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ABSTRACT
Programming robots to carry out useful tasks is both a
complex and non-trivial exercise. A simple and intuitive
method to allow humans to train and shape robot behaviour
is clearly a key goal in making this task easier. This pa-
per describes an approach to this problem based on stud-
ies of social animals where two teaching strategies are ap-
plied to allow a human teacher to train a robot by mould-
ing its actions within a carefully scaffolded environment.
Within these enviroments sets of competences can be built
by building state/action memory maps of the robot’s in-
teraction within that environment. These memory maps
are then polled using a k-nearest neighbour based algorithm
to provide a generalised competence. We take a novel ap-
proach in building the memory models by allowing the hu-
man teacher to construct them in a hierarchical manner.
This mechanism allows a human trainer to build and ex-
tend an action-selection mechanism into which new skills
can be added to the robot’s repertoire of existing competen-
cies. These techniques are implemented on physical Khepera
miniature robots and validated on a variety of tasks.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: [robotics]; I.2.6 [Artificial
Intelligence]: [learning]; I.2.m [Artificial Intelligence]:
[miscellaneous - imitation, programming by demonstration]
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1. INTRODUCTION
Imagine a scenario where your brand new domestic robot

has just been delivered. The factory have pre-programmed it
to carry out some useful tasks around the home e.g. collect-
ing cutlery, cups and plates and placing them in a dishwasher
or tidying up by picking up clothes left on the floor and plac-
ing them in a washing basket. You unpack the robot, press
the “on” button, and the robot efficiently carries out these
tasks whilst being safe to both you and itself. Later however
you find that although the robot performs to the manufac-
turer’s specifications there are some tasks which it does not
carry out. It fails to tidy up the children’s toys into the toy
cupboard or it fails to recognise that a particular and ex-
pensive glass should not be placed in the dishwasher. After
a call to the manufacturer you discover that there is another
button on the robot marked “learn”. When this button is
pressed the robot can be taught additional skills. This paper
presents research on how such a teaching mechanism might
be implemented.

In section 2 we suggest that it is the social dimension of be-
haviour that holds the key to making robots behave more in-
telligently [6], an approach inspired from studies of social an-
imals (e.g. apes) and the ‘social intelligence hypothesis’ [4],
which proposes that intelligent behaviour in primates has its
origins in dealing with complex social dynamics. We discuss
how the social aspects of teaching, learning and imitation
are used by some social animals to expand their repertoire
of skills. From this work we extract the developmental con-
cepts of “scaffolding” and “putting-through”/“moulding” as
mechanisms which may prove useful for robot teaching. Sec-
tion 3 discusses related work where observation, imitation
and direct teaching are used. We conclude this review by
outlining the computational techniques that we will use in
creating a novel learning architecture which will allow new
robot skills to be taught whilst retaining or improving exist-
ing skills. Section 4 details the realisation of this architec-
ture on physical Khepera miniature robots. Section 5 gives
the experimental validation of the work by showing exam-
ples of how behaviours can be created in a robot and how
additional skills can then be added to an existing robot skill
repertoire. Finally we discuss some of our findings and the
possible directions for further research in this area.

2. TEACHING AND
IMITATION IN ANIMALS

Moore [13] proposes a six-step hypotheses for the evolu-



tion of imitation in nature The process starts with Thorndikian
conditioning where existing motor actions are associated and
reinforced based on particular environmental conditions. This
step is later enhanced by operant (or Skinner) conditioning
where novel motor responses are formed based on combina-
tions of existing actions. The next evolutionary step is an
implicit reinforcement cycle leading to “skills” where the an-
imal is able to perfect the novel act. The fourth stage intro-
duces the teacher. The teacher essentially guides the pupil
by physically “moulding” or “putting-through” the actions
of the pupil given particular environmental stimuli. This can
be considered as self-imitation by the animal as it repeats
the actions that it has experienced. Visual imitation of oth-
ers is the next evolutionary stage. In this case the animal
now only has to see an act to be able to repeat it. The final
process is called cross-modal imitation where an animal is
able to match features of its body with corresponding fea-
tures of another animal. For example, human babies touch
parts of the faces of their parents and can then locate the
same features on their own face. In figure 1 we summarise
and segment these stages into prime, taught and imitative
sections.

