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ABSTRACT
A method is presented for kinematic pose estimation and
action recognition from monocular robot vision through the
use of dynamical human motion vocabularies. We propose
the utilization of dynamical motion vocabularies towards
bridging the decision making of observed humans and in-
formation from robot sensing. Our motion vocabulary is
comprised of learned primitives that structure the action
space for decision making and describe human movement
dynamics. Given image observations over time, each prim-
itive infers on pose independently using its prediction den-
sity on movement dynamics in the context of a particle filter.
Pose estimates from a set of primitives inferencing in parallel
are arbitrated to estimate the action being performed. The
efficacy of our approach is demonstrated through tracking
and action recognition over extended motion trials. Results
evidence the robustness of the algorithm with respect to
unsegmented multi-action movement, movement speed, and
camera viewpoint.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.10 [Artificial
Intelligence]: Vision and Scene Understanding

General Terms
Algorithms, Measurement

Keywords
Human Tracking, Markerless Motion Capture, Action Recog-
nition, Human-Robot Interaction
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1. INTRODUCTION
Perceiving human motion and non-verbal cues is an im-

portant aspect of human-robot interaction. For robots to
become functional collaborators in society, they must be
able to make decisions based on their perception of human
state. Additionally, knowledge about human state is crucial
for robots to learn control policies from direct observation
of humans. Human state, however, encompasses a large and
diverse set of variables, including kinematic, affective, and
goal-oriented information, that has proved difficult to model
and infer. Part of this problem is that the relationship be-
tween such decision-related variables and a robot’s sensor
readings is difficult to infer directly.

Our greater view is that socially interactive robots will
need to maintain beliefs about all of the components in a
human’s control loop in order to make effective decisions
during interaction. Humans make decisions to drive their
muscles and affect their environment. A robot can only
sense limited information about this control process. This
information is often partial observations about the human’s
kinematics and appearance over time, such as images from
a robot’s camera. To infer on human decision making, a
robot must attempt to invert this partial information back
through its model of the human control loop, maintaining
beliefs about kinematic movement, actions performed, deci-
sion policy, and intentionality.

As a step in this direction, we present a method for infer-
ring a human’s kinematic and action state from monocular
vision. Our method works in a bottom-up fashion by us-
ing a vocabulary of predictive dynamical primitives, learned
from previous work [10] as “action filters” working in par-
allel. Motion tracking is performed by matching predicted
and observed human movement, using particle filtering [9,
25] to maintain probabilistic beliefs. For quickly performed
motion without temporal coherence, we propose a “bending
cone” distribution for predicting far ahead in time. State
estimates from the action filters are then used to infer the
linear coefficients for combining behaviors. Inspired by neu-
roscience, these composition coefficients are related to the
human’s cognitively planned motion, or “virtual trajectory”,
providing a compact action space for linking decision mak-
ing with observed motion.

We present results from evaluating our motion and action
tracking system to human motion observed from a single
robot camera. Presented results demonstrate the ability of
our system to track human motion and action robust to
performer speed and camera viewpoint with the ability to
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Figure 1: A “toy” example of our approach to human state estimation and movement imitation. The
movement of a human demonstrator assumed to be generated by virtual trajectory executed as a weighted
superposition of motor primitives, predictive low-dimensional dynamical systems. For movement imitation,
a particle filter for each primitive performs kinematic state (or pose) estimation. Pose estimates across
the vocabulary are fused at each timestep and concatenated over time to yield an estimate of the virtual
trajectory for the robot to execute.

recover from occlusion. Our system achieves interactive-
time using sparse numbers of particles. We highlight the
application of our tracking results to humanoid imitation.

2. BACKGROUND

2.1 Motor Primitives and Imitation Learning
The work is inspired by the hypotheses from neuroscience

pertaining to models of motor control and sensory-motor
integration. We ground basic concepts for imitation learn-
ing, as described by Matarić [15], in specific computational
mechanisms for humanoids. Matarić’s model of imitation
consists of: 1) a selective attention mechanism for extraction
of observable features from a sensory stream, 2) mirror neu-
rons that map sensory observations into a motor repertoire,
3) a repertoire of motor primitives as a basis for express-
ing a broad span of movement, and 4) a classification-based
learning system that constructs new motor skills.

