, in which the user specifies

the intended path by drawing a free stroke on a virtual walking surface on the screen.

This technique is superior to conventional driving in that the user does not have to

continuously control the movement, and enhances flying by letting the user specify the

route and direction at once. Experimental results show that the technique can be a good

alternative at least for some users, improving subjective evaluation while maintaining a

comparable operation speed.

Path drawing navigation is useful especially when the rendering speed is low or the

communication delay is large, because the user can give detailed instructions to the

computer at once, and the system can take time to perform time-consuming operations.

We plan to apply this technique to remote robot control and wheelchair navigation [136],

where the user draws strokes on camera images
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Chapter 6

Stroke-based Architecture for Electronic Whiteboards

This chapter describes the software architecture for our pen-based electronic

whiteboard system, called Flatland. The design goal of Flatland is to support various

activities on personal office whiteboards, while maintaining the outstanding ease of use

and informal appearance of conventional whiteboards. The GUI framework of existing

window systems is too complicated and heavy-weight to achieve this goal, and so we

designed a new architecture that works as a kind of window system for pen-based

applications.  Our architecture is characterized by its use of freeform strokes as the

basic primitive for both input and output, flexible screen space segmentation, pluggable

applications that can operate on each segment, and built-in history management

mechanisms. This architecture is carefully designed to achieve simple, unified coding

and high extensibility, which was essential to the iterative prototyping of the Flatland

interface. While the current implementation is optimized for large office whiteboards,

this architecture is useful for the implementation of a range of various pen-based

systems.

6.1. Introduction

Office whiteboards are one of the most common tools in a personal working environment.

People use whiteboards to take notes, organize to do lists, sketch paper outlines, and as

a communication medium for discussions with office mates. In general, people use office

white boards for informal, unstructured activities in contrast to well-organized

activities on desktop computers [94].

Based on our observations, we are currently developing a computationally augmented
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office whiteboard, called Flatland (Figure 44)  [95]. Our research goal is to provide

computational support such as storage, calculation, networking, and diagram

beautification, while preserving the physical whiteboard’s lightweight interaction style

and informal appearance. We envision that these enhanced whiteboards will support

informal activities that are difficult on current desktop computers. Our current

hardware configuration is a touch sensitive large board (SMART Board [130]) and a

LCD projector.

Figure 44. Flatland example.

In this chapter, we introduce the user interface and implementation of Flatland in

detail. We introduce our new software architecture to support various stroke-based

operations, and describe how our example applications are implemented on the

architecture. This architecture can be seen as a variant of Kramer’s representation-

based architecture [70]. While the current implementation is optimized for electronic

whiteboard systems with large physical surfaces, our architecture is applicable to

various pen-based systems such as small hand held PDAs, display-integrated tablet

systems, and huge wall size interfaces.

The software architecture we present is analogous to a pen version of GUI-based

window system for desktop computers. Both divide the screen into several regions

(windows in standard window systems and segments in Flatland) to provide

independent workplaces. Both have mechanisms to support task specific activities

within the region (applications and behaviors). The difference is that our target is

informal, pre-production activities while existing window systems are designed for
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well-structured, goal-oriented activities. To be specific, we observed the following design

requirements, which led us to our unique architecture.

First, the user’s input must be simple, and the system’s output should be informal to

encourage lightweight interaction. Standard window systems support a variety of

operations such as typing, clicking and dragging, but these are too complicated for

informal interaction. Likewise, their rectilinear widgets and printed text discourage

pre-production activities. In order to provide the appropriate look and feel of real

whiteboards, Flatland uses a unified notion of “strokes” for input and output. The user

input is always in the form of handwritten strokes, and system feedback is given as a

set of “handwriting style” strokes.

Second, informal activities on a whiteboard are dynamic: the structure of the drawings

on the board can change over time, and each drawing can serve different purposes

depending on the situation. This is quite different from well-organized, goal-oriented

activities on desktop computers, and the traditional notion of static windows and

applications turned out to be inappropriate. This observation led to two important

design decisions: dynamic segmenting and pluggable behaviors.

Users do not have to decide on the organization of their board before they start working.

They can simply pick up a pen and begin writing. The system will use heuristics to try

to group strokes into segments as needed, and users can flexibly override the system’s

behavior by joining and splitting segments as desired. Likewise, behaviors—code that

supports the semantics of a particular domain or application—can be flexibly attached

to or removed from the segment on the fly. So a user can write a “to do” list on the board

and then later apply a behavior to cause the strokes to begin to “act like” a to do list.

Other behaviors could be applied to the same strokes over the lifetime of the segment.

This flexible relationship is quite different from static, persistent relationship between

windows and applications in standard window systems.

Finally, drawings on whiteboards can persist for a significantly long time and can be

continuously changing. Additionally, each “chunk” of information on a board can be

significantly small compared with a document in a desktop environment. Traditional

file based open-edit-close style document management causes too much overhead to

maintain this fine grained, ever-changing information. So instead, Flatland is equipped

with automatic backup mechanisms and allows the user to recover the drawing at any
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time in the past. This history maintenance mechanism actually records every event

occurring on the board, and thus influenced the design of entire architecture.

The rest of the paper is organized as follows. After discussing related work, we briefly

introduce how Flatland works from the user’s point of view. Then we describe the

overall architecture of the system in detail. Finally, we briefly note some

implementation issues, and discuss limitations and implications of our architecture.

6.2. Related Work

This work is closely related to Kramer’s seminal work on dynamic interpretations

[69,70]. He introduced the idea of dynamic association between representation and

internal data structure in the context of electronic whiteboards. He allowed the user to

apply different interpretations (applications) to the same marks (freeform strokes on

the screen). His goal was to capture the ambiguous nature of design activities.

We share basic ideas and research goals with him. The contribution of our work is to

extend and complement his work. While he established the framework for the

representation-centered architecture, we address various implementation issues with

more details and introduce a variety of example applications. To be specific, we discuss

how a stroke-oriented architecture enables flexible screen real-estate control and

efficient history management.

Pen-based computing has become an active research area recently.  In addition to

research and commercial work on handwriting recognition, much work has been done

on efficient text input methods [106] and gesture recognition [48]. Many systems use a

pen-based sketching interface to encourage creative activities: SILK [73] uses it for GUI

design, MusicPad [39] uses it for music composition, SKETCH [161] and Teddy [63] use

it for 3D modeling. Pen-based techniques are commonly used on electronic board

systems [43,112,118], with specialized interfaces designed for large boards. For example,

a series of papers on the Tivoli system [81] proposes many interaction techniques to

organize handwritten notes in meeting environment.

Although this previous work discusses the interaction techniques and specific

applications for pen computers, relatively few papers discuss the software architecture
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to support pen-based activities in general. Kramer’s preceding papers and our work are

the attempts to design software architecture suitable for hosting these pen-based

applications in a unified way. In a broader perspective, Flatland can be seen as one of a

group of efforts (such as Pad++ [7] and Magic Lens [11]) that explore alternative

software architectures beyond existing GUIs.

6.3. Flatland User Interfaces

This section briefly illustrates how the Flatland system works from the user’s point of

view. Detailed discussion on the user interface design is found in [95].

6.3.1. Inking and Segmenting

As the very first level approximation, Flatland works just like a physical office

whiteboard. The user can draw any handwritten stroke anywhere in the screen just by

dragging the stylus on the surface (called stroking). Erasing is done by drawing a

scribbling stroke with the stylus’s modifier button down (called metastroking).

Unlike a physical whiteboard, painted strokes are automatically grouped together into

clusters, which we call segments. Each segment is explicitly presented to the user by a

boundary surrounding its strokes. When the user draws a stroke on some open space, a

new segment is created for the stroke. If a stroke is drawn within or close to an existing

segment, the stroke joins to the segment. If necessary, the user can also manually split

or join segments (Figure 45).

To ensure visibility, segments are not allowed to overlap. The user can drag a segment

by grabbing its boundary, but if the segment collides with another segment, the collided

segment is pushed away. If no more space is available, the collided segment starts to

shrink to give more space (Figure 46). When the user starts working on a shrunken

segment, it restores its original size.
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a)Joining to an existing segment b) Assigning a new segment

c) segment joining d) segment splitting

Figure 45. Segmenting.

a) start dragging b) pushing away c) squashing

Figure 46. Moving and squashing.

6.3.2. Application Behaviors

In addition to functioning as a simple whiteboard, Flatland supports specific activities

by allowing the user to attach application behaviors to segments. An application

behavior interprets the user’s freeform strokes, and gives appropriate feedback in

“handwriting” style to preserve informal appearance. An active behavior is indicated as

an animal figure in the corner of the segment. The following is the list of currently

available application behaviors.

To do list: maintains a vertical list of handwritten items with check boxes. A new item is

created when the user draws a short stroke (tap). A vertical stroke starting at a check

box reorders the item, and a horizontal stroke deletes it (Figure 47).
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a) Adding a new item b) reordering items

Figure 47. To Do behavior.

Map drawing: turns strokes into a double line representing a street. Intersections are

handled appropriately for incoming stroke and erasing operations (Figure 48).

a) Adding a new  street b) Erasing a street

Figure 48. Map Drawing behavior.

2D geometric drawing: automatically beautifies freeform strokes considering possible

geometric relations. The system generates multiple candidates as pink line segments,

and the user can select a desired one by tapping on it. This behavior also predicts the

next drawings based on the spatial relation among the new line segment and existing

line segments [61]. The predicted line segments are displayed as pink line segments as

well (Figure 49).

a) Beautification b) Prediction

Figure 49. 2D Geometric Drawing behavior.
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3D drawing: automatically constructs a 3D model based on the 2D freeform stroke input,

and displays the result in pen-and-ink rendering style [63]. The user can rotate the

model by metastroking. It also supports several editing operations such as cutting and

extrusion (Figure 50).

a) Creation b) Cutting

Figure 50. 3D Drawing behavior.

Calculation: recognizes handwritten formulas in a segment and returns the result of

calculation. The user draws a desired formula using hand drawn numbers, and the

system displays the result in handwriting style when the user draws a long horizontal

line below the formula (Figure 51).

a) user input b) system output

Figure 51. Calculation behavior.