The study presented in this paper bases its mechanisms for
robot teaching on the self-imitation stage. However each of
the earlier stages are also used. For example, we simplify the
actions available from the Thorndikian stage by considering
them to be part of the robot’s existing repertoire of motor
skills. This existing set of skills over and above basic mo-
tor actions are called “primitives”. Explicit combinations of
primitives can be specified by the teacher. We call these “se-
quences” but they are equivalent to novel sets of responses
available at the operant conditioning stage. Skill learning is
the essential building block upon which the teacher’s direc-
tions are built. The skill reinforcement stage will therefore
form the association between sensed stimuli and action. The
fourth self-imitation stage is based on moulding or putting-
through. This is where the training example is provided by
the teacher by putting the robot through the range of actions
required. Our previous work [21] considered aspects of ob-
servational/imitative learning at the imitation stage. Our
current work develops these ideas in a further investigation
of the spectrum of learner/pupil relationships.

Evidence for teaching in the animal kingdom comes mainly
from studies of primates [4]. However there is also evidence
from carnivores including domestic cats, tigers, cheetahs,
otters, dolphins, orca whales and some bird species [24].
An example from cheetahs is where the mother rather than
killing prey will capture and release the live prey to the
cheetah cubs when they are about 3 months old. The be-
haviour is also selective, only prey species which the cubs
are likely to catch are released. It appears that the cubs’
experience results in faster learning and a more skilled per-
formance. This was tested with domestic cats whose kittens
were brought live mice by their mothers at an early age.
By 6 months old the kittens showed superior skills to a test
group who had not been exposed to the mice [23].

Compelling evidence of intentional teaching comes from
studies of primate behaviour. Fouts et al. report on the
chimpanzees Washoe and Loulis, Loulis being the adopted
infant chimp of the mother Washoe. Washoe had previ-
ously been taught American Sign Language (ASL) however
the human carers made no attempt to teach Loulis ASL and
did not use ASL in Loulis’ presence. However Washoe suc-

Figure 1: Proposed evolutionary stages with tech-
niques required to implement them. This paper
deals with the taught skill set.

ceeded in teaching Loulis ASL both by demonstration and
by moulding of Loulis’ hands [18]. Moulding had also been
used by the human carers to originally teach Washoe.

Scaffolding is where a physical situation is artificially mod-
ified, typically by the mother, to make it much easier for
her child to complete the task when the child is at a de-
velopmental stage where it could not perform the appro-
priate acts or sequence its actions correctly. Scaffolding
of tasks together with observational learning and mould-
ing have been observed in wild chimpanzees [4]. Cracking
nuts with a hammerstone is an especially difficult task for
a chimpanzee to learn, taking up to 14 years to perfect in
some cases. A number of observations have been recorded
where the mother will clean the anvil, reposition the the nut
or re-orient the hammerstone to favourable orientations for
the infant. Scaffolding is also a familiar concept in human
development and is emphasised in Vygotysky’s idea of the
“zone of proximal development” in his theory of the child
in society [27]. Teaching and social interaction allow higher
competence levels to be achieved through staged learning
and building upon existing skills.

We take inspiration from these examples in social animals
to study how moulding/putting though and scaffolding can
be used to good effect in teaching robots new skills and allow
existing skills to be modified.

3. RELATED WORK
Even with explicit programming robot control is hard due

sensor noise, the non-deterministic state of the environment,
the inability to ensure that the robots actions are determin-
istic and the need for real-time responses. There are gener-
ally a number of problems which need to be solved:

i) how can the human teach the robot? - what mecha-
nisms can be used to make the robot match the inten-
tions of the teacher? How can the robot learn when
the task is complete?

ii) what techniques can the robot use to learn? - how can
the machine generalise and execute the new task?

iii) how can the robot incorporate the new experiences into
its existing competencies? - what sort of structure is
necessary to ensure that new tasks can co-exist with
existing tasks?



iv) how can it select the right action at the right time? -
given a learned set of competencies which one is ap-
propriate?