Illustrated in Figure 1, the core of this imitation model
is the existence and development of computational mech-
anisms for mirror neurons and motor primitives. As pro-
posed by Mussa-Ivaldi and Bizzi [16], motor primitives are
used by the central nervous system to solve the inverse dy-
namics problem in biological motor control. This theory is
based on an equilibrium point hypothesis. The dynamics of

the plant D(x, ẋ, ẍ) is a linear combination of forces from a
set of primitives, as configuration-dependent force fields (or
attractors) φ(x, ẋ, ẍ):

D(x, ẋ, ẍ) = ci

KX
i=1

φi(x, ẋ, ẍ) (1)

where x is the kinematic configuration of the plant, c is
a vector of scalar superposition coefficients, and K is the
number of primitives. A specific set of values for c produces
stable movement to a particular equilibrium configuration.
A sequence of equilibrium points specifies a virtual trajec-
tory [5] of motion desireds for internal motor actuation or
observed from an external performer.

Matarić’s imitation model assumes the firing of mirror
neurons specifies the coefficients for formation of virtual tra-
jectories. Mirror neurons in primates [21] have been demon-
strated to fire when a particular activity is executed, ob-
served, or imagined. Assuming 1-1 correspondence between
primitives and mirror neurons, the scalar firing rate of a
given mirror neuron is the superposition coefficient for its
associated primitive during equilibrium point control.

2.2 Motion Modeling
While Matarić’s model has desirable properties, there re-

main several challenges in its computational realization for
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autonomous robots that we attempt to address. Namely,
what are the set of primitives and how are they parame-
terized? How does a mirror neurons recognize motion in-
dicative of a particular primitive? What computational op-
erators should be used to compose primitives to express a
broader span of motion?

Our previous work [10] address these computational issues
through the unsupervised learning of motion vocabularies,
which we now utilize within probabilistic inference. Our ap-
proach is close in spirit to work by Kojo et al. [13], who de-
fine a “proto-symbol” space describing the space of possible
motion. Monocular human tracking is then cast as localizing
the appropriate action in the proto-symbol space describing
the observed motion using divergence metrics. Schaal et
al. [8] encode each primitive to describe the nonlinear dy-
namics of a specific trajectory with a discrete or rhythmic
pattern generator. New trajectories are formed by learn-
ing superposition coefficients through reinforcement learn-
ing. While this approach to primitive-based control may
be more biologically faithful, our method provides greater
motion variability within each primitive and facilitates par-
tially observed movement perception (such as monocular
tracking) as well as control applications. Work proposed
by Bentivegna et al. [1] and Grupen et al. [4, 19] approach
robot control through sequencing and/or superposition of
manually crafted behaviors.

Recent efforts by Knoop et al. [12] perform monocular
kinematic tracking using iterative closest point and the lat-
est Swissranger depth sensing devices, capable of precise
depth measurements. We have chosen instead to use the
more ubiquitous passive camera devices and also avoid mod-
eling detailed human geometry.

Many other approaches to data-driven motion modeling
have been proposed in computer vision, animation, and robotics.
The reader is referred to other papers [10, 26, 14] for broader
coverage of these methods.

2.3 Monocular Tracking
We pay particular attention to methods using motion mod-

els for kinematic tracking and action recognition in interactive-
time. Particle filtering [9, 25] is a well established means
for inferring kinematic pose from image observations. Yet,
particle filtering often requires additional (often overly ex-
pensive) procedures, such as annealing [3], nonparametric
belief propagation [23, 24], Gaussian process regression [26],
POMDP learning [2] or dynamic programming [20], to ac-
count for the high dimensionality and local extrema of kine-
matic joint angle space. These methods tradeoff real-time
performance for greater inference accuracy. Similar to Hu-
ber and Kortenkamp [7], interactive-time inference on ac-
tions to enable incorporation into a robot control loop. Un-
like [7], however, we focus on recognizing active motions,
rather than static poses, robust to occlusion by developing
fast action prediction procedures that enable online proba-
bilistic inference. We also strive for robustness to motion
speed by enabling extended look-ahead motion predictions
using a “bending cone” distribution.

3. DYNAMICAL KINEMATIC AND ACTION
TRACKING

Kinematic tracking from silhouettes is performed via the
steps in Figure 2, those are: 1) global localization of the

Figure 2: Illustration of the three stages in our ap-
proach to tracking: image observations are used to
localize the person in 3D, then infer kinematic pose,
and finally estimate of activity/action. Estimates at
each stage are used to form priors for the previous
stage at the next timestep.

human in the image, 2) primitive-based kinematic pose es-
timation and 3) action recognition. The human localization
is kept as an unimodal distribution and estimated using the
joint angle configuration derived in the previous time step.

3.1 Dynamical Motion Vocabularies
The methodology of Jenkins and Matarić [10] is followed

for learning dynamical vocabularies from human motion.
We cover relevant details from this work and refer the reader
to the citation for details. Motion capture data represen-
tative of natural human performance is used as input for
the system. The data is partitioned into an ordered set of
non-overlapping segments representative of “atomic” move-
ments. Spatio-temporal Isomap [11] embed these motion
trajectories into a lower dimensional space, establishing a
separable clustering of movements into activities. Similar
to [22], each cluster is a group of motion examples that can
be interpolated to produce new motion representative of the
underlying action. Each cluster is speculatively evaluated to
produce a dense collection of examples for each uncovered
action. A primitive Bi is the manifold formed by the dense
collections of poses Xi (and associated gradients) in joint
angle space resulting from this interpolation.

We define each primitive Bi as a gradient (potential) field
expressing the expected kinematic behavior over time of the
ith action. In the context of dynamical systems, this gra-
dient field Bi(x) defines the predicted direction of displace-
ment for a location in joint angle space x̂[t] at time t1:

x̂i[t + 1] = fi(x[t], u[t]) = (2)

= u[t]Bi(x) = u[t]

P
x∈nbhd(x[t]) wx∆x

‖
P

x∈nbhd(x[t]) wx∆x‖

where u[t] is a fixed displacement magnitude, ∆x is the gra-
dient of pose x2 a motion example of primitive i, and wx the
weight3 of x w.r.t. x[t]. Figure 3 shows examples of learned
predictive primitives.

Given results in motion latent space dimensionality [26,
10], we construct a low dimensional latent space to pro-
vide parsimonious observables yi of the joint angle space for
primitive i. This latent space is constructed by applying
Principal Components Analysis (PCA) to all of the poses

1nbhd() is used to identify the k-nearest neighbors in an
arbitrary coordinate space, which we use both in joint angle
space and the space of motion segments.
2The gradient is computed as the direction between y and
its subsequent pose along its motion example.
3Typically reciprocated Euclidean distance
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Figure 3: (a) Kinematic endpoint trajectories for
learned primitive manifolds, (b) corresponding joint
angle space primitive manifolds (view from first
three principal components), and (c) an instanta-
neous prediction example (illustrated as a zoomed-
in view on a primitive manifold.

Xi comprising primitive i and form the output equation of
the dynamical system, such as in [6]:

yi[t] = gi(x[t]) = Aix[t] (3)

where gi is the latent space transformation and Ai is the
expression of gi as an affine transformation into the princi-
pal component space of primitive i4. Although other dimen-
sion reduction methods could provide greater parsimony, we
chose a linear transform for gi for inversion simplicity and
evaluation speed. For each of our primitives, 95% of the
variance of the pose manifold is preserved in this transfor-
mation, making Ai a reasonable approximation for the joint
space manifold.

Given the preservation of variance in Ai, it is assumed that
latent space dynamics, governed by f̃i, can be computed in

4x[t] and yi[t] are assumed to be homogeneous in 3

the same manner as f in joint angle space:

g−1
i (f̃i(gi(x[t]), u[t]))− x[t]

‖g−1
i (f̃i(gi(x[t]), u[t]))− x[t]‖

≈ fi(x[t], u[t])− x[t]

‖fi(x[t], u[t])− x[t]‖ (4)

3.2 Kinematic Pose Estimation
Kinematic tracking is performed by particle filtering [9,

25] in the individual latent spaces created for each primi-
tive in a motion vocabulary. We infer with each primitive
individually and in parallel to avoid high-dimensional state
spaces, encountered in [3]. A particle filter of the following
form is instantiated in the latent space of each primitive

p(yi[1 : t] | zi[1 : t]) ∝ p(z[t] | g−1
i (yi[t])) (5)X

yi

p(yi[t] | yi[t− 1])p(yi[1 : t− 1] | z[1 : t− 1])

where zi[t] are the observed sensory features at time t and
g−1

i is the transformation into joint angle space from the
latent space of primitive i.

The likelihood function p(z[t] | g−1
i (yi[t])) can be any rea-

sonable choice for comparing the hypothesized observations
from a latent space particle and the sensor observations.
Ideally, this function will be monotonic with discrepancy in
the joint angle space.

At first glance, the motion distribution p(yi[t] | yi[t − 1])
could be given by the instantaneous “flow”, as proposed
by Ong et al. [18], where a locally linear displacement with
some noise is expected. However, such an assumption would
require temporal coherence between the training set and
the performance of the actor. Observations without tem-
poral coherence cannot simply be accounted for by extend-
ing the magnitude of the displacement vector because the
expected motion will likely vary in a nonlinear fashion over
time. To address this issue, a “bending cone” distribution
is used (Figure 4) over the motion model. This distribution
is formed with the structure of a generalized cylinder with a
curved axis along the motion manifold and a variance cross-
section that expands over time. The axis is derived from
K successive predictions ŷi[t] of the primitive from a cur-
rent hypothesis yi[t] as a piecewise linear curve. The cross-
section is modeled as cylindrical noise C(a, b, σ) with local
axis a − b and normally distributed variance σ orthogonal
to the axis. The resulting parametric distribution:

p(yi[t] | yi[t− 1]) =

kX
ŷi[t]

C(ŷi[k + 1], ŷi[k], f(k)) (6)

is sampled by randomly selecting a step-ahead k and gen-
erating a random sample within its cylinder cross-section.
Note that f(k) is some monotonically increasing function of
the distance from the cone origin; we used a linear function.

3.3 Action Recognition
For action recognition, a probability distribution across

primitives of the vocabulary is created5. The likelihood of
the pose estimate from each primitive is normalized into a
probability distribution:

p(Bi[t] | z[t]) =
p(z[t] | x̄i[t])P
B p(z[t] | x̄i[t])

(7)

5We assume each primitive describes an action of interest
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Figure 4: Illustration of the predictive bending cone
distribution. The thin dashed black lines indicate
the flow of a primitive’s gradient field. Linear pre-
diction from the current pose yi(t) will lead to diver-
gence from the gradient field as the prediction mag-
nitude increases. Instead, we use a bending cone
(in bold) to provide an extended prediction horizon
along the gradient field. Sampling a pose prediction
yi(t + 1) occurs by selecting a cross-section A(t)[k]
and adding cylindrical noise.

where x̄i[t] is the pose estimate for primitive i. The primi-
tive with the maximum probability is estimated as the action
currently being performed. Temporal information can be
used to improve this recognition mechanism by fully lever-
aging the latent space dynamics over time.

The manifold in latent space is essentially an attractor
along a family of trajectories towards an equilibrium re-
gion. We consider attractor progress as a value that increases
as kinematic state progresses towards a primitive’s equilib-
rium. For an action being performed, we expect its attractor
progress is monotonically increasing. The attractor progress
can be used as a feedback signal into the particle filters es-
timating pose for a primitive i in a form such as:

p(Bi[t] | z[t]) =
p(z[t] | x̄i[t], wi[1 : t− 1])P
B p(z[t] | x̄i[t], wi[1 : t− 1])

(8)

where wi[1 : t − 1] is the probability that primitive Bi has
been performed over time.

4. RESULTS
For our experiments, we developed an interactive-time

software system in C++ that tracks human motion and
action from monocular silhouettes using a vocabulary of
learned motion primitives. Shown in Figure 5, our sys-
tem takes video input from a Fire-i webcam (15 frames per
second, at a resolution of 120x160) mounted on an iRobot
Roomba Discovery. Image silhouettes were computed with
standard background modeling techniques for pixel statistics
on color images. Median and morphological filtering were
used to remove noisy silhouette pixels. An implementation
of spatio-temporal Isomap [10] was used to learn motion
primitives for performing punching, hand circles, vertical
hand waving, and horizontal hand waving.

We utilize a basic likelihood function, p(z[t] | g−1
i (yi[t])),

that returns the similarity R(A, B) of a particle’s hypothe-

Figure 5: Robot platform and camera used in our
experiments.

Figure 6: Hausdorff distance map for an image of
standing human with one arm raised.

sized silhouette with the observed silhouette image. Silhou-
ette hypotheses were rendered from a cylindrical 3D body
model to an binary image buffer using OpenGL. A simi-
larity metric, R(A, B) for two silhouettes A and B, closely
related to the inverse of the generalized Hausdorff distance
was used:

R(A, B) =
1

r(A, B) + r(B, A) + ε
(9)

r(A, B) =
X
a∈A

„
min
b∈B

‖a− b‖
«2

(10)

This measure is an intermediate between undirected and
generalized Hausdorff distance and generalized Hausdorff
distance ε is used only to avoid divide-by-zero errors. An
example Hausdorff map for a human silhouette is shown in
Figure 6.

To enable fast monocular tracking, we applied our sys-
tem with sparse distributions (6 particles per primitive) to
three trial silhouette sequences. Each trial is designed to
provide insight into different aspects of the performance of
our tracking system.

In the first trial, the actor performs three actions de-
scribed by the motion primitives: hand circles, vertical hand
waving and horizontal hand waving. For the purposes of
evaluation, we compared the ground truth trajectories with
the trajectories produced with sparse set of particles, rang-
ing between six and two hundred. As shown in Figures 7
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Figure 7: Tracking of motion sequence contain-
ing three distinct actions performed in sequence
without stopping. Each row shows the recogni-
tion of individual actions for waving a hand top-to-
bottom (top row), across the body (middle row),
and bottom-to-top in a circular fashion (bottom
row). The kinematic estimates are show with a
thick-lined stick figure; the color of the stick figures
represents the action recognized. Each image con-
tains a visualization of the dynamical systems and
pose estimates for each action.

and 8, reasonable tracking estimates can be generated from
as few as six particles. However, some tracking artifacts can
be seen in Figure 8 due to resolution issues in the likelihood
function. As expected, we observed that the Euclidean dis-
tance between our estimates and the ground truth decreases
with the number of particles used in the simulation, high-
lighting the tradeoff between the number of particles and
accuracy of the estimation.

In trial two, we analyzed the temporal robustness of the
tracking system. The same action is performed at different
speeds, ranging from slow (hand moving at ≈ 3 cm/s) to fast
motion (hand moving at ≈ 6 m/s). The fast motion is accu-
rately predicted as seen in Figure 9. Additionally, we were
able to track a fast moving punching motion (Figure 10)
and successfully execute the motion with our physics-based
humanoid simulation. Our simulation system is described
in [27].

Viewpoint invariance was tested with video from a trial
with an overhead camera, shown in Figure 11. Even given
limited cues from the silhouette, we are able to infer the
horizontal waving of an arm. Notice that the arm estimates
are consistent throughout the sequence.

Using the above test trials, we measured the ability of our
system to recognize performed actions to provide responses
similar to mirror neurons. In our current system, an action
is recognized as the pose estimate likelihoods normalized
over all of the primitives into a probability distribution, as
shown in Figure 12. Temporal information can be used to
improve this recognition mechanism by fully leveraging the
latent space dynamics over time. The manifold in latent

Figure 9: Tracking of a fast waving motion. Ob-
served images (top) and pose estimates from the
camera view (bottom).

Figure 10: Illustrations of a demonstrated fast mov-
ing “punch” movement (left) and the estimated vir-
tual trajectory (right) as traversed by our physically
simulated humanoid simulation.

space is essentially an attractor along a family of trajecto-
ries. A better estimator of action would consider attractor
progress, monotonic progress towards to equilibrium region
of an action’s gradient field. We have analyzed preliminary
results from observing attractor progress in our trials, as
shown in Figure 12. For an action being performed, its at-
tractor progress is monotonically increasing. If the action is
performed repeatedly, we can see a periodic signal emerge,
as opposed to the noisier signals of the action not being per-
formed. These results indicate that we can use attractor
progress as a feedback signal to further improve an individ-
ual primitive’s tracking performance.

Because of their attractor progress properties, we believe
that we can analogize these action patterns into the firing
of an idealized mirror neurons. The firing of our artificial
mirror neurons provide superposition coefficients, as in [17].
Given real-time pose estimation, online movement imita-
tion could be performed by directly executing the robot’s
motor primitives weighted by these coefficients. Addition-
ally, these superposition coefficients could serve as input into
additional inference systems to estimate the human’s emo-
tional state for providing an affective robot response.

In our current system, we use the action firing to arbi-
trate between pose estimates for forming a virtual trajectory.
While this is a simplification of the overall goal, our positive
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Figure 8: A sequence of predicted pose estimates from a multi-action motion. Observed silhouettes (top) and
pose estimates (middle) with six particles per primitive. Pose estimates from an overhead view (bottom).

Figure 11: A sequence of pose estimates for a reach-
ing motion. Observed silhouettes (second from top)
can be compared with our pose estimates from the
camera view (second from bottom) and from over-
head (bottom).

results for trajectory estimation demonstrate our approach
is viable and has promise for achieving our greater objec-
tives. As future work, we will extend the motion dynamics
of the vocabulary into basis behaviors using our complemen-
tary work in learning behavior fusion [17].

5. CONCLUSION
We have presented a neuro-inspired method for monocu-

lar tracking and action recognition for movement imitation.
Our approach combines vocabularies of kinematic motion
learned offline with online estimation of a demonstrator’s
underlying virtual trajectory. A modular approach to pose
estimation is taken for computational tractability and emu-
lation of structures hypothesized in neuroscience. Our cur-
rent results suggest our method can perform tracking and
recognition from partial observations at interactive rates.
Our current system demonstrates robustness with respect
to the viewpoint of the camera, the speed of performance of
the action, and recovery from ambiguous situations.
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