Unlike application programs of standard window systems, these application behaviors

can be flexibly applied to and removed from the segment, and different behaviors can be

used in combination over time. For example, in order to draw a map, the user draws

streets using the map behavior, draws  buildings using the 2D geometric drawing

behavior, and writes comments without any application behaviors.
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6.3.3. History Management and Context-based Search

Another feature of Flatland is its automatic history maintenance mechanism. Every

event on the surface is continuously recorded, and can be retrieved later. This

mechanism frees users from explicit save operations, which are not suitable for informal

activities on whiteboards.

The current implementation provides three interfaces for accessing automatically

stored strokes and segments. The first is infinite undo and redo. Using undo and redo,

the user can access any past state of the segment. Next is the time slider. Using the

slider, the user can specify the time point directly, or use jump buttons to get to discrete

“interesting” time points. Third is context-based search, which is implemented as a

behavior. The search behavior allows the user to retrieve previous strokes and segments

based on context information such as time, segment location, segment size and ink

colors. Search results are shown as a set of thumbnails on the screen, and the user can

work on the stored segment by clicking on a thumbnail.

Segment Segment

Root Segment

Strokes Strokes

Behaviors Behaviors
Calculation

ShowBorder

PaintStroke

DragBorder

PlainDrawing

ShowBorder

PaintStroke

DragBorder

Events

Distribute
by type

Distribute
by location

= Application behavior

= Embedded behavior

Figure 52. Overview of the Flatland architecture.

6.4. Flatland Architecture Overview
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This section gives an overview of the entire Flatland architecture. Following sections

describe each feature in detail.

The most basic primitive in the Flatland system is a stroke. The system receives user

input as a stroke, and stores information as a set of strokes. All information processing

in the system can be seen as manipulation of the stroke set on the screen. This

simplifies the implementation, and matches the user’s perceptual model of the physical

whiteboard.

Strokes on the screen are grouped together based on spatial proximity, and are

maintained by a segment. A segment allows the user to manipulate multiple strokes

within the region as a group, and provides a workspace to accomplish specific tasks.

Segments are different from standard windows in that they can be flexibly joined or

split. Every segment is a part of the root segment, which handles the events that

influence the entire whiteboard.

A segment delegates actual computations to behaviors attached to it. Behaviors respond

to various events occurring on the segment, and modify the segment’s stroke set or

perform specific operations (such as painting). At any given time, a segment can have

one “application” behavior and several “embedded” behaviors. Application behaviors

provide task-specific functions and are explicitly attached to the segment by the user.

Embedded behaviors provide basic services—such as inking and event storage—to the

segment, and are not visible to the user. In contrast to applications of standard window

systems, multiple behaviors can be attached to a segment, and a behavior can be

attached or detached on the fly.

Figure 52 shows how the system maintains a set of segments, each of which holds a set

of strokes and a set of behaviors2. When an event occurs, the root segment distributes it

to a child segment, which dispatches the event to its behaviors. Then, a behavior can

modify the segment’s stroke set or perform other specific operations. We will see how

this architecture efficiently supports each feature of the Flatland system in the

following sections.

                                                
2 In [140], strokes are called marks or inks, segments are called patches, and behaviors
are called interpretations. Properties in [140] are handled as behavior specific internal
structures in our framework.
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6.5. Strokes as Universal Input and Output

Flatland is characterized by its use of strokes as a universal primitive for both input

and output. The user’s input always comes into the system in form of a freeform stroke

(called an input stroke), and the system’s feedback is presented as a collection of

handwriting style strokes (called painted strokes). Since both output and input are in

the form of strokes, the system is capable of using its own output as later input—we will

see later some examples of behaviors that exploit this feature. In this section, we

describe how input strokes are processed and how painted strokes are maintained in the

Flatland architecture

6.5.1. Processing an Input Stroke

When a user draws an input stroke on a screen, the root segment first decides which

segment to send it to. If the input stroke is within or close enough to an existing

segment, the root segment sends the input stroke to it. If no segment is found, the

system creates a new segment, and sends the input stroke to it.

The segment does not add the input stroke to its painted stroke set directly when it

receives an input stroke. Instead, the segment sends the input stroke to its application

behavior by calling the addInputStroke method of the behavior.  It is the behavior, and

not the segment itself, that adds or modifies the segment’s painted strokes. This allows

an application programmer to build custom application behaviors by just defining the

addInputStroke method which receives input stroke from the segment, without

worrying about low level events (stylus down, stylus move, etc.).

The application behavior analyzes the input stroke, and modifies the segment’s painted

stroke set. For example, the Calculation behavior adds multiple painted strokes

showing the result of calculation when the user draws a horizontal line. The Map

behavior adds two painted strokes based on an input stroke, and it also modifies the

existing painted strokes to represent intersections appropriately.

When the user hasn’t attached a specific application behavior, a default application

behavior called Plain Drawing behavior is installed. This behavior simply adds each
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incoming input stroke as a painted stroke to the segment’s stroke set, mirroring the

behavior of a physical whiteboard.

An application behavior adds a new painted stroke to the segment by calling the

segment’s addPaintedStroke method with the painted stroke as an argument.

Behaviors can also remove an existing painted stroke by calling the

removePaintedStroke method. These methods actually update the segment’s stroke set,

and perform some low level processing to adjust the segment size and to push away

surrounding segments if necessary. Figure 53 illustrates this event processing flow.

User input based on simple pen down (stroking) is always handled as a single input

stroke in this way. However, user input with the pen’s modifier button down (called

metastroking) is handled in the conventional button down-move-up event model, and

processed variously depending on its location. Metastrokes are used to start

pie/marking menus, drag/split a segment, erase a painted stroke, etc. We do not have

enough space to discuss each of the metastroke operations in detail, but generally,

metastrokes are processed in a similar manner to strokes: an metastroking event starts

from the root segment, goes to the target segment, and is distributed to the appropriate

behaviors.

Segment

Root Segment

Strokes
Behaviors ApplicationBehavior 

Input stroke

addInputStroke

addInputStroke

addInputStroke

addPaintedStroke

removePaintedStroke

Figure 53. Input stroke processing.

6.5.2. Strokes as Universal Output
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Flatland uses a stroke as the basic primitive for displaying information. In addition to

directly showing the user’s hand drawn strokes, system feedback is also presented in

the form of freeform strokes. This decision primarily comes from aesthetic reasons to

give informal appearance, but also helps simplify the entire architecture.

When an application behavior wants to give feedback to the user, it has to create an

appropriate new stroke and add it to the segment’s stroke set. Application behaviors are

not allowed to directly paint on the screen using primitive operations such as drawText,

drawLine and drawImage. For example, when the 2D geometric drawing behavior

shows the result of beautification or prediction, it adds corresponding line segments in

form of strokes to the segment’s stroke set, instead of directly drawing lines on the

screen. And the calculation behavior displays the result of calculation by adding a set of

strokes representing numbers instead of drawing printed text directly on the screen.

This design has two benefits from the implementation’s point of view. First, application

programmers do not have to worry about low level painting operations, and they gain

the appropriate informal appearance for free. Second, and more importantly, the system

can recover the appearance of the board just by recording the segment’s stroke set at

each time point. If each behavior paints arbitrary things directly on the screen, the

recovery of the screen snapshot would have to involve the behavior and could be highly

complicated. We will discuss this in detail in the History Management section.

6.6. Dynamic Segmentation

The structure of drawings on a physical whiteboard is very volatile and flexible. Our

dynamic segmenting mechanism is designed to capture this property. Dynamic

segmenting frees the user from defining the structure of the board beforehand, and

allows him or her to organize the board on the fly. Flatland segments are different from

windows in a number of ways.

First, a segment is created automatically in response to the user’s input stroke, while a

window has to be explicitly constructed before stating interaction. Second, segments are

not allowed to overlap. This results in “pushing away and squashing” effects, which

allows more information to be presented while preserving visibility. Finally, segments

can be dynamically merged or split.
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6.6.1. Distribution of an Input Stroke

When the user draws a freeform stroke, the root segment calculates the distance

between the stroke and existing segments. If the stroke overlaps or is close enough to a

segment, the stroke will be send to the segment. If the stroke overlaps multiple

segments, the system merges the corresponding segments, and sends the stroke to the

resulting segment. If no such segment is found, the root segment generates a new

segment, and sends the stroke to it.

6.6.2. Moving a Segment

The user can move a segment by making a metastroke starting at the segment’s border.

An embedded behavior called Drag Border responds to the event, and moves the

segment according to the pen movement. It generates a surfaceMoved event to the

application behaviors to update their internal structures. This surfaceMoved event also

occurs when the segment is pushed away by another segment.

6.6.3. Pushing and Squashing a Segment

When the Drag Border behavior tries to move a segment, the segment asks the root

segment for space. If any segment occupies the space, the root segment pushes it away

to make space. The pushed segment then requests space for itself, and this continues

until a segment is pushed against the screen boundary.

When this happens, the segment at the boundary starts to shrink to give space. When a

segment shrinks, the actual coordinates of its strokes remain unchanged. Instead, the

segment maintains a “scale” field, and the Paint Stroke embedded behavior renders the

scaled strokes on the fly. In other words, the shrinking effect occurs only superficially.

This frees application programmer from taking care of the scaling effect.

6.6.4. Merging and Splitting Segments
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In order to merge segments, the root segment constructs a new segment, and calls its

addPaintedStroke method using all strokes in the original segments as argument. After

that, the system deletes the original segments. In order to prevent confusion, the

current implementation does not allow the user to merge segments with application

behaviors.

A segment is split when the user draws a splitting stroke (i.e. long vertical or horizontal

line that cross the segment). This event is handled by the root segment instead of the

segment that is being split. The root segment constructs a new segment, and transfer

strokes one by one by calling the deletePaintedStroke method of the original segment

and the addPaintedStroke method of the new segment. Again, the current

implementation does not allow the user to split a segment with an application behavior.

6.7. Pluggable Behaviors

Behaviors provide a way to associate domain-specific computational processing with a

particular segment. While behaviors are superficially similar to traditional applications

running within windows, there are some fundamental differences.