Approaches include topics such as programming by demon-
stration, imitation learning, learning from observation and
robot shaping. Typically the observational and imitative ap-
proaches attempt to match the behaviour of the demonstra-
tor and so construct an appropriate control policy. Schaal et
al. [22] provide an overview where approaches to the prob-
lem are classified as follows:

i) direct policy learning - where supervised learning is
used to learn a control policy directly.

ii) learning policies from demonstrated trajectories - this
assumes that the task goal is known and uses sample
trajectories to learn a control policy

iii) model based policy learning - where a predictive model
of the control problem is constructed.

All of these approaches face two difficult problems. Firstly,
that by observation alone the internal proprioceptive feed-
back that the teacher experiences cannot be directly ex-
perienced by the pupil [20] and secondly, there may be a
mismatch between the external and internal sensorimotor
spaces of the teacher and pupil - the correspondence prob-
lem [14].

In the direct policy approach these issues can be avoided
by having the pupil experience the same set of actions and
sensory states as the teacher with the correspondence prob-
lem solved by ensuring that both teacher and pupil have
a similar embodiment. This approach has been used by a
number of groups including Billard & Dautenhahn [3] and
Hayes & Demiris [9]. In both cases a student robot followed
a teacher robot and learned to associate imitated actions
against perceived environmental state. Saunders et al. [20]
however have demonstrated that there can be limitations
in this approach due to reactive impersistence and teacher
interference when using a pure following approach.

In recent work by Nicolescu et al. [15] a mobile robot
tracks a teacher’s movements matching predicted postcon-
ditions against the robot’s current proprioceptive state. It
then builds a hierarchical behaviour-based network based on
“Strips” [17] style production rules. This work attempts to
provide a natural interface between robot and teacher whilst
automatically constructing an appropriate action-selection
framework for the robot.

Another way to allow a robot to experience the appro-
priate sensory state is by allowing the teacher to manip-
ulate the robot directly via a form of tele-operation and
record the sensory state of the robot. Although not us-
ing a robot this method is closely related to Sammut’s [19]
“learning-to-fly” application where recordings of control pa-
rameters in a flight simulator flown by a number of human
subjects were analysed using Quinlan’s C4.5 induction algo-
rithm [16]. The algorithm extracted a set of “if-then” control
rules. Van Lent [26] also used this approach but provided
a user interface which could be marked with goal transition
information. This allowed an action-selection architecture
to be constructed using “Strips” [17] style production rules.
However, in both of these research areas the full “state” of
the system (both internal and external) is available to the
trainer. This may not be the case when teaching robots.

A long line of research into teaching service robots by ob-
serving humans has also been carried out by Dillman [7]
where after observation production rules are generated to
produce grammatical formalisms held in a knowledge database
of actions.

Dorigo and Colombetti [8] use decomposition of tasks by
a trainer to “shape” robot behaviour. We take a similar
approach however we do not use either evolutionary or re-
inforcement learning techniques to create or modify robot
behaviour.

Learning policies from demonstrated trajectories seems to
be appropriate when the goals of the task are known and the
task itself is self contained. For example when learning to
duplicate human movements [11] or play tennis strokes [10]
the goal of the task is already known or programmed into
the learning mechanism. It is made explicit by the program-
mer for the specific (although mechanically complex) task to
be solved. It is difficult to see how a new task could be in-
corporated into the existing learned policy without further
explicit programming.

Bentivenga et al. [2] use model based policy learning to
construct a learning framework using a memory-based ap-
proach. A humanoid robot learns to play games of “mar-
ble maze” and “air hockey” by recording exteroceptive data
(ball angle/velocity, board tilt angles) and primitive type
(roll ball away from corner, roll ball off wall) from a human
demonstrator. The robot is able to select the appropriate
primitive by analysing a memory model to find the nearest
example to the current state. Parameters for the primitive
are constructed using locally weighted regression on points
nearest the selected primitive. This technique is also related
to loose-perceptual matching methods described in [1].

Memory based learning approaches have a number of tech-
nical advantages. Firstly, complex functions can be learned
by focusing on sets of less complex local approximations.
Secondly, the local approximation for the target query (based
on the current sensory state) is based on the training data
at the time of the query and not on a pre-built function ap-
proximation. This means that additional training instances
can be added immediately without the need to rebuild a
target function (which would be the case for an inductive or
neural network approach).

It is noticeable that many of the example applications de-
scribed above have the ability to learn complex tasks based
on some form of observation (where observation can be both
direct and from post-processing of sensory data). However
with the exception of [26, 7, 15] there are few mechanisms
which allow another task to be both learned and included
into the repertoire of previously learned functions. Our ap-
proach is to provide an interface which will both learn a
particular task and have the ability to add this task to an
existing control mechanism. This requires a number of steps.

i) a policy needs to be learned based on the sensory state
of robot itself. The correspondence between the hu-
man teacher and robot also needs to be solved - both
of these points we address by the simple process of
moulding the robot by teleoperation.

ii) the robot needs to be aware of when tasks have a spe-
cific goal - we make this an explicit part of the training
sequence.

iii) learning must be carried out in real-time and be subse-
quently modified or enhanced with additional learning



Figure 2: A typical environment showing a Khepera
with vision sensor and gripper, objects with differ-
ent electrical resistance and bar-coded containers.

experiences - this is made possible by using memory
based learning methods.

iv) the new learning experience should not corrupt other
previously learned experiences - we allow the construc-
tion of a hierarchy of memory models to provide this.

One of the key points in addressing many of the issues de-
scribed is that a teacher constructs an appropriate learning
environment for the robot. We do this while exploiting and
extending some of the techniques already used by the prac-
titioners above in a new framework.

4. FRAMEWORK
For this study we have used physical Khepera miniature

robots (see figure 2) on a desk in a typical busy academic
environment. Khepera’s are 5cm diameter non-holonomic
robots equipped with eight IR sensors placed at intervals
around the base, an arm/gripper and a K213 linear vision
system. The IR sensors are capable of detecting both ambi-
ent light and short range (10cm) obstacles. The arm/gripper
arrangement can detect when an obstacle is within the grip-
per and also the electrical resistivity of the object grasped.
The K213 vision system provides a one dimensional line of
64 grey scale values subtending an angle of 36◦ from the
front of the robot. Commands to control the robot can be
sent from a remote PC either via a radio signal or from a
directly connected serial cable.

The learning environment we choose is based around the
capabilities of the Khepera. To provide a reasonably com-
plex learning environment the Khepera is placed in a walled
“room” with various objects of different conductivity and
some bar-coded containers.

4.1 Learning Mechanism
We use a memory based “lazy” learning method [12] to

allow the robot to learn tasks. This is a simple k-nearest
neighbour (kNN) approach where the value of each feature
in the robot’s state vector (see Scaffolding below) is regarded
as a point in n-dimensional space, where n is the number of
features in the state vector (see table 1). For each chosen
task we collect a set of training examples (as described in
Moulding below) together with their target primitives, each
primitive being chosen by the human trainer when mould-
ing the robot’s actions. When the task is executed the robot

Table 1: State Vector Used in experiments
State Description
Repulsive Force Vector of IR sensors
Repulsive Angle Angle of IR Vector
Light Distance Distance to light
Light Angle Angle to light
Bars Seen Number of bars seen by K213
Bar Size Average bar size seen by K213
Bar.Std.Dev. Std. Deviation of bar size
Arm Up/Down Whether the arm is up or down
Gripper Open/Closed If gripper is open or closed
Object in Gripper If object is in the gripper
Resistivity Resistivity of object

continually computes its current state vector. It then com-
putes the distance from the current state to each of the
training examples. The distance between the state vector
and the training example being the sum of the distances
between the features in each, as follows:

distance(X, S) =
n

X

i=1

Wi |
xi − si

maxi − mini

|

Where X is an instance of the training examples and S an
instance of the robot’s current sensory state. W is a non-
negative vector of real numbers used to weight each of the
dimensions. This weighting is discussed in the scaffolding
section below. Setting k to 1 will result in the nearest point
in the training examples being used and yield a single prim-
itive as its target function. Where k is greater than 1 the
algorithm will yield a set of primitives. We choose the most
common primitive from the set as the target function. Note
that this method will always result in a primitive being cho-
sen. In environmental situations not previously experienced
by the robot, generalisation occurs as the primitive nearest
to the current state is chosen. Thus performance is based on
the similarity of new situations to those already experienced.

In work to date the k value has been set experimentally
to approximately correlate to the number of state vector
entries in each memory table. For a small number of entries
k is set to 1. For larger tables k has been set to higher values
but not exceeding 5. We make use of the Tilburg University
Memory Based Learner [5] to provide the kNN functionality.
This system has the advantage of providing a very efficient
tree-based coding structure for the training examples so as
to speed up performance.

4.2 Moulding
The concepts of scaffolding and moulding can play an im-

portant part in animal learning. They support a form of
self-imitation that may be the natural precursor to more
complex forms of imitative learning. In our framework we
use the idea of moulding or putting-through directly. The
human has the ability to control the robot by remotely mov-
ing it through a set of pre-defined basic primitives. This set
of primitives are basic actions available to the robot (see
table 2). The human teacher has no access to the inter-
nal state of the robot. By manipulating the robot in this
manner we also avoid both the problem of observation by
the robot of the human actions and of the correspondence
problem between the robot and human. During the robot
moulding process a snapshot of the robots proprioceptive



Table 2: Pre-defined Primitives.
Primitive Description
Move Forwards Move Forward 1cm or continuously
Move Backwards Move Backwards 1cm or continuously
Turn Right Turn Right by 5◦ or continuously
Turn Left Left Left by 5◦ or continuously
Raise Arm Raise Arm, if not already raised
Lower Arm Lower Arm, if not already lowered
Open Gripper Open gripper if not already open
Close Gripper Close gripper if not already closed

and exterioceptive state (see table 1) is recorded together
with the directed primitive on each human command to the
robot. For each human defined task we can therefore build
a memory model of state/primitive combinations.

4.3 Scaffolding
All of the states perceived by the robot are recorded in the

state vector however different attributes of this vector are
relevant to different tasks. For example, to avoid obstacles
the attributes of the IR sensors are of more importance than
the position of the gripper, whereas to track an object the
perceived orientation of the object is more relevant than the
values of the IR sensors. Here we capture a pre-defined set
of states some of which are numeric summaries pertinent
to the expected applications and realisable by the sensor
arrangement of the robot (see table 1). For example, rather
than storing 64 grey-scale values for the K213 linear vision
sensor we pre-process the K213 data to specifically detect
bar-coded items. In this case when no such items can be
detected the K213 values are set to zero. Repulsive and
ambient light sources from the IR sensors are formed into
vectors. Apart from the process of vector creation no further
pre-processing is carried out. Thus these sensors are always
“on” and not specifically programmed to detect particular
objects or environmental items.

We use two mechanisms to ensure that the appropriate
attributes are chosen. The first is a technical solution origi-
nally used in Quinlan’s C4.5 Induction algorithm [16]. This
is based on computing information gain to measure how well
a given attribute separates the set of recorded state vectors
according to the target primitive. This is defined as follows:

Gain(S, A) = Entropy(S) −
X

vεV alues(A)

| Sv |

| S |
Entropy(Sv)

where S is the collection of training examples, Entropy(x) is
a function returning the entropy of x in bits, Values(A) is
the set of all possible values for a particular state attribute
A and Sv is the subset of S for which attribute A has value
v. Further explanations of this metric can be found in [16,
12]. The information gain measurement allows particular
attributes in the state vector to have greater relevance by
using it to weight the appropriate dimensional axes in the
kNN algorithm (by setting Wi above). This has the effect of
either lengthening or shortening the axes in Euclidean space
thus reducing the impact of irrelevant state attributes.

The second mechanism for attribute selection is the hu-
man trainer. It is assumed that the trainer already under-
stands the task (from an external viewpoint) that the robot
must carry out and therefore is able to construct the train-
ing environment appropriately so as to ensure that irrelevant

features are removed. This idea allows the technical selec-
tion of relevant state features to be enhanced as the other
features will now tend to have constant values and therefore
a low information gain.

As an example consider training the robot to perform a
“wall following” behaviour. The teacher might remove ex-
traneous objects from the training area such as the bar-
coded containers. By moving the robot through a number of
wall following experiences the set of sensory states recorded
will then be primarily based on the IR sensors (which resolve
to the repulsive vector/angle attributes). These attributes
will then be automatically selected by the extended kNN
algorithm based on their higher information gain. As dis-
cussed in section 2 above this process of scaffolding or cre-
ating favourable conditions for learning would seem a quite
natural phenomenon in social animals and is of course fun-
damental to all forms of human teaching.

4.4 Learning New Tasks
We are now in a position to define the mechanisms avail-

able to the human trainer. The trainer directs the robot
using a screen based interface which provides a number of
buttons used to set operation modes such as “execute” and
“start/stop learning” plus an edit field to label actions and
a list from which to choose existing labelled actions and
primitive operations.

The robot can be in one of three modes. The first is
execution mode, which is its normal mode of operation where
its current behaviour is executed. Alternatively the robot
can be in training mode where the human trainer can mould,
scaffold and create new activities for the robot to eventually
use in execution mode. An intermediate mode is where the
trainer can execute one of the set of available competencies.
For example by selecting the primitive “Move Forward” in
this mode the robot will execute the move forward primitive.
This is useful for placing the robot in an appropriate state
prior to training.

In “learning” mode the robot can learn new competences
at one of three training levels determined by the trainer:
sequence, task and behaviour. All three training levels are
started by pressing a “start learning” button and terminated
by pressing a “stop learning” button. For each new com-
petence (either a behaviour, task or sequence) the trainer
explicitly provides an appropriate label, for example “Pick-
UpCup”. When training is complete the label is added to
the set of actions available to the trainer and thus can be
used immediately for further training sessions. Existing la-
belled actions can also be modified with additional training
episodes as required. In training mode the trainer has the
option to execute the selected labelled competence so that
the results of the robot’s actions can be assessed immedi-
ately.

The first competence level is the sequence. This is where
the robot can be directed through a given sequence of prim-
itives which it records without reference to its state. An ex-
ample of a sequence might be to lower the arm and close the
gripper. This could, for example, be labelled as the ‘grab’
sequence. The grab sequence would then become part of the
available set of competences available for the trainer to use.
These new sequences could also then be used in combination
with other primitives and other sequences to create further
sequences. Note that sequences are entirely deterministic.
When requested to perform a sequence the robot will sim-



Figure 3: An example of a trained hierarchy of prim-
itives, primitive sequences, learned goal-directed
tasks and the final behaviour.

ply execute the recorded list of competences taught by the
trainer sequentially. It will make no reference to the envi-
ronmental state. Each primitive when executed by the robot
can be run in two further modes - discrete or continuous. In
discrete mode the primitive will execute followed immedi-
ately by a “stop” instruction. The continuous mode does
not issue the “stop” instruction. Discrete mode allows the
trainer put the robot though its range of actions step by step.
Continuous mode is typically used after training is complete
and enables the robot to execute the primitives without the
jerkiness caused by the “stop” instructions above.

The second level for learning is called a goal-directed task
or simply a task. This differs from a sequence in that dur-
ing training the actions taken by the robot will depend on
the environmental state at that time. The trainer now has
the opportunity to select not only basic primitives, but se-
quences and other goal-directed tasks. The tasks are goal
directed because the trainer also has the opportunity to in-
form the robot when the task has completed. This goal state
is paired with the robot state and becomes a further train-
ing record in the memory model for that particular task.
In execution mode the task is iterated until the environ-
mental state is close to a goal state and the task will then
terminate.As an example consider an obstacle avoidance be-
haviour. The trainer would place the robot in an obstacle
facing situation, choose the “task” level, label it “Obsta-
cle Avoidance” and press the “start learning” button. The
robot can then be moulded into a non-obstacle avoidance sit-
uation. The trainer would then signal that the goal state was
reached. This training regime would be repeated for many
obstacle avoidance situations and thus many obstacle recog-
nition states with appropriate avoidance actions and goal
states being recorded into the Obstacle Avoidance memory
model.

The final mechanism for learning is a behaviour. This al-
lows the trainer to construct the complete behaviour for the
robot from the component set of tasks, sequences and prim-
itives. The construction of a behaviour is the same as for
a task except that no goal state is required. The behaviour
will run continually in execute mode and base its decision of
what task, sub-task, sequence or primitive to use based on
the current environmental state. With careful training the
trainer can now build a hierarchy of tasks, sequences and
primitives as required (see figure 3).

4.5 Action Selection
The trainer by constructing a hierarchy of tasks, sequences

and primitives is now effectively building an action selection
architecture for the robot. At the top behavioural level a
decision is made based on the robot’s current state as to
what to execute next (based on the kNN selection). If the
selection is a primitive or sequence these will be executed
and the next state cycle will begin. Alternatively the selec-
tion could be a task. Within the task the robot state selects
the next appropriate action, which again could be a prim-
itive, sequence or task. Working down through the hierar-
chy eventually results in the execution of a primitive. Note
that each task executed in the hierarchy will only termi-
nate when its goal condition is selected based on the current
robot state, thus within the lowest selected task the state
will be polled after each executed primitive. This method of
action-selection is similar to the extended feed-forward free-
flow hierarchy proposed by Tyrrell [25], who demonstrates
how hierarchical approaches to action-selection can often ex-
hibit better performance than “Strips” style production rule
methods. Precedence of one action over another is entirely
based on current environmental state. The stored memory
state most similar to the current state is chosen at each level
within the framework.

5. VALIDATION OF FRAMEWORK
We illustrate the successful functioning of the implemented

social learning architecture from using the system on two
scaffolded behaviours. The first is simple and illustrates
the different ways that a trainer could proceed in training
the robot. The second is more complex and shows how a
new skill can be added to an existing set of actions. Please
note that for reasons of clarity the diagrams only show each
unique sequence, task or primitive per memory model. In
reality each memory model may have a great many instances
of different states for the same sequence, task or primitive.

The first behaviour is called “Scared of Light” and was
to train the robot to move forward when a light was off,
move backwards when a light was on and avoid bumping
into obstacles in all cases (note that the robot had no pre-
built competencies other than the basic set of primitives
at this stage). Figure 4 shows two different approaches to
the task, the first exploits the hierarchy by seperating the
behaviour with an “avoid obstacles” sub-task. The second
combines both competencies into one behaviour. Both train-
ing regimes are successful, however further training episodes
may become more difficult with the latter approach. Train-
ing of the robot was carried out by two individuals who had
not previously used the system. Observation of each per-
son’s approach is informal but illuminating. The first user
pre-constructed a possible solution using one behaviour and
one task before implementing it on the robot. The second
user took an entirely different approach. She first trained
the robot to correctly respond to the light and then subse-
quently added training episodes to cope with the obstacle
avoidance behaviour. This resulted in a single behaviour
with no sub-tasks. However both users successfully trained
the robot to complete the task. As part of our future re-
search we intend to carry out further trials of the system
with increasingly complex tasks to ascertain if there is a
natural point where users start to automatically construct
sub-tasks and scaffold each task appropriately.



The second behaviour is called “Tidy Up”. This behaviour
is a proxy for the household robot described in the introduc-
tion to this paper. We provide two containers. One we call
the “cupboard”, the other we call the “basket”. There are a
number of objects either plastic or with copper strips. The
training regime is much more complex in this instance (see
figure 5). This is not only because there is more to teach
but also that we need some negative examples. This is im-
portant to ensure consistent behaviour. For example we had
to train the robot to do something sensible if it dropped the
object. This situation was scaffolded by initially running
the “Tidy Up” behaviour (having already trained the robot
to grasp the object) and then removing the object from the
gripper. At this point we terminated execution and pressed

Figure 4: Different teaching styles. The upper part
of the diagram shows the avoid task being taught
first, followed by scaffolding to recognise when to
move forward and backward. In the lower part of the
diagram the trainer made no attempt to segment the
behaviour. All competencies are added to a single
behaviour.

Figure 5: The hierarchy created after successfully
training the robot to place plastic containers into
the basket (detailed states not shown).

Figure 6: The hierarchy has been extended to allow
the robot to succesfully place copper objects in the
cupboard whilst still placing plastic objects in the
basket (detailed states not shown).

the learning button. We then selected the “GripperOpe-
nArmUp” sequence and then terminated learning. For the
initial “Tidy Up” task seven steps, with up to three scaffