Developer Oriented Visualisation of a Robot Program

An Augmented Reality Approach

T. H. J. Collett and B. A. MacDonald

Department of Electrical and Computer Engineering, The University of Auckland, New Zealand
t.collett at auckland.ac.nz, b.macdonald at auckland.ac.nz

ABSTRACT

Robot programmers are faced with the challenging problem
of understanding the robot’s view of its world, both when
creating and when debugging robot software. As a result
tools are created as needed in different laboratories for dif-
ferent robots and different applications. We discuss the re-
quirements for effective interaction under these conditions,
and propose an augmented reality approach to visualising
robot input, output and state information, including geo-
metric data such as laser range scans, temporal data such
as the past robot path, conditional data such as possible
future robot paths, and statistical data such as localisation
distributions. The visualisation techniques must scale ap-
propriately as robot data and complexity increases. Our
current progress in developing a robot visualisation toolkit
is presented.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics—operator inter-
faces

General Terms

Algorithms, Human Factors

1. INTRODUCTION

Currently when researchers wish to program robot ap-
plications they tend to use an ad hoc combination of tools
and languages selected from both traditional application de-
velopment tools and proprietary robotic tools. However,
robotic systems have a number of unique challenges that
these tools are not designed to target, particularly:

e The nature of the robot environment

— Dynamic, realtime

— Unexpected variations cause non-repeatable be-
haviour and unexpected conditions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HRI’06, March 2-4, 2006, Salt Lake City, Utah, USA.

Copyright 2006 ACM 1-59593-294-1/06/0003 ...$5.00.

49

e The nature of the robot being debugged
— Mobility (i.e. the debugging target hardware moves
away from the programmer)

— A large number of devices for input, output and
storage, which far exceed human programmers’
familiar senses and effectors, compared to the few
devices in a desktop or server.

— Wide variations in hardware and interfaces, as
opposed to the highly commoditized desktop.

e The nature of mobile robot tasks

— Emphasis on geometry and 3D space

Complex data types and environments

Potentially uninterruptible

— Simultaneous and unrelated activity on many in-
puts and outputs

Some of these challenges are also exhibited by some tradi-
tional, non-robotic applications, but they have generally not
been targeted by mainstream development tools. In addi-
tion, it is worth noting that concurrency is still not handled
well in many debugging environments, although it is often
present in traditional applications. This weakness carries
over to the robot development domain.

The result is that each robotics lab develops its own tools
to aid in debugging the complexities of robot programming,
often with different tools for each robot in the lab, and while
some of these tools (such as Player/Stage [15]) are becoming
more widely used, most of the tools need to be reinvented
for each new robot system or driver.

A common thread of these challenges is that the environ-
ment and the robot’s interaction with the environment are
what makes robot programming different and challenging.
In other words it is the programmer’s lack of understanding
of the robot’s world view that makes robot programs difficult
to code and debug.

Augmented reality (AR) provides an ideal presentation of
the robot’s world view; it displays robot data layered within
the real environment. By viewing the data in context with
the real world the developer is able to compare the robot’s
world view against the ground truth of the read world image
without needing to know the exact state of the world at all
times. This makes clear not only the robot’s world view but
also the discrepancies with the real world. The main chal-
lenge in AR is to accurately track the human user so that the
overlaid data is accurately positioned as the human viewer

NN

Output

Robot User

Input

NN
D Robot Perceptual Space

Human Perceptual Space

Figure 1: Shared Human-Robot Perceptual Space

Shared Perceptual Space

changes position and orientation. However this is generally
a simpler problem than the alternative, which is to track
the entirety of a potentially large and dynamic real world
environment and explicitly calculate a comparison between
the robot view and the actual world view.

The aim of this work is to enhance the developer’s in-
terface to the robot system in order to promote a better
understanding of the robot’s world view. We begin by out-
lining the nature of robot programs and giving an analysis of
what the developer needs to see visualised. Following this
we introduce a possible solution by graphically displaying
robot sensor data in an AR system.

2. REQUIREMENTS FOR EFFECTIVE
INTERACTION

Breazeal [4] identifies three key requirements for effective
human-robot interaction; overlapping perceptual space, ap-
propriate interaction distance, and safety.

Both the human user and the robot have a perceptual
space where communication is meaningful, and it is the over-
lap of these two spaces that is the interaction space of the
human-robot coupling (Figure 1). The interaction space for
input may be different from the output space. For example
a robot that knows how to represent an emotion using fa-
cial expressions but cannot recognise the facial expressions
of its interaction partner will have differing input and out-
put spaces. Any mismatch between the perceptual input
and output space may put additional cognitive load on the
user, who will have to perform additional translations before
communicating with the robot.

By allowing the developer to understand the robot’s world
view we are effectively enhancing the shared space as we are
allowing the developer to view the world in the same way as
the robot.

3. RELATED WORK

A number of existing robot applications have visualisa-
tions built in to aid in using the systems. Player/Stage [15]
provides distributed hardware abstraction and a number of
other robot algorithms. Player/Stage includes visualisations
in the form of the playerv tool, an example laser visualisation
is shown in Figure 2. CARMEN [6] provides navigation ser-
vices with a range of visualisations for the robot’s environ-
ment map (Figure 3). Lego Mindstorms Vision Command
image processing interface shows processing results [11], and

50

v/ PlayerViewer localhost: 6665 N-E

File Wiew Devices

O

EOTn

L T,

-

Figure 2: playerv laser visualisation

= Map [
File Edit Wiew

Help

Tools: brush] rectangte] line] fil] fuzey fil] eye dropper] zoom| brush X: 280 Y: 203

meters |0

Ink (Probahility)
]
0.80
Figure 3: CARMEN Map Editor with map visualisation
(from [6])

Fuzziness
| | smaller ‘ larger | smaller | larger |
oo 3 &

Brush size Line size Shape fill
not filedt | filed |

not filled

unknown

offlimits

the GSV tool provides general visualisation within a real-
time 3d game engine [18]. UsarSIM also provides a robot
simulation with a 3d game engine [19]. Individual sensor
manufacturers also provide visualisation system with their
hardware, for example Hokuyo Automatic provides an Open
GL visualisation of the URG laser range scan including his-
torical data (Figure 4) [2]. These systems either present the
data in isolation, with no mapping to a world view, or rely
on a static pre-built map of the world.

In addition to these basic robot visualisations, AR and
virtual reality (VR) have been used in a number of different
robotic applications.

Shikata et al [17] present an algorithm evaluation sys-
tem that uses virtual robots in a virtual world to test the
performance of avoidance algorithms when human users are
involved. The main advantage is that a real human is used
rather than a scripted one, thus giving more accurate be-

Figure 4: Hokuyo URG laser visualisation

haviour while at the same time the virtual robots mean there
are no safety issues. In particular the system is used to test
avoidance algorithms with no danger to the human user from
collisions occurring when the algorithm fails. Milgram et al
used AR in creating a virtual measuring tape and a virtual
tether to assist inserting a peg in a hole [12,13]. Freund et
al [10] use AR to more simply display complex 3D state in-
formation about autonomous systems. Raghavan et al [16]
describe an interactive tool for augmenting the real scene
during mechanical assembly. Pettersen et al [14] present a
method to improve the teaching of way points to a paint-
ing robot, using AR to show the simulated painting process
implied by the taught way points. Brujic-Okretic et al [5]
describe an AR system that integrates graphical and sensory
information for remotely controlling a vehicle.

Daily et al [7] use AR to present information from a swarm
robotics network designed for search and rescue. Recently
KUKA have also begun to investigate AR to help visualise
data during training [3].

Amstutz and Fagg [1] describe an implementation for rep-
resenting the combined data of a large number of sensors
on multiple mobile platforms (potentially robots), using AR
and VR to display the information.

This paper focuses on a toolkit for developer oriented AR,
initially for sensor visualisation, with an emphasis on under-
standing the requirements and principles involved.

4. VISUALISING A ROBOT PROGRAM

The visualisation of a robot program can either be ap-
proached as an automatic process, where the developer sim-
ply writes their code and the system infers how to visualise
it, or as a manual process, where the developer is provided
with a toolkit, but is expected to generate the visualisation
themselves. The pragmatic approach is to attempt to pro-
vide automatic visualisations for as much of the system as
possible, while still providing a developer with the ability to
easily generate their own custom visualisations.

Automatic visualisation for robotics is equivalent to the
abilities of traditional debuggers to meaningfully display ba-
sic data types such as strings and simple structures. Fig-
ure 5 shows a screenshot of the Eclipse debugger [9], pre-
senting the structure of the player laser proxy data. Fig-
ure 6 shows a screenshot of the DDD debugger’s graphical
visualisation for a list structure [8]. Most current developer
Integrated Development Environments (IDEs) take the ap-

51

= Variables 52 - Breakpoints Memory| Shared Libraries Registers Signals i
v v senmme

% BB %% ~¥=0

b @ receivedtime
~ < public = 0x00000000
P scan_count = 180
fscanjss = 0.017278759594743863
#min_angle = -1.5707963267948966
max_angle = 1.5707963267948956
Prange_res = 1.0
Pintensity = false
b Hscan
< #point
b [=10...99]
~ [21100..199]
1 point[100]
point[L01]
1 point[101][0] = 0.027471860728689818
7 point[101][1] = -1.5897626542563212
point[102]
7 point[102][0] = 0.05493551978541112
7 point[102][1] = -1.589050687884407
point[103]
point[103][0] = 0.08393716998352108
point[103][1] = -1.617824017467647
2 point[104]
2 point[105]
' point[L0O6]

q

q

q

{0.027471850728689818, -1.5897626542563212} B

1 v

Figure 5: Eclipse IDE debug window

-8R DDD: fpublicisource/programming/ddd-3.2fddd/icrxtest.C -0 X
File Edit View Program Commands Status Source Data Help |

A o :

0| 1ist—>se1f] c® B @ e 2 o
Lokup Fini Bremk Watch prinr (A)

Dizpok: Uil

self. self.

1: Tist =)
(List *) Dx804df80 .

0x804df90

1ist—next = new List{a_global + start++); EL x Al
Tist=rnext—rnext = new List{a_global + start++);
Tist—rnext—rnext—>next = list; Run
@ (void) Tisk: /f Display this Interrupt
P delete 195plCLISt *) OxBO4df80 Step | Stepi
delete list—rnext; Next | Messti
delete list;
) unti | Frish |
If Test -4 DDD Tip of the Day #5 > Fan
B
void 1is b
1ist If you made a mistake, Iry Edit—Undo. This will undo the most ﬂ
recent debugger command and redisplay the previous program state. |
e |
£
void ref
€ date Close Prev Tip Mext Tip
dele
2 date=-

EQSE% graph display *(1ist—rnext—>next->self) dependent on 4
g B

A list= (List *) Dx804dfen

= | hHETRHE

Figure 6: DDD visualisation of a list structure (from [8]

i

proach of displaying “text plus.” The fundamental data is
displayed as text, but it is augmented by simple tree struc-
tures and colour, like those shown in Figures 5 and 6.

The ability to generate a custom visualisation is akin to
manual debugging output created by each programmer in-
serting print statements; here the developer can concisely
summarise printed information about execution in a partic-
ular piece of code as they know what it means. Custom visu-
alisations can be powerful if included in base class designs;
providing visualisations for many software objects with a
minimum of coding.

In order for automatic visualisation to be useful the pro-
gram being visualised must have some form of known struc-
ture or data types. Conceptually the program can be viewed
as having four elements: input, output, state and kernel. If

we require the input and output of the program to conform
to standard interfaces then it becomes possible to imple-
ment standard visualisations of these, and thus provide au-
tomatic visualisations. The state involves the internal data
structures a robot program uses, and the kernel the main
algorithms.

The state of the program is more difficult to visualise au-
tomatically as it does not generally conform to a predefined
structure. However at a finer level of granularity individual
components of the internal state can have standard visual-
isations written, such as for a predefined set of geometric
datatypes. The difficulty of this approach is ensuring its
scalability, the best visualisation for a complex system may
not be the visualisation of all its components combined to-
gether. For example in an imaging system that tracks colour
blobs it may not be useful to display the location of every
possible match within an image. Instead a selection of the
most likely matches could be more useful. However the cri-
teria would depend on the application; it could involve the
single most likely match, the top 10, all the possible matches
above a certain size, or some other criteria. It may be diffi-
cult to provide a useful automatic visualisation. Given the
problem of scalability, for our approach to be useful we need
to provide meaningful groupings of the known data types.

A method of easing the problem of visualising internal
state is to create robot programs as standalone fragments
that communicate through standard interfaces. Here we
force the system to adhere to a standard but amorphous
structure providing ‘checkpoints’ where the data is in a known
form, reducing the amount of freeform program that may re-
quire manual visualisations to be written.

Apart from the environmental nature of robot data, such
as geometry based representations, the kernels of robot pro-
grams are very similar to standard applications, utilising
many of the same algorithmic techniques. The visualisation
of these algorithmic elements has already received signifi-
cant attention in areas such as graphical programming and
we will not examine these issues here.

It is important to emphasise at this point that we wish to
visualise the robot’s view of the world, via its sensor data
and historical state. A display of the actual world state is
however useful as a baseline reference, if the actual state is
known. For example if a robot program is receiving erro-
neous sonar data, the developer must see this data just as
it is, even if the correct value is known to the visualisation
system. An AR system inherently shows the correct value
alongside the incorrect sensed value, to allow the developer
to isolate the differences between the robot’s world view and
the actual world state quickly, and program the robot to act
accordingly.

The remainder of this paper considers the automatic vi-
sualisation of robot data, and the relationships between the
data. The issues of manual visualisation and kernel visuali-
sation will be discussed elsewhere.

4.1 Characterising Robot Data

Robot data that is input, output or internal state can be
characterised in a number of different ways. Here we focus
on distinctions that alter the way we desire to view the data.
Important distinctions include whether the data is:

e geometric or abstract in nature

52

e temporal or static
e conditional
e statistical

For example the current laser scan of the robot is geo-
metric data, which may also have a statistical aspect if the
measurement error is known. A security robot could use
temporal data to represent the time since the last scan of
particular areas of its patrol route. Temporal data also ap-
plies to scheduled events, for example when a vacuuming
robot operates only during certain hours of the day to avoid
disturbing residents. Conditional data generally is used to
represent an action that might happen, for example options
in a planned path, such as backing off if a person approaches
too closely.

In general we can display data as textual information,
graphical information or a combination of the two. Other
display techniques are also available, such as aural or textu-
ral display, but these are less generally applicable for infor-
mation display (for example aural display is often suited to
warnings or exclamations rather than data display).

Given the environmental nature of our robotic data we
will explore graphically dominated methods of display. This
does not mean that there can not be effective textual rep-
resentations of the data, but we expect that more progress
will initially be gained by exploring graphical visualisations
that have a direction relationship with the real scene.

The following paragraphs give an outline of the key ele-
ments of each type of data, however the ideal method of
visualising each will of course be application dependant.
Because of this variety of potential visualisations the AR
toolkit presented in Section 5 has been designed to allow
the developer to create the best visualisation for their ap-
plication and platform.

4.1.1 Geometric Data

To display geometric data we need to display the physical
structure of the geometry the data represents, preferably in
context on a global view where this is relevant to the data.

For example sonar data could be displayed either as a
line or cone that originates from the sensor origin up to the
length of the sonar reading. There are an unlimited number
of variations in exactly how the visualisation will appear,
and the choice of a specific one will largely depend on the
specific environment and the purpose of the environment.
For example if a sonar reading is displayed as a cone this
will give an indication of exactly what the robot can and
cannot see with that particular sensor, however displaying
the sonar reading as a single ray will often reflect the robots
internal model of the sensor more accurately. Figure 2 shows
the display of laser scans as geometric data and Figure 9(a)
gives an example of an AR representation.

Depending on the complexity of the geometric data set,
a method of grouping the individual data points allows the
developer to more easily grasp the complete data set.

4.1.2 Temporal Data

Temporal data has two important aspects that we need to
be able to represent, its age and its dynamic nature. Gener-
ally with a temporal data set the elements that are further
away from the present time (either in the future or in the
past) are less relevant and so emphasis needs to be placed on

Figure 7: SLAM data representation; the robot position as
a green star, the probable robot positions in fine blue dots,
laser scan data in coarse red dots. [from David Yuen with
permission].

samples with close temporal proximity. Data elements with
a dynamic nature, such as moving objects, need a simple
way of displaying this.

Temporal data in current robot programs is dominated by
historic data, for example the path the robot has travelled
and historic sensor readings. The important aspect of vi-
sualising this data is to render its temporal value in a non
invasive way. One technique for is to graphically age data,
for example slowly fading out areas of a map that have not
been visited for some length of time. Dynamic data could
be shown as vectors or as predicted and historical paths for
the moving object. Figures 4 and 10(b) respectively show
historic data for a laser scanner and odometry readings

Some aspects of historical data can be treated as statisti-
cal data since the accuracy becomes more uncertain as the
data becomes older. This could be the case for a security
robot that estimates a risk level for its patrol zones based
partly on how long ago they were last visited.

4.1.3 Conditional Data

The key aspects of conditional data are that there is a set
of potential outcomes (a minimum of 2), and that there is a
condition or set of conditions that will affect the outcome.

Conditional data can use a graphical method, such as
transparency, to indicate that the data is not yet certain.
In addition to this the links between cause and effect could
be used to good effect, showing what a particular piece of
data depends on to become current.

4.1.4 Statistical Data

Visualisation of statistical data must show the distribu-
tion of the data, or the certainty that it is a particular value.
The minimum, maximum and expected values can be shown
graphically. Intensity or transparency can be varied accord-
ing to the statistical distribution (eg a Gaussian distribution
of intensity can be depicted around the mean value).

Many simultaneous localisation and mapping (SLAM) sys-
tems use an ellipse or sampled distribution to represent the
probable location of the robot (see for example [20]). The
distribution peaks broaden as the location becomes less cer-
tain. Figure 7 shows a sampled distribution of possible robot
positions (in fine blue dots), along with range data (in coarse
red dots) and the actual robot position (the green star); our
goal would be to overlay this on the real view of the world.

53

4.2 More than just data

A key concern we have already mentioned is that of scal-
ability in the visualisation of robot programs. Just because
the readings of a sonar sensor can be effectively displayed
in an intuitive way does not mean that an entire robot sys-
tem can be displayed so easily. The scaling problem is worse
for a multirobot system. As more information must be dis-
played, it becomes more difficult to add additional, clear,
meaningful visualisations.

We can deal with this problem in two main ways, by mak-
ing the visualisations themselves more scalable and by cre-
ating a user interface for the visualisation system that gives
the developer sufficient control over how and what is dis-
played, so that they can still carry out meaningful work
with a complex robot system.

To make the visualisations themselves more scalable we
must look at the relationships between the different elements
to be visualised. This might involve grouping similar ele-
ments, such as rendering the outline of a laser scan rather
than each individual value, or colouring related items in the
same colour. We can also look at the links between oth-
erwise unrelated datasets such as conditional outputs that
rely on certain inputs. Finally we can provide alternate vi-
sualisations for groupings, rather than just displaying each
visualisation from the group together.

The user interface for the developer should ideally be in-
tegrated into the existing developer environment, either as
part of the robot interface or as part of an IDE. The user
interface needs to give the user the ability to control the
visualisation, in particular the ability to select which ele-
ments to visualise, where to visualise them, the layering of
components and control of the grouping of components. To
a large extent the features of the visualisation user interface
parallel those of a modern window manager in a graphical
PC environment, dealing with visualisation elements instead
of windows. Just as a programmer opens, closes, resizes,
moves and manipulates windows to carry out programming
and debugging in graphical user interface, we expect a robot
developer to manipulate visualisations in a robot AR envi-
ronment.

S. ANAUGMENTED REALITY TOOKIT FOR

SENSOR VISUALISATION

The remainder of this paper describes our prototype AR
developer-robot interaction system. The initial stage of im-
plementation has focused on the development of a sensor
visualisation system to aid developer understanding of the
robot’s world view. Only visualisation of geometric data has
been considered at this stage.

Given the rapidly changing nature of available AR hard-
ware and software techniques any systems making use of the
technology must be flexible and independent of any specific
AR implementation.

The software architecture used for this research has been
designed in a highly modular fashion allowing for individ-
ual components to be replaced as required. The prototype
also provides reference implementations of each type of ob-
ject, particularly using the Player/Stage project [15], and
Video for Linux capture devices. The full source for the li-
brary is available for download from http://robotics.ece.
auckland.ac.nz/.

The rendering process for the toolkit is broken into four
basic stages: capture, preprocessing, rendering and post-
processing. The rendering stage is further broken down into
three rendering layers and a ray trace step is optionally per-
formed to enhance stereo representations. Each step is de-
scribed below.

1. Capture: the background frame, orientation and posi-
tion of the camera are captured.

2. Pre—processing: such as blob tracking for robot regis-
tration.

3. Render - Transformation: the position of the render
object is extracted from its associated list of position
objects, and appropriate view transforms are applied

4. Render - Base: invisible models of any known 3d ob-
jects are rendered into the depth buffer. This allows for
tracked objects such as the robot to obstruct the view
of the virtual data behind them. The colour buffers are
not touched as the visual representation of the objects
was captured by the camera.

5. Render - Solid: the solid virtual elements are drawn.

6. Render - Transparent: transparent render objects are
now drawn while writing to the depth buffer is dis-
abled.

7. Ray Trace: to aid in stereo convergence calculation,
the distance to the virtual element in the centre of
the view is estimated using ray tracing. This is of
particular relevance to stereo AR systems with control
of convergence, and optical see through stereo systems.

8. Post—processing: once the frame is rendered any post
processing or secondary output modules are called.
This allows the completed frame to be read out of
the frame buffer and, for example, encoded to a movie
stream.

The toolkit architecture is centred around an output de-
vice. Each output device contains a capture device for grab-
bing the real world frame (this could be a null object for op-
tical see through AR, or for a purely virtual environment)
and a camera device for returning the camera parameters,
including pose. Also, the output device maintains three
component lists: secondary outputs (which monitor the in-
terface, i.e. movie capture); preprocessing objects (used for
image based position tracking); and finally a list of render
item pairs. Each Render Pair consists of a render object
that performs the actual rendering of a virtual element and
a chain of position objects that define where it should be
rendered.

Figure 8 shows the software structure. The first four items
(Capture, Camera, Secondary output and Preprocessing)
are all unique to the output object. The render objects
and position objects can be used in multiple combinations,
potentially with different output objects. For example a
Stereo HMD needs the same laser data (render object) on
both displays (output objects), while for a single output the
same origin (position object) could be used to render both
laser and sonar data.

Currently we are utilising two basic setups for our AR
work, the first is a overhead camera with a wall mounted

Output
Object

¢ { | |)

Capture Camera Secondary Preprocess Render
Object Object Outputs Objects List

E Position Object
:'{ RenderObject

'

. Position Object
:\{ RenderObject

'

Figure 8: ARDev Software Architecture

(a) Laser data origin

(b) Laser data edge

Figure 9: Magnetically tracked HMD Output

display and the second is a stereo video see through head
mounted display. The results of using these systems are
shown in Figure 9 and Figure 10.

As can been seen in the screen shots the AR system pro-
vides an effective means of visualising the geometric data

oy Collett

(a) Sonar Sensors on Pioneer Robot

(b) Pioneer Odometry History

(c) Shuriken Robot with IR and Sonar

Figure 10: Overhead camera AR Output

55

sets, for example in Figure 10(c) it is immediately obvious
that the sonar sensor (blue) is unable to correctly measure
the distance to the box, whereas the IR sensor (purple) cor-
rectly measures this value.

6. DISCUSSION

Given the current system is still in an early prototype
stage, it is not yet ready for qualitative user testing. Early
informal results of people interacting with the system have
been positive. The system has been shown to be good at
picking up sensor hardware faults, for example when cables
are blocking sensor scans.

The system also demonstrates the fundamental limita-
tions of some of the sensors well which is advantageous to
people who are new to robotics, as an example students
looking at the system were able to see the effect of the an-
gle of incidence for an ultrasonic sensor. The understanding
of the limitations of the sensors is very important for un-
derstanding why a robot application is not functioning as
expected.

While this paper has considered the applications of AR
to developer-robot interaction, we see a wide range of ap-
plications for AR technology in HRI for many different user
types. AR has the ability to bridge the gap in understand-
ing between the robot and human user, allowing the user to
understand the intentions and limitations of the robot in an
effective and intuitive way. The toolkit we have developed
has intentionally been built as a flexible system that could
be applied to these broad areas.

7. CONCLUSIONS

Robot programmers are faced with the challenging prob-
lem of understanding the robot’s view of its world, both
when creating and when debugging robot software. Require-
ments for effective interaction under these conditions include
the need to maximize the overlapping perceptual space of
robots and humans. An AR system can increase this overlap
by overlaying information about the robot’s sensory data on
a real view of the robot and its environment. Input, output,
state and algorithmic information may be visualised.

Our AR toolkit provides intuitive representations of geo-
metric data sets for the robot developer. The use of AR for
the visualisations gives the developer an immediate under-
standing of the robot data in context with the real world
baseline. This allows any limitations in the robot’s world
view to be understood, leading to much faster solutions to
related software issues. Our initial implementation of these
concepts has shown useful and promising results for robot
software development.

Acknowledgement

Toby Collett is funded by a top achiever doctoral scholarship
from the New Zealand Tertiary Education Commission.

81 REFERENCES

P. Amstutz and A. Fagg. Real time visualization of robot state
with mobile virtual reality. In Proc. IEEE International
Conference on Robotics and Automation (ICRA 02),

volume 1, pages 241-247, 2002.

[2] H. Automatic. http://www.hokuyo-aut.jp/, August 2005.

[3] R. Bischoff and A. Kazi. Perspectives on augmented reality
based human-robot interaction with industrial robots. In Proc.
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 04), pages 3226-3231, 2004.

5]

(6]
[7]

(11]

(12]

(13]

C. Breazeal, A. Edsinger, P. Fitzpatrick, and B. Scassellati.
Active vision for sociable robots. IEEE Trans. Syst., Man,
Cybern. A, 31(5):443-453, 2001.

V. Brujic-Okretic, J.-Y. Guillemaut, L. Hitchin, M. Michielen,
and G. Parker. Remote vehicle manoeuvring using augmented
reality. In International Conference on Visual Information
Engineering. VIE 2003., pages 186—9, 7-9 July 2003.
CARMEN. Carmen: Carnegie mellon robot navigation toolkit.
http://www.cs.cmu.edu/ carmen/, June 2003.

M. Daily, Y. Cho, K. Martin, and D. Payton. World embedded
interfaces for human-robot interaction. In Proc. 36th Annual
Hawaii International Conference on System Sciences, pages
125-130, 2003.

DDD - Data Display Debugger.
http://www.gnu.org/software/ddd, August 2005.

Eclipse. http://www.eclipse.org, August 2005.

E. Freund, M. Schluse, and J. Rossmann. State oriented
modeling as enabling technology for projective virtual reality.
In Proc. IEEE/RSJ International Conference on Intelligent
Robots and System (IROS 01), volume 4, pages 1842-1847,
2001.

LEGO Mindstorms. Lego mindstorms.
http://mindstorms.lego.com/, January 2005.

P. Milgram, A. Rastogi, and J. Grodski. Telerobotic control
using augmented reality. In Proceedings., 4th IEEE
International Workshop on Robot and Human
Communication. RO-MAN’95, pages 21-9, Tokyo, 5-7 July
1995.

P. Milgram, S. Zhai, D. Drascic, and J. J. Grodski. Applications
of augmented reality for human-robot communication. In Proc.
IEEE/RSJ International Conference on Intelligent Robots
and System (IROS 93), volume 3, pages 1467-1472, 1993.

56

(14]

(18]

[16]

(17]

(18]

(19]

(20]

T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and

T. Lokstad. Augmented reality for programming industrial
robots. In Proceedings of the Second IEEE and ACM
International Symposium on Mized and Augmented Reality,
pages 319-20, 7-10 Oct 2003.

Player/Stage. The player/stage project.
http://playerstage.sourceforge.net/, January 2005.

V. Raghavan, J. Molineros, and R. Sharma. Interactive
evaluation of assembly sequences using augmented reality.
Robotics and Automation, IEEE Transactions on,
15(3):435-449, 1999.

R. Shikata, T. Goto, H. Noborio, and H. Ishiguro.
Wearable-based evaluation of human-robot interactions in
robot path-planning. In Proc. IEEE International Conference
on Robotics and Automation (ICRA 08), volume 2, pages
1946-1953, 2003.

F.-E. Trépanier and B. A. MacDonald. Graphical simulation
and visualisation tool for a distributed robot programmin g
environment. In Proceedings of the Australasian Conference
on Robotics and Automation, CSIRO, Brisbane, Australia,
December 1-3 2003.

J. Wang, M. Lewis, S. Hughes, and M. Koes. Validating
usarsim for use in hri research. In Human Factors and
Ergonomics Society 49th Annual Meeting, Proceedings of the,
pages 457-461, 2005.

D. C. Yuen and B. A. MacDonald. An evaluation of sequential
monte carlo technique for simultaneous localisation and
map-building. In Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA’03), pages 1564-9, Taipei, September 2003.