First, a segment can have multiple composed behaviors active at a time, while a window

cannot belong to multiple applications. Second, a behavior can be attached to and

removed from a segment on the fly, even after the segment has been created (so users

can “create first, process later”). Third, visual representation is maintained as a set of

strokes by the segment, and behaviors do not directly render onto the screen (except for

the Paint Stroke and Show Border behaviors).

6.7.1. Event Processing

A segment distributes a variety of events to its behaviors for them to perform

appropriate action. This process is implemented based on the event listener model of the

Java language. When a segment detects an event, it distributes the event to the

behaviors equipped with the corresponding event listener such as SurfaceListener,

StrokeListener and MetastrokeListener.
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SurfaceListeners handle events related to the segment configuration. They react to

changes in segment location, size, activation, and inactivation. They also react to

requests for painting of the segment. Most embedded behaviors are instances of this

event listener. For example, the Paint Stroke and Show Border embedded behaviors

respond to requests for surface painting. Some application behaviors respond to this

event to modify their internal structure.

StrokeListeners handle the incoming strokes drawn by the user. This event listener is

used by application behavior to detect input strokes. MetastrokeListener handles the

events related to metastrokes. The Drag Border behavior responds to this event, and

some application behaviors use this event to handle specific gestures such as erasing.

6.7.2. Embedded Behaviors

Embedded behaviors are implicitly attached to the segment, and work as a part of

underlying system service. It would have been possible to implement these services as a

part of a segment, but we chose to implement them as separate entities to make the

entire system highly extensible. For example, it is possible to give the system a

completely different look and feel just by changing the embedded behaviors without

modifying the segment itself. It is also easy to add new features as new embedded

behaviors. Actually, our “moving a segment” feature came later in the development

process; the Drag Border behavior was added without requiring much rewriting of the

segment code.

6.7.3. Application Behaviors

This section describes the implementation of some application behaviors in detail. The

Flatland infrastructure provides an API which programmers can use to build their own

application behaviors, without worrying about low level implementation details of the

entire system.

Basically, an application behavior receives an input stroke from the host segment, and

modifies the set of painted strokes maintained by the segment. An application behavior

can also respond to any other events to maintain some task specific semantics. For
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example, most application behaviors respond to metastroke events to delete the closest

painted stroke.

Figure 54. Behavior specific internal structures.

An application behavior does not maintain the stroke set—this  is done by the

segment—but it may require additional internal information about the strokes of the

host segment. For example, the To Do behavior has a list of to do items, and each item

has a pointer to its corresponding check box and strokes. The Map Drawing behavior

has a network of streets and crosses, and each street has a pointer to two strokes

(Figure 54). This internal information disappears when the behavior is detached from

the segment, and is reconstructed when the behavior is re-attached, as described below

in the section, Reapplication of Application Behaviors

Plain Drawing Behavior

This behavior is the default application behavior and works as a prototype for other

application behaviors. The code for this behavior is quite simple. It adds a new input

stroke to the segment’s stroke set directly, and removes a painted stroke when it detects

erasing gesture. This behavior does not cause any side effects on other painted strokes,

and it maintains no behavior specific internal structure.

Map Drawing Behavior

This behavior maintains a graph representation of streets and intersections internally.

Each street has pointers to the two painted strokes representing the street, and each

intersection has pointers to the streets connected to it.

When an input stroke comes in, this behavior first examines whether the stroke



94

overlaps some existing streets. If no overlap is found, the behavior creates two painted

strokes at the both sides of the input stroke, and adds them to the segment’s stroke set.

In addition, the behavior adds the new street to its street set. If the stroke overlaps

some existing street, the behavior divides the street and the input stroke at the section,

and reconstructs the appropriate graph topology. The behavior deletes the painted

strokes associated with the modified street, and adds a set of new painted strokes.

When the user tries to erase a painted stroke, the behavior erases the corresponding

street. Then it reconfigures the internal graph representation and edits the segment’s

stroke set.

Calculation Behavior

This behavior works just as a plain drawing behavior until the user draws a long

horizontal stroke requesting calculation. When this happens, the behavior searches for

the set of strokes above the horizontal stroke, and hands them to a handwriting

recognizer. The recognizer returns the symbolic representation of a formula. The

behavior calculates it, and adds a set of painted strokes that represent result digits to

the segment’s stroke set. This behavior maintains no internal structure, and scans the

entire segment each time. As a result, this behavior can accepts any painted stroke as

input, including the painted strokes created by the behavior itself or those painted

before the behavior is applied to the segment.

3D Drawing Behavior

This behavior has a 3D polygonal model internally, and renders the model by adding

painted strokes representing visible silhouette edges to the segment’s stroke set. When

the user rotates the model, the behavior removes all previous strokes, and adds new

strokes. Unlike other application behaviors, it directly responds to the low level

metastroke events to implement rotation.

Search Behavior

This behavior is a part of the system infrastructure, and is significantly different from

other application behaviors. While other application behaviors provide feedback by

editing the segment’s stroke set and letting the PaintStroke embedded behavior paint

them, the search behavior paints buttons and search results to the screen by itself. This

prevents the search result to be recorded as new strokes, and gives a distinctive look to

the segment.
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6.7.4. Reapplication of Application Behaviors

As we have mentioned already, behavior specific internal structure disappears when the

behavior is removed from the segment, and the structure is recovered when the

behavior is applied to the segment again. This section discusses the implementation of

this reapplication process in detail. A naïve implementation may be to save the behavior

specific structure in the segment, but this strategy fails because of our dynamic

segmenting feature. Segments can be merged or split, which means that a segment is

too fragile an entity to store these structures safely.

As an alternative strategy, we store the behavior specific structure in the painted

strokes. Each stroke remembers the associated partial internal structure, and a re-

applied behavior uses these partial structures to recover the entire structure. This

allows segments to be split and joined appropriately.

For example, the To Do behavior gives each painted stroke a pointer to a corresponding

to do item object. When the To Do behavior is reapplied to a segment, it examines all the

painted strokes, and groups them based on the associated to do item objects. Each to do

item can originate from different To Do behaviors. Then, the To Do behavior constructs

a list of to do items, and organizes the strokes appropriately (Figure 55).

1) Two segments
after removing 
To Do behaviors.

2) Joining of
the two segments.

3) Editing the 
segment without
To Do behavior.

4) Reapplication
of a To Do behavior.

Figure 55. Re-application of a To Do behavior.
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1) Two segments
after removing 
Map behaviors.

2) Joining of
the two segments.

3) Editing the 
segment without
Map behavior.

4) Reapplication
of a Map behavior.

Figure 56. Re-application of a Map behavior.

The Map Drawing behavior embeds a pointer to the corresponding street object in a

painted stroke. When a map drawing behavior is reapplied to the segment, it extracts

the set of street objects embedded in the strokes, and constructs a complete street-

intersection graph. Again, each street object can be generated by different Map Drawing

behaviors (Figure 56). Strokes generated by other behaviors remain unchanged.

The 3D drawing behavior embeds a pointer to the 3D model in each stroke. When the

behavior is reapplied to a segment, it extracts the 3D geometry from the stroke. If more

than one 3D model is found in the stroke set, the 3D drawing behavior ignores the rest

of them.

An application programmer has to write code to store and recover the internal

structures when he or she uses internal structures. Currently, this part of coding is too

complicated and difficult. It is our future work to find a more unified way to handle

behavior reapplication.

6.8. History Management

One of the goals of Flatland was to create a “change safe” whiteboard.  What this

means is that users should be able to safely change any content on the board, knowing

that they can recover it later if need be. To satisfy this requirement, Flatland must be

able to reconstruct the contents of any given segment as requested by the user.
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To implement this ability, Flatland uses the combination of two different mechanisms.

One is a command object model, which maintains short-term history and supports

infinite undo/redo and the time slider. Time slider allows the user to view segment

status in the past [119]. The other is a persistent document management system based

on associative memory, which maintains long-term history and supports context based

search.

6.8.1. Undo/Redo Model

Our infinite undo/redo is based on the “command object” idiom [39]. Command objects

are objects—in the object-oriented sense of the word—that encapsulate an operation

that can be performed in an application.  Each type of action that the user can take on

the whiteboard is represented as a discrete class of command object. Instances of

commands are “invoked” by calling a well-known method on them that causes them to

perform their operation, updating the state of the board.

In our model, commands can be invoked and they can be reversed. That is, each

command supports the ability to both “do” and “undo” its operation. Once this ability is

added to the base command object pattern, command objects can be connected together

in graphs to form complex histories that represent all of the possible states in which the

application has existed. By traversing the graph, sequential sets of operations can be

done or undone. This model of graphs of command objects as a means to represent time

has been used by Timewarp [34] and other systems. (Although, unlike the generalized

time model supported by Timewarp, Flatland doesn’t allow divergent or revergent

histories—in Flatland, the history graph is strictly linear, and thus avoids issues with

conflicts [32].).

The time slider is implemented based on this infinite undo/redo model. When the user

moves the slider forward, the system invokes redo methods of the command objects

sequentially, and vice versa. Semantic jumping is implemented by putting markers in

the command object sequence. If the user presses the jump button, the system searches

for the next marker and jumps to the time point.
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6.8.2. Supporting Undo/Redo with Extensible Behaviors

Flatland faced some unique problems in representing its state as a linear graph of

command objects.  In “traditional” uses of the command object idiom, each command is

atomic—that is, it can reliably and completely do or undo its operation, and has no side

effects that aren't represented by the state in the command object itself. As an example,

when a command object in a drawing program is rolled forward, it must take care to

store all information needed to completely reset the state of the application if it is rolled

back. If performing the operation causes some change to be made to the graphics

context of the application, the creator of the command must be aware of this side effect,

and must account for it when performing the corresponding undo.

This situation is in contrast to the basic architecture of Flatland, where the use of

extensible, pluggable behaviors means that essentially every interesting update to the

state of the application does occur as a side effect to user input.  The set of operations

that can occur when a user draws a stroke on the board is dependent on the set of

behaviors installed, and the current state of each of those behaviors.  This leads to

some problems in applying the command object idiom in the face of extensible

behaviors.

One naïve approach would be to represent only the original user input in the command

history.  So if a user made a stroke, and the map behavior then drew two parallel

strokes to represent a street, only the original stroke (which doesn't even appear on the

screen after the map behavior is finished with it) would be present in the history. The

problem here is that the history no longer represents the complete state of the

application. Jumping to a different node in the history graph involves “replaying” the

user input to the behaviors, causing them to perform all of the same operations they

would in response to “fresh” user input. The computations done by behaviors can be

arbitrarily complex, which means that jumping to distant states can be arbitrarily

expensive.

Flatland uses an alternative approach, where any behavior expresses its updates in

terms of new command objects. So in the example of the map behavior, the history

would contain a behavior-specific command object indicating that a new street is

present, followed by two painted strokes (added by the map behavior). This approach

has a big advantage: changes based on user input are “pre-computed” by the behaviors,
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and only their final outputs are represented in the history.  The “side effects” of the

input are turned into “foreground effects” and represented as first-class citizens in the

history.

6.8.3. A Transaction Model for State Changes

This second approach does have a drawback: since behaviors write their operations into

the command history, simple atomic roll-forward/roll-back is now inappropriate.

For example, with the Map behavior, suppose that a user has drawn a stroke that

corresponds to a new street, and then needs to roll time back.  The original stroke

command is not represented in this history—it has been replaced by a set of commands

representing the effects of the stroke. Clearly, rolling back atomically is probably not

what the user wants to see: such a roll back would reveal the individual operations of

the map behavior, rather than the semantic “chunk” of the whole set of operations.

To solve this problem, we adopted a transaction model for the commands in our histories.

Each original user-level input begins a new transaction.  As the Flatland event

dispatch code runs and behaviors perform their operations, their effects are grouped

into this new transaction. Figure 57 shows an example of a transaction. From this

model, causality relationships are clearly indicated, as all operations in a transaction

are effects of the same cause. Transactions are represented explicitly in the history as

commands, and the history roll-forward/roll-back machinery is augmented to process

entire transactions atomically.

121 OpenTransaction

122 BehaviorSpecificCommand (Map, addstreet, street#12a)

123 AddPaintedStrokeCommand(stroke#23a1)

124 AddPaintedStrokeCommand(stroke#23a2)

125 CloseTransaction

Figure 57. An example of transaction.
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6.8.4. Local versus Global Timeline Management

One final timeline management issue we had to deal with was the distinction between

the “local” timelines of individual segments and the  “global” timeline of the entire

board. We wanted the ability for users to interact with the timelines of individual

segments without affecting others: the entire history of a segment should appear

continuous, even though in “real” time, operations on other segments may be

interspersed with it. But we also wanted the ability to roll forwards and backwards in

global (whole-board) time. Global undo and redo means that the histories of all

individual segments are “packed” into a single timeline ordered by “real” time, rather

than “segment logical” time.

Segment #1

Segment #2

Segment #3

Local history (segment #1)

Global history

Figure 58. Local versus Global Timeline.

In the implementation, each segment maintains its own local history, and Flatland

creates the illusion of a global history timeline by composing individual segment

histories together. Because users can visit and leave segments as often as needed,

segment histories can be arbitrarily interleaved in “global” time—so the global history

is represented as a list of “chunks” of history from individual segments, stitched

together (Figure 58).

6.8.5. Persistence

Since Flatland whiteboards are designed for long-term use—much as physical

whiteboards are—we needed a way to ensure that all data on the board is saved

persistently.   We want to ensure that everything on the board is saved and

recoverable, for the entire duration of the board's use, without requiring users to have to

explicitly save or name files that correspond to segments. Clearly this would violate the

informal nature of the system and, in many cases, the work required to explicitly save a
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persistent data file would outweigh the benefit of using the board!  We needed a much

lighter-weight approach.

Flatland is built atop the Presto document management system [32]. Presto provides a

loosely-structured “information soup” into which arbitrary content can be stored. Presto

presents an associative memory programming model to its users—chunks of

information can be tagged with arbitrary key/value pairs—which maps nicely into the

Java implementation of Flatland (Presto tuples can be arbitrary serialized Java

objects).

Flatland saves every “dirty” segment periodically to stable storage via Presto. Each

segment is represented as a discrete Presto “document,” with Flatland-specific objects

tagged onto it as key/value data. The contents of each document are the serialized

command objects that constitute the segment’s history.  The system maintains a

“segment cache,” which reflects all of the “live” segments currently on the board.  If an

old segment needs to be retrieved (either because the user searched for it, or an undo or

time slider operation causes the segment to become live again), it is “faulted in” from

persistent storage. Only the storage layer in Flatland needs to know about

persistence—from the perspective of behavior writers, all segments are always “live”

and in core at all times. From the user perspective, users never have to explicitly save at

any time, and they never name the data that is saved.

6.8.6. Search

Our search behavior retrieves past segment states using this document management

system. The system tries to intuit information about the context of a segment's use, and

its content, and uses this information to satisfy queries. For example, users can search

based on content attributes such as segment stroke density (using ambiguous terms like

“dense” or “sparse” or “medium”) and color (“mostly blue”). Context-based searches can

use information about what behaviors were attached to the segment (“my map” or “my

to do list”), and time of last use.

The search result is displayed as a set of thumbnails representing past states of the

segments. The construction of this thumbnail is done by rolling the addPaintedStroke

and removePaintedStroke command objects forward starting from a blank segment,
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ignoring any behavior specific command objects in the segment history. This allows the

system to reconstruct the segment appearance quickly. If the user tries to interact with

the retrieved segment, the system reconstructs the behavior specific internal structures

by rolling behavior specific command objects forward.

6.9. Implementation Notes

Flatland is implemented in Java, and is approximately 42,000 lines of code.

Handwriting recognition (used by the Calculator behavior) is done by the Calligrapher

online recognizer from Paragraph Corporation.

We did not pay much attention to performance tuning, but the overall speed is

satisfactory on a standard PC as a proof of concept prototype. Some operations such as

the display of search results cause delay, and require improvement.

Implementation of history management is not yet complete. Especially, our long-term

persistent history causes a sort of time travel paradox. Multiple restorations of an old

segment and time traversal over merged or split segments badly confuse the timeline

management, and more research is required to address these problems.

6.10. Summary and Future Work

This chapter has introduced our efforts to build a software platform for a variety of

pen-based applications. Our design goal was to support informal, pre-production

activities on a whiteboard, in contrast to the well-organized activities supported on

desktop computers. To achieve this goal, we have introduced the ideas of strokes as a

basic primitive for both input and output, dynamic segmentation of the screen space,

pluggable behaviors working on a segment, and persistent history management

mechanism.

Our next step is to deploy the Flatland system in real office environment to observe its

usage. However, this is difficult with our current hardware set up, and its requirement

for front projection. We expect that a large plasma display with touch sensitive screen

will be a good solution. We also plan to implement additional application behaviors that
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support common activities on a white board such as paper outlining, communications,

calendars, and so on.

Another interesting research direction is the application of our architecture to other pen

computing environments. We believe that our architecture can provide a uniform

framework for a variety of pen-based devices to work in corporation.
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Chapter 7

Sketch-based 3D Freeform Modeling

This chapter introduces a sketching interface for quickly and easily designing freeform

models such as stuffed animals and other rotund objects. The user draws several 2D

freeform strokes interactively on the screen and the system automatically constructs

plausible 3D polygonal surfaces. Our system supports several modeling operations,

including the operation to construct a 3D polygonal surface from a 2D silhouette drawn

by the user: it inflates the region surrounded by the silhouette making wide areas fat,

and narrow areas thin. Teddy, our prototype system, is implemented as a Java™

program, and the mesh construction is done in real-time on a standard PC. Our

informal user study showed that a first-time user typically masters the operations

within 10 minutes, and can construct interesting 3D models within minutes.

7.1. Introduction

Although much progress has been made over the years on 3D modeling systems, they

are still difficult and tedious to use when creating freeform surfaces. Their emphasis

has been the precise modeling of objects motivated by CAD and similar domains.

Recently SKETCH [161] introduced a gesture-based interface for the rapid modeling of

CSG-like models consisting of simple primitives.

Teddy [63] extends these ideas to create a sketching interface for designing 3D freeform

objects. The essential idea is the use of freeform strokes as an expressive design tool.

The user draws 2D freeform strokes interactively specifying the silhouette of an object,

and the system automatically constructs a 3D polygonal surface model based on the

strokes. The user does not have to manipulate control points or combine complicated
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editing operations. Using our technique, even first-time users can create simple, yet

expressive 3D models within minutes. In addition, the resulting models have a hand-

crafted feel (such as sculptures and stuffed animals) which is difficult to accomplish

with most conventional modelers. Examples are shown in Figure 60.

We describe here the sketching interface and the algorithms for constructing 3D shapes

from 2D strokes. We also discuss the implementation of our prototype system, Teddy.

The geometric representation we use is a standard polygonal mesh to allow the use of

numerous software resources for post-manipulation and rendering. However, the

interface itself can be used to create other representations such as volumes [143] or

metaballs [81].

Like SKETCH [161], Teddy is designed for the rapid construction of approximate

models, not for the careful editing of precise models. To emphasize this design goal and

encourage creative exploration, we use the real-time pen-and-ink rendering described in

[80], as shown in Figure 59. This also allows real-time interactive rendering using Java

on mid-range PCs without dedicated 3D rendering hardware.

Figure 59. Teddy in use on a display-integrated tablet.

An obvious application of Teddy is the design of 3D models for character animation.

However, in addition to augmenting traditional 3D modelers, Teddy’s ease of use has the

potential to open up new application areas for 3D modeling. Possibilities include rapid

prototyping in the early stages of design, educational/recreational use for non-

professionals and children, and real-time communication assistance on pen-based
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systems.

Figure 60. Painted models created using Teddy and painted using a commercial

texture-map editor.

We publicly provide a videotape that demonstrates Teddy’s user interface. Teddy is

available as a Java applet at the following web site. http://www.mtl.t.u-

tokyo.ac.jp/~takeo/teddy/teddy.htm

7.2. Related Work

A typical procedure for geometric modeling is to start with a simple primitive such as a

cube or a sphere, and gradually construct a more complex model through successive

transformations or a combination of multiple primitives. Various deformation

techniques [77,126] and other shape-manipulation tools [39] are examples of

transformation techniques that let the user create a wide variety of precise, smooth

shapes by interactively manipulating control points or 3D widgets.

Another approach to geometric modeling is the use of implicit surfaces [7,81]. The user

specifies the skeleton of the intended model and the system constructs smooth, natural-

looking surfaces around it. The surface inflation technique [81] extrudes the polygonal

mesh from the skeleton outwards. In contrast, our approach lets the user specify the

silhouette of the intended shape directly instead of by specifying its skeleton.
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Some modeling systems achieve intuitive, efficient operation using 3D input/output

devices [29]. 3D devices can simplify the operations that require multiple operations

when using 2D devices.

Our sketching interface is inspired by previous sketch-based modeling systems [32,161]

that interpret the user’s freeform strokes and interactively construct 3D rectilinear

models. Our goal is to develop a similar interface for designing rounded freeform

models.

Inflation of a 2D drawing is introduced in [152], and 3D surface editing based on a 2D

painting technique is discussed in [153]. Their target is basically a 2D array with

associated height values, rather than a 3D polygonal model.

The use of freeform strokes for 2D applications has recently become popular. Some

systems [50,61] use strokes to specify gestural commands and others [6] use freeform

strokes for specifying 2D curves. These systems find the best matching arcs or splines

automatically, freeing the users from explicit control of underlying parameters.

We use a polygonal mesh representation, but some systems use a volumetric

representation [39,143], which is useful for designing topologically complicated shapes.

Our mesh-construction algorithm is based on a variety of work on polygonal mesh

manipulation, such as mesh optimization [56], shape design [148], and surface fairing

[138], which allows polygonal meshes to be widely used as a fundamental

representation for geometric modeling and computer graphics in general.

7.3. User Interface

Teddy’s physical user interface is based upon traditional 2D input devices such as a

standard mouse or tablet. We use a two-button mouse with no modifier keys. Unlike

traditional modeling systems, Teddy does not use WIMP-style direct manipulation

techniques or standard interface widgets such as buttons and menus for modeling

operations. Instead, the user specifies his or her desired operation using freeform

strokes on the screen, and the system infers the user’s intent and executes the

appropriate editing operations. Our videotape shows how a small number of simple

operations let the users create significantly rich models.
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In addition to gestures, Teddy supports direct camera manipulation using the secondary

mouse button based on a virtual trackball model [57]. We also use a few button widgets

for auxiliary operations, such as save and load, and for initiating bending operations.

7.4. Modeling Operations

This section describes Teddy’s modeling operations from the user’s point of view; details

of the algorithms are left to the next section. Some operations are executed immediately

after the user completes a stroke, while some require multiple strokes. The current

system supports neither the creation of multiple objects at once, nor operations to

combine single objects. Additionally, models must have a spherical topology; e.g., the

user cannot create a torus. An overview of the model construction process is given first,

and then each operation is described in detail.

The modeling operations are carefully designed to allow incremental learning by novice

users. Users can create a variety of models by learning only the first operation

(creation), and can incrementally expand their vocabulary by learning other operations

as necessary. We have found it helpful to restrict first-time users to the first three basic

operations (creation, painting, and extrusion), and then to introduce other advanced

operations after these basic operations are mastered.

7.4.1. Overview

Figure 61 introduces Teddy’s general model construction process. The user begins by

drawing a single freeform stroke on a blank canvas (Figures 3a-b). As soon as the user

finishes drawing the stroke, the system automatically constructs a corresponding 3D

shape (c). The user can now view the model from a different direction (d). Once a model

is created, it may be modified using various operations. The user can draw a line on the

surface (e-g) by drawing a stroke within the model silhouette. If the stroke is closed, the

resulting surface line turns red and the system enters “extrusion mode” (h-i). Then the

user rotates the model (j) and draws the second stroke specifying the silhouette of the

extruded surface (k-m). A stroke that crosses the silhouette cuts the model (n-o) and

turns the cut section red (p). The user either clicks to complete the operation (q) or
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draws a silhouette to extrude the section (r-t). Scribbling on the surface erases the line

segments on the surface (u-w). If the user scribbles during the extrusion mode (x-y), the

system smoothes the area surrounded by the closed red line (z-z´).

   

a) initial state     b) input stroke     c) result of creation  d) rotated view

  

e) painting stroke   f) result of painting   g) rotated view

     

h) before extrusion   i) closed stroke    j) rotated view    k) extruding stroke  l) result of extrusion  m) rotated view

   

n) before cutting  o) cutting stroke     p) result of cutting  q) result of click

         

r) extrusion after cutting s) result of extrusion t) rotated view    u) before erasing    v) scribbling     w) result of erasing

   

x) closed stroke    y) scribbling    z) result of smoothing  ź) rotated view

Figure 61. Overview of the modeling operations.
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Figure 62 summarizes the modeling operations available on the current

implementation. Note that the appropriate action is chosen based on the stroke’s

position and shape, as well as the current mode of the system.

Closed Create a new object First stroke

Second stroke

Specify reference

Specify target

Inside of the object, not closed Paint on the surface

Inside of the object, closed

Start and end outside of the object

Specify the area to be extruded/smoothed

Cut the object

Scribbling Erase painted strokes

Normal stroke

Scribbling

Click

Extrude the area

Smooth the area

Quit extrusion

Press “Bend” buttonPress “Init” button

PAINTING

EXTRUSION

BENDINGCREATION

Stroke Action

Legend MODE

Figure 62. Summary of the gestural operations.

7.4.2. Creating a New Object

Starting with a blank canvas, the user creates a new object by drawing its silhouette as

a closed freeform stroke. The system automatically constructs a 3D shape based on the

2D silhouette. Figure 63 shows examples of input strokes and the corresponding 3D

models. The start point and end point of the stroke are automatically connected, and the

operation fails if the stroke is self-intersecting. The algorithm to calculate the 3D shape

is described in detail in section 5. Briefly, the system inflates the closed region in both

directions with the amount depending on the width of the region: that is, wide areas

become fat, and narrow areas become thin. Our experience so far shows that this

algorithm generates a reasonable-looking freeform shape. In addition to the creation

operation, the user can begin model construction by loading a simple primitive. The

current implementation provides a cube and a sphere, but adding more shapes is
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straightforward.

         

         

         

a) snake     b) snail    c) cherry    d) muscular arm

Figure 63. Examples of creation operation.

(top: input stroke, middle: result of creation, bottom: rotated view).

7.4.3. Painting and Erasing on the Surface

The object surface is painted by drawing a freeform stroke within the object’s silhouette

on the canvas (the stroke must not cross the silhouette) [51]. The 2D stroke is projected

onto the object surface as 3D line segments, called surface lines (Figure 61e-g). The user

can erase these surface lines by drawing a scribbling stroke3 (Figure 61u-w). This

painting operation does not modify the 3D geometry of the model, but lets the user

express ideas quickly and conveniently when using Teddy as a communication medium

or design tool.

7.4.4. Extrusion

Extrusion is a two-stroke operation: a closed stroke on the surface and a stroke

depicting the silhouette of the extruded surface. When the user draws a closed stroke on

the object surface, the system highlights the corresponding surface line in red,

                                                
3 A stroke is recognized as scribbling when sl/pl > 1.5, where sl is the length of the
stroke and pl is the perimeter of its convex hull.
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indicating the initiation of “extrusion mode” (Figure 61i). The user then rotates the

model to bring the red surface line sideways (Figure 61j) and draws a silhouette line to

extrude the surface (Figure 61k). This is basically a sweep operation that constructs the

3D shape by moving the closed surface line along the skeleton of the silhouette (Figure

61l-m). The direction of extrusion is always perpendicular to the object surface, not

parallel to the screen. Users can create a wide variety of shapes using this operation, as

shown in Figure 64. They can also make a cavity on the surface by drawing an inward

silhouette (Figure 65a-c). The current implementation does not support holes that

completely extend to the other side of the object. If the user decides not to extrude, a

single click turns the red stroke into an ordinary painted stroke (Figure 7d-e).

            

            

a) long      b) thin       c) fat        d) sharp

Figure 64. Examples of extrusion.

(top: extruding stroke, bottom: result of extrusion).

            

a) digging stroke b) result  c) rotated    d) closed stroke e) after click

Figure 65. More extrusion operations.

Digging a cavity (a-c) and turning the closed stroke into a surface drawing (d-e).

7.4.5. Cutting

A cutting operation starts when the user draws a stroke that runs across the object,

starting and terminating outside its silhouette (Figure 61o). The stroke divides the
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object into two pieces at the plane defined by the camera position and the stroke. What

is on the screen to the left of the stroke is then removed entirely (Figure 61p) (as when a

carpenter saws off a piece of wood). The cutting operation finishes with a click of the

mouse (Figure 61q). The user can also `bite’ the object using the same operation (Figure

66).

The cutting stroke turns the section edges red, indicating that the system is in

“extrusion mode”. The user can draw a stroke to extrude the section instead of a click

(Figure 61r-t, Figure 67). This “extrusion after cutting” operation is useful to modify the

shape without causing creases at the root of the extrusion.

   

a) biting stroke   b) result     c) rotated view   d) after click

Figure 66. Cutting operation.

a) cutting stroke  b) result    c) rotated  d) extruding stroke e) result

Figure 67. Extrusion after cutting.

7.4.6. Smoothing

One often smoothes the surface of clay models to eliminate bumps and creases. Teddy

lets the user smooth the surface by drawing a scribble during “extrusion mode.” Unlike

erasing, this operation modifies the actual geometry: it first removes all the polygons

surrounded by the closed red surface line and then creates an entirely new surface that

covers the region smoothly. This operation is useful to remove unwanted bumps and

cavities (Figure 61x-z’, Figure 68a), or to smooth the creases caused by earlier extrusion

operations (Figure 68b).
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a) cleaning a cavity

b) smoothing a sharp edge

Figure 68. Smoothing operation.

7.4.7. Transformation

We are currently experimenting with an additional “transformation” editing operation

that distorts the model while preserving the polygonal mesh topology. Although it

functions properly, the interface itself is not fully gestural because the modal transition

into the bending mode requires a button push.

This operation starts when the user presses the “bend” button and uses two freeform

strokes called the reference stroke and the target stroke to modify the model. The

system moves vertices of the polygonal model so that the spatial relation between the

original position and the target stroke is identical to the relation between the resulting

position and the reference stroke. This movement is parallel to the screen, and the

vertices do not move perpendicular to the screen. This operation is described in [24] as

warp; we do not discuss the algorithm further.

Transformation can be used to bend, elongate, and distort the shape (Figure 69). We

plan to make the system infer the reference stroke automatically from the object’s

structure in order to simplify the operation, in a manner similar to the mark-based

interaction technique of [6].
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a) original  b) reference stroke  c) target stroke  d) result  e) rotated

Figure 69. Examples of transformation.

(top: bending, bottom: distortion)

7.5. Algorithm

We next describe how the system constructs a 3D polygonal mesh from the user’s

freeform strokes. Internally, a model is represented as a polygonal mesh. Each editing

operation modifies the mesh to conform to the shape specified by the user’s input

strokes (Figure 70). The resulting model is always topologically equivalent to a sphere.

We developed the current implementation as a prototype for designing the interface; the

algorithms are subject to further refinement and they fail for some illegal strokes (in

that case, the system indicates the problem and requests an alternative stroke).

However, these exceptional cases are fairly rare, and the algorithm works well for a

wide variety of shapes.

   

a) after creation         b) after extrusion         c) after cutting

Figure 70. Internal representation.
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Our algorithms for creation and extrusion are closely related to those for freeform

surface construction based on skeletons [7,81], which create a surface around user-

defined skeletons using implicit surface techniques. While our current implementation

does not use implicit surfaces, they could be used in an alternative implementation.

In order to remove noise in the handwriting input stroke and to construct a regular

polygonal mesh, every input stroke is re-sampled to form a smooth polyline with

uniform edge length before further processing [22].

7.5.1. Creating a New Object

Our algorithm creates a new closed polygonal mesh model from the initial stroke. The

overall procedure is this: we first create a closed planar polygon by connecting the

start-point and end-point of the stroke, and determine the spine or axes of the polygon

using the chordal axis introduced in [106]. We then elevate the vertices of the spine by

an amount proportional to their distance from the polygon. Finally, we construct a

polygonal mesh wrapping the spine and the polygon in such a way that sections form

ovals.

    

a) initial 2D polygon    b) result of CDT      c) chordal axis

    
d) fan triangles     e) resulting spine      f) final triangulation

Figure 71. Finding the spine.

When constructing the initial closed planar polygon, the system makes all edges a

predefined unit length (see Figure 71a). If the polygon is self-intersecting, the algorithm



117

stops and the system requests an alternative stroke. The edges of this initial polygon

are called external edges, while edges added in the following triangulation are called

internal edges.

The system then performs constrained Delaunay triangulation of the polygon (Figure

71b). We then divide the triangles into three categories: triangles with two external

edges (terminal triangle), triangles with one external edge (sleeve triangle), and

triangles without external edges (junction triangle). The chordal axis is obtained by

connecting the midpoints of the internal edges (Figure 71c), but our inflation algorithm

first requires the pruning of insignificant branches and the retriangulation of the mesh.

This pruning algorithm is also introduced in [106].

To prune insignificant branches, we examine each terminal triangle in turn, expanding

it into progressively larger regions by merging it with adjacent triangles (Figure 72a-b).

Let X be a terminal triangle; then X has two exterior edges and one interior edge. We

erect a semicircle whose diameter is the interior edge, and which lies on the same side of

that edge as does X. If all three vertices of X lie on or within this semicircle, we remove

the interior edge and merge X with the triangle that lies on the other side of the edge.

a) start from T-triangle  b) advance     c) stop      d) fan triangles

           
e) advance to J-triangle       f) fan triangles at J-triangle

Figure 72. Pruning.

If the newly merged triangle is a sleeve triangle, then X now has three exterior edges

and a new interior edge. Again we erect a semicircle on the interior edge and check that
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all vertices are within it. We continue until some vertex lies outside the semicircle

(Figure 72c), or until the newly merged triangle is a junction triangle. In the first case,

we triangulate X with a "fan" of triangles radiating from the midpoint of the interior

edge (Figure 72d). In the second case, we triangulate with a fan from the midpoint of the

junction triangle (Figure 72e-f). The resulting fan triangles are shown in Figure 72d.

The pruned spine is obtained by connecting the midpoints of remaining sleeve and

junction triangles’ internal edges (Figure 71e).

The next step is to subdivide the sleeve triangles and junction triangles to make them

ready for elevation. These triangles are divided at the spine and the resulting polygons

are triangulated, so that we now have a complete 2D triangular mesh between the spine

and the perimeter of the initial polygon (Figure 71f).

Next, each vertex of the spine is elevated proportionally to the average distance

between the vertex and the external vertices that are directly connected to the vertex

(Figure 73a,b). Each internal edge of each fan triangle, excluding spine edges, is

converted to a quarter oval (Figure 73c), and the system constructs an appropriate

polygonal mesh by sewing together the neighboring elevated edges, as shown in Figure

73d. The elevated mesh is copied to the other side to make the mesh closed and

symmetric. Finally, the system applies mesh refinement algorithms to remove short

edges and small triangles [56].

   

a) before       b) elevate spines    c) elevate edges   d) sew elevated edges

Figure 73. Polygonal mesh construction.

7.5.2. Painting on the Surface

The system creates surface lines by sequentially projecting each line segment of the

input stroke onto the object’s surface polygons. For each line segment, the system first
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calculates a bounded plane consisting of all rays shot from the camera through the

segment on the screen. Then the system finds all intersections between the plane and

each polygon of the object, and splices the resulting 3D line segments together (Figure

74). The actual implementation searches for the intersections efficiently using polygon

connectivity information. If a ray from the camera crosses multiple polygons, only the

polygon nearest to the camera position is used. If the resulting 3D segments cannot be

spliced together (e.g., if the stroke crosses a “fold” of the object), the algorithm fails.

Figure 74. Construction of surface lines.

7.5.3. Extrusion

The extrusion algorithm creates new polygonal meshes based on a closed base surface

line (called the base ring) and an extruding stroke. Briefly, the 2D extruding stroke is

projected onto a plane perpendicular to the object surface (Figure 75a), and the base

ring is swept along the projected extruding stroke (Figure 75b). The base ring is defined

as a closed 3D polyline that lies on the surface of the polygonal mesh, and the normal of

the ring is defined as that of the best matching plane of the ring.

First, the system finds the plane for projection: the plane passing through the base

ring’s center of gravity and lying parallel to the normal of the base ring4. Under the

                                                
4 The normal of the ring is calculated as follows: Project the points of the ring to the

original XY-plane. Then compute the enclosed “signed area” by the formula:

Axy = 0.5*sum(i=0, i=n-1, x[i]*y[i+1]-x[i+1]*y[i])

(indices are wrapped around so that x[n] means x[0]). Calculate Ayx and Azx similarly,

and the vector v=(Ayz,Azx,Axy) is defined as the normal of the ring.
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above constraints, the plane faces towards the camera as much as possible (Figure 75a).

Then the algorithm projects the 2D extruding stroke onto the plane, producing a 3D

extruding stroke. Copies of the base ring are created along the extruding stroke in such

a way as to be almost perpendicular to the direction of the extrusion, and are resized to

fit within the stroke. This is done by advancing two pointers (left and right) along the

extruding stroke starting from both ends. In each step, the system chooses the best of

the following three possibilities: advance the left pointer, the right pointer, or both. The

goodness value increases when the angle between the line connecting the pointers and

the direction of the stroke at each pointer is close to 90 degrees (Figure 76a). This

process completes when the two pointers meet.

    

a) projection of the stroke     b) sweep along the projected stroke

Figure 75. Extrusion algorithm.

Finally, the original polygons surrounded by the base ring are deleted, and new

polygons are created by sewing the neighboring copies of the base ring together [1]

(Figure 76b). The system uses the same algorithm to dig a cavity on the surface.

    

a) pointer advancing            b) sewing adjacent rings

Figure 76. Sweeping the base ring.

This simple algorithm works well for a wide variety of extrusions but creates
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unintuitive shapes when the user draws unexpected extruding strokes or when the base

surface is not sufficiently planar (Figure 77).

  
a) flat extrusion       b) wavy extrusion      c) wrapping extrusion

Figure 77. Unintuitive extrusions.

7.5.4. Cutting

The cutting algorithm is based on the painting algorithm. Each line segment of the

cutting stroke is projected onto the front and back facing polygons. The system connects

the corresponding end points of the projected edges to construct a planer polygon

(Figure 78). This operation is performed for every line segment, and the system

constructs the complete section by splicing these planer polygons together. Finally, the

system triangulates each planer polygon [118], and removes all polygons to the left of

the cutting stroke.

Figure 78. Cutting algorithm.

7.5.5. Smoothing

The smoothing operation deletes the polygons surrounded by the closed surface line

(called a ring) and creates new polygons to cover the hole smoothly. First, the system
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translates the objects into a coordinate system whose Z-axis is parallel to the normal of

the ring. Next, the system creates a 2D polygon by projecting the ring onto the XY-plane

in the newly created coordinate system, and triangulates the polygon (Figure 79b). (The

current implementation fails if the area surrounded by the ring contains creases and is

folded when projected on the XY-plane.) The triangulation is designed to create a good

triangular mesh based on [118]: it first creates a constrained Delaunay triangulation

and gradually refines the mesh by edge splitting and flipping; then each vertex is

elevated along the Z-axis to create a smooth 3D surface (Figure 79d).

The algorithm for determining the Z-value of a vertex is as follows: For each edge of the

ring, consider a plane that passes through the vertex and the midpoint of the edge and

is parallel to the Z-axis. Then calculate the z-value of the vertex so that it lies on the 2D

Bezier curve that smoothly interpolates both ends of the ring on the plane (Figure 79c).

The final z-value of the vertex is the average of these z-values.

Finally, we apply a surface-fairing algorithm [138] to the newly created polygons to

enhance smoothness.

      

a) before     b) triangulation      c) calculating Z-value        d) result

Figure 79. Smoothing algorithm.

7.6. Implementation

Our prototype is implemented as a 13,000 line Java program. We tested a display-

integrated tablet (Mutoh MVT-14, see Figure 1) and an electric whiteboard (Xerox

Liveboard) in addition to a standard mouse. The mesh construction process is

completely real-time, but causes a short pause (a few seconds) when the model becomes

complicated. Teddy can export models in OBJ file format. Figure 2 shows some 3D

models created with Teddy by an expert user and painted using a commercial texture-
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map editor. Note that these models look quite different from 3D models created in other

modeling systems, reflecting the hand-drawn nature of the shape.

7.7. User Experience

The applet version of Teddy has undergone limited distribution, and has been used

(mainly by computer graphics researchers and students) to create different 3D models.

Feedback from these users indicates that Teddy is quite intuitive and encourages them

to explore various 3D designs. Figure 80 shows some 3D models create by novice users.

Note the users had no experience with traditional 3D modeling systems and they

created these models within several minutes. In addition, we have started close

observation of how first-time users (mainly graduate students in computer science)

learn Teddy. We start with a detailed tutorial and then show some stuffed animals,

asking the users to create them using Teddy. Generally, the users begin to create their

own models fluently within 10 minutes: five minutes of tutorial and five minutes of

guided practice. After that, it takes a few minutes for them to create a stuffed animal

such as those in Figure 60 (excluding the texture).

Figure 80. 3D models created by novice users in Teddy.

7.8. Future Work

Our current algorithms and implementation are robust and efficient enough for

experimental use. However, they can fail or generate unintuitive results when the user

draws unexpected strokes. We must devise more robust and flexible algorithms to

handle a variety of user inputs. In particular, we plan to enhance the extrusion

algorithm to allow more detailed control of surfaces. We are also considering using

implicit surface construction techniques.



124

Another important research direction is to develop additional modeling operations to

support a wider variety of shapes with arbitrary topology, and to allow more precise

control of the shape. Possible operations are creating creases, twisting the model, and

specifying the constraints between the separate parts for animation systems [103].

While we are satisfied with the simplicity of the current set of gestural operations, these

extended operations will inevitably complicate the interface, and careful interface

design will be required.

7.9. Summary

We introduced a sketching interface for freeform design, and described our current

algorithm and the Teddy system implementation. Unlike other sketch-based modelers,

our target is rotund, freeform models such as stuffed animals. The user specifies the

silhouette of the intended model interactively using freeform strokes, and the system

constructs a natural 3D model automatically. The user interface is significantly simple

and easy to use, and our implementation achieves real-time construction of polygonal

mesh based on 2D strokes. Our user experience has so far shown that first-time users

could create various organic models within minutes using the system.
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Chapter 8

Freeform User Interfaces Revisited

This chapter revisits the concept of the Freeform User Interface. While Chapter 3

explained the basic idea behind Freeform UI and defined it according to three basic

properties, this chapter analyzes its characteristics and limitations based on our

experience with the preceding four example systems. We also provide several design

guidelines for refining Freeform UI systems.

8.1. Analyzing Freeform User Interface Systems

We now review the example systems described in the preceding chapters and other

pen-based research systems for graphical applications from the perspective of Freeform

User Interfaces. In the Figure 81, we rate the previous systems in terms of the three

properties of Freeform UI: freeform strokes as input, perceptual processing, and

informal presentation. The goal of these ratings is to clarify the idea of Freeform UI in

the context of various research activities, rather than to evaluate each research project.

The first five systems are two-dimensional, and the last four systems are three-

dimensional.

System Freeform strokes as
input

Perceptual
processing

Informal
presentation

SILK [73] △ ─ ◯

Music Notepad [39] △ ─ ─

Baudel’s [6] ◯ △ ─
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PerSketch [127] ◯ △ ◯

Pegasus △ ◎ ◯

Path-drawing ◯ ◯ △

SKETCH [161] △ ◎ ◎

3D curves [22] ◯ ◯ ◯

Teddy ◯ ◎ ◎

Legend: Low                 High

─ △ ◯ ◎

Figure 81. Interface systems with Freeform UI property ratings.

SILK [73] and Music Notepad [39] are gesture-based systems. The user’s stroke must

conform to a predefined gesture, and arbitrary shapes are not recognized. This falls

short of the freeform stroking property. The system associates the stroke with an

appropriate symbol using a simple-pattern-matching algorithm. This is, again, in

contrast to the perceptual processing property, which aims to extract high-level implicit

information from strokes. One important contribution of SILK is its use of a sketchy

appearance. The recognized widgets are displayed in the form of freeform strokes

without being replaced by cleaned-up graphics. The authors reported that the informal

appearance facilitated the exploratory design activities.

Baudel’s mark-based technique for editing spline curves [6] is a good example of

stroking as a primary input. The user specifies a desired curve shape using a freeform

stroke, and the system modifies the curve appropriately. The PerSketch system [127] is

important in that it emphasizes the importance of perceptual structure in freeform

drawings. However, it is basically a simple scribbling system and does not perform any

high-level processing other than flexible grouping of line segments.

Current implementation of Pegasus does not sufficiently exhibit Freeform UI properties

in that it supports only straight line segments. It is our future work to support curves

and make Pegasus a complete Freeform UI. Pegasus’s context-aware beautification and

prediction are good examples of perceptual processing in that the system automatically
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infers high-level structures the user might perceive in the diagram. Pegasus

intentionally uses exceptionally thick line segments for displaying beautified segments

in order to prevent users from drawing too-complicated diagrams and expecting

excessive precision.

Path-drawing for 3D navigation exhibits Freeform UI properties to a reasonable extent.

It uses arbitrary freeform strokes as input, and finds the desired path considering the

structure of virtual 3D space. The painted path is presented in wide polyline in 3D

scenes.

The Sketch system [161] uses simple gestures for placing 3D objects in the scene. Some

gestures involve freeform strokes, but most consist of short straight line segments

representing characteristic edges of geometric primitives. The system calculates the

placement of objects in a 3D scene based on 2D input, considering the structure of the

3D scene and the user’s natural expectation that an object must rest on top of another

object. The authors introduced sketchy representation of 3D scenes, which was followed

by many similar efforts in the computer graphics research community [81]. Like the

SKETCH system, the sketch-based technique for 3D curves [22] infers the 3D shapes of

curves based on simple relationships between lines and shadows.

Teddy is a strong embodiment of Freeform UI. It introduced a fluent, natural interface

designed around stroke-based input for a task that has been considered significantly

complicated and difficult. It automatically infers the 3D shape of an object from a 2D

silhouette drawn by the user based on the assumption that typical freeform objects can

be represented by rotund surface. Teddy uses special pen-and-ink renderings for

displaying resulting 3D objects to facilitate exploratory activity and keep users from

worrying about details too much.

8.2. Limitations

Freeform UI achieves fluent interaction that is not possible with traditional GUI, but

several difficulties are inherent in it. This section discusses three major difficulties

(ambiguity, imprecision and learning), and the next section proposes possible solutions

to mitigate the problems.
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Freeform UI is characterized by its indirect interaction style. Traditional command-

based interfaces accept explicit command input and perform the command directly

without any hidden processing. In contrast, Freeform UI accepts highly ambiguous

freeform strokes as input, and performs complicated processing internally to infer the

user’s intention from the strokes. This indirectness enables simple and intuitive

interaction, but at the same time the result of computation can be contrary to the user’s

own expectation and can cause frustration. The indirect operation is inherently

associated with the problem of ambiguity. It is difficult to infer appropriate

interpretation from the user’s ambiguous freeform strokes, and the behavior of

perceptual processing can be seen as ambiguous from the user’s perspective.

Imprecision is another problem inherent in Freeform UI. While mouse-based careful

manipulation of each control point in traditional GUI is suitable for editing precise

diagrams, handwritten freeform strokes are not good at precise control. Perceptual

processing and informal presentation are also incompatible with precise manipulation.

The indirect nature of Freeform UI also requires a learning process by the novice user.

Because a simple stroke can transform to a variety of results, the user has to try many

strokes and accumulate experience to master the operation. In other words, Freeform

UI imposes certain implicit rules to infer complicated information from simple strokes,

and the user has to learn the implicit rules through experience. The additional difficulty

is that it is difficult to describe the operations of Freeform UI in a textual manual.

However, once novice users understand the basic behavior of the operations, they can

perform a variety of complicated tasks using a few operations. In contrast, it is

relatively easy to learn a single command operation in traditional command-based

interfaces, but the user has to learn many commands, and their combinations, to

perform practical tasks.

8.3. Guidelines to Mitigate the Limitations

Based on our implementation and user study experience, we found several techniques

and design guidelines to mitigate the these problems. Although it is impossible to

remove these difficulties entirely because they are strongly associated with the

essential nature of Freeform UI, the following tips work as basic guidelines to design a

good Freeform UI system.
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First, it is important to give users an appropriate impression that the system is not

designed for precise, detailed editing; this will help prevent frustration over ambiguous,

imprecise operation. We have already discussed that informal presentation is essential

to arousing appropriate expectations about the system’s behavior and to hide imprecise

details. In addition, a designer can install similar tricks in many places, such as in the

introduction to the system, in the system’s feedback messages and in the user manuals.

From a technical point of view, construction of multiple alternatives is an effective way

to mitigate ambiguity. This strategy is commonly used in Japanese text input systems

to type thousands of Chinese characters using a limited alphabet. Pegasus constructs

multiple alternatives as a result of beautification and prediction; this feature turned out

to be essential to making beautification and prediction perform practically. Construction

of multiple alternatives is definitely an important feature one should consider when

developing a system based on Freeform UI.

As for the problems of learning and ambiguity, it is important to make the interface

quick-responding and to ensure that changes can be easily undone so as to encourage

trial-and-error experience. It would be considerably frustrating if a user had to input a

lot of commands and wait a long time to see the result of computation for each operation.

In order to assure comfortable interaction with ambiguous Freeform UI systems, the

internal processing should return the result of computation instantly, and the interface

should allow lightweight interaction. Sometimes, it is necessary to sacrifice the quality

of computation to assure this quick response, which is in contrast to the fact that

traditional command-based systems frequently keep the user waiting during

complicated computations. For example, Teddy uses relatively simple algorithms to

calculate geometry quickly sacrificing surface quality, instead of using more advanced,

time-consuming algorithms.

Finally, it is necessary to give explanatory feedback for each operation so that the user

can easily understand why the system returned the unexpected result. This kind of

informative feedback is not very important in traditional command-based interfaces

because the system response is always predictable. However, well-designed informative

feedback is a crucial feature to prevent frustration and to facilitate the learning process

in Freeform UI. For example, Pegasus displays small marks indicating what kinds of

geometric constraints are satisfied by the beautified segment. In Teddy, many users
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reported that the sound effect was very important to understand the system’s behavior.

We believe that informative feedback can allow the user to learn how to use the system

without having to read manuals or tutorials beforehand; it is our future work to test

this idea through practical implementation and user study.

8.4. Summary

This chapter discussed the concept of Freeform UI from various directions. To clarify the

concept of Freeform UI, several interface systems were reviewed in the context of three

Freeform UI properties. We pointed out that ambiguity, imprecision, and requirement

for learning were the inherent difficulties of Freeform UI. Finally, the following design

guidelines were proposed to mitigate the problem: Informal presentation of contents,

generation of multiple alternatives, quickly responding, easily undoable system, and

informative feedback.
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Chapter 9

Conclusion

In this dissertation, we have addressed the problem of communicating informal

graphical ideas to computers. This chapter briefly summarizes the work, and discusses

some possibilities for future work.

9.1. Summary

Currently predominant WIMP-style GUI is not sufficient as the user interface design

paradigm to meet emerging needs for computing outside of office applications running

on desktop computers. Nielsen generalized these next-generation user interfaces as

non-command user interfaces [100], which allow the user to accomplish various tasks on

computers without having to give explicit commands. The goal of this dissertation is to

propose a non-command user interface framework for exploratory activities in the

domain of graphical computing.

We proposed an interface design framework for graphical computing based on pen-

based input, and named it Freeform UI. It uses freeform handwriting strokes as input,

allowing the user to convey graphical ideas to computers intuitively and fluently. The

system then recognizes the configuration of the strokes and performs appropriate

actions, freeing the users from tedious command operations. Finally, the system

presents the result of computation using informal rendering, which facilitates creative

thinking. Freeform UI is different from typical pen-based systems in that it analyzes

the perceptual structure of the drawings instead of using simple pattern-matching. We

described the following four example user interface systems as our basis for clarifying

the strengths and limitations of Freeform UI.

Pegasus is a 2D drawing program based on interactive beautification and prediction.
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The system infers possible geometric constraints in the user’s freeform stroke input,

and automatically beautifies the stroke satisfying the constraints. It generates multiple

alternatives as the result of beautification, as a way to overcome the inherent ambiguity

in freeform strokes. The system also predicts the user’s next drawings from the

surrounding context. Using beautification and prediction, the user can construct precise

2D geometric illustrations without using complicated editing commands. A brief user

study showed that users can draw simple 2D diagrams more precisely and rapidly using

interactive beautification than with traditional CAD and drawing programs.

Path-drawing is a pen-based interaction technique for navigating through virtual 3D

environments fluently. The user draws the desired path on the 2D screen using a

freeform stroke, and the camera and avatar move along the projected path on the

walking surface. This technique frees the user from constant control caused by the

driving technique, and provides richer control than the simple click-and-jump technique.

Path-drawing navigation showed comparable performance and user satisfaction in our

user study.

Flatland is an experimental electronic office whiteboard system. It was designed to

support concurrent and continuous activities on personal office whiteboards as opposed

to task-specific short-term activities in meetings. We introduced an efficient screen real

estate management mechanism, pluggable application behaviors working on the

surface and an efficient history management mechanism. The system works as an

infrastructure for running various stroke-based applications including Pegasus and

Teddy.

Teddy is a sketch-based 3D freeform modeling system. The user draws 2D freeform

strokes interactively, and the system automatically constructs a reasonable 3D

geometry. The system is unique in that it is designed for rotund, freeform models such

as stuffed animals, which have been prohibitively difficult for the novice user to create

with traditional 3D modelers. The system uses interactive non-photorealistic rendering

to prevent the user from worrying about the details and to encourage exploration.

Based on these implementation efforts and user experiences, we observed that

ambiguity, imprecision and the requirement for learning are the inherent difficulties of

Freeform UI. We then proposed several design guidelines to mitigate the problems. For

example, informal presentation of contents gives an appropriate expectation in the
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user’s mind, and the generation of multiple alternatives can address the problem of

ambiguity to some extent.

9.2. Future Directions

The basic idea behind Freeform UI is to leverage the user’s drawing ability in

computing environments. The four experimental systems described in this dissertation

are only a small sample of the broad possibilities. This section discusses some future

directions to explore further possibilities of drawing-based interfaces.

Various 3D input devices and active force feedback devices [107,111] are already on the

market. The idea of Freeform UI can lead to more-effective use of these devices than is

current the case. In general, research efforts on 3D devices and force feedback devices

focus on simulating the interaction style of the physical world in the virtual world. This

is only a first step, which corresponds to scribbling programs for 2D pen-based systems.

The next step should be to infer an advanced perceptual structure in the 3D trajectory

and to achieve fluent interaction beyond simple scribbling. One inherent difficulty with

these 3D devices is that people are not familiar with drawing strokes in a 3D empty

space. Drawing on a 3D surface using force feedback devices is expected to be better

than drawing freely in an empty space.

Motion can be represented as a freeform path with temporal information, and it might

be possible to use freeform sketching for specifying character animation. The question is

how to specify temporal information using freeform strokes. The temporal information

is not included in physical sketching, and it is not clear what kind of interface metaphor

works well for general users. It might be possible to use the movement of pen during

drawing operation, but it can be unintuitive because people are not used to controlling

temporal parameters during drawing.

Freeform strokes can be used to find similar drawings in a large picture database.

Stroke-based information retrieval is discussed in the Electronic Cocktail Napkin

project [49,50], but those designers use the configuration of simple primitives as the

basis for calculating similarity. Their system can find drawings consisting of simple

primitives such as a circle inside a rectangle, but it cannot find arbitrary freeform

drawings such as a cat’s silhouette. Geometric shape analysis methods, such as those
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used in Teddy [113] can be a powerful tool for these shape-retrieval systems.

A natural extension of Pegasus and Teddy is to combine them. The idea is to integrate

beautification and prediction into 3D drawing interfaces such as Teddy and SKETCH.

Basic geometric constraints such as connection and symmetry are commonly seen in

typical 3D objects, and it will be significantly helpful to satisfy these constraints

automatically. One possible problem is that it is difficult to visualize multiple

possibilities in a 3D space because they will inevitably overlap each other. It is also

unclear how to let the user select one of several overlapping candidates.

As we have discussed in Chapter 7, the important challenge of Freeform UI is the

design of informative feedback or situated exploratory helps. In command-based UI, it

is relatively easy to describe the system’s behavior to novice users because the system’s

reaction to each command is well defined and obvious. However, the relationship

between the user’s freeform stroke input and the system’s reaction to it is complicated

in Freeform UI, and informative feedback to each user’s input stroke is necessary to

make the user understand this complicated relationship without a manual and a

tutorial. Although we have addressed this problem a little in Pegasus, nothing has been

done along these lines in Teddy. It is in our future work to find a general framework for

designing good informative feedback through implementation efforts and user study.

Adaptation and customization remain unexplored in this dissertation, but these

mechanisms are critical to improving the productivity of Freeform UI systems.

Perceptual processing is inherently ambiguous and arbitrary. Automatic adaptation

and/or explicit customization are required to make perceptual processing produce

appropriate results expected by individual users. It is relatively easy if the system

generates multiple candidates. The system can learn the user’s preference from what

candidate the user selects. In the case of Pegasus, it is possible to learn what kinds of

constraints the user prefers. A more complicated technique is to infer the user’s

preferences from the sequence of undo-and-retry operations. If the user dislikes a result

of an initial stroke, redraws a similar stroke and is satisfied by the new result, the

system can learn that it should generate the second result from the original stroke.

All systems introduced in this dissertation are research prototypes. The real evaluation

and contribution of these ideas will come from the deployment of real products based on

Freeform UI. Many issues must be addressed to make Freeform UI into successful
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commercial products, including robust algorithms, intensive user studies, refined

system design, and carefully designed manuals, tutorials, and informative feedback. We

suspect that significant amounts of resources and trial-and-error processes will be

required to develop these new kinds of application programs, but only such efforts can

open new frontiers in computing.

9.3. Concluding Remarks

I was fascinated by pen-based computing when I saw the Xerox LiveBoard in 1995. I

spent all day drawing various illustrations on the LiveBoard using Microsoft’s paint

program. It was fun, but I noticed that the system did not make the most of pen-based

input, because the entire interface (Windows for Pen Computing) was designed for

operation with a mouse. It was really frustrating to push buttons, select menus, and

drag handles using a pen. In addition, the drawing activity in the paint program was

essentially nothing more than drawing using a plain pen and paper. Handwriting

character recognition and gesture recognition were commonly used, but I thought that

something more could be possible with pen computers. This experience led me to explore

various pen-based interaction techniques beyond mouse-oriented GUI and physical

pen-and-paper drawings, and that in turn led me to come up with the concept of

Freeform UI.

It is often the case that people simply apply traditional GUI to a new input device, or

they simply import the device’s physical interaction style into a computer, without

considering the essential nature of the input device. For example, early voice

recognition systems used a voice to select an item in a menu, and another typical

program was just to record the voice without any processing. Another good example of

poor application is an attempt to use an eye-tracking system to replace pressing buttons

on a screen. These approaches may be useful to a certain extent, but ultimately, the

most effective use of a new input device can only be possible by designing an

appropriate interaction technique for the device. The biggest message of this

dissertation is that one can design a powerful interaction technique by considering the

essential strength of a new input device, instead of naïvely applying existing interface

framework to the device.
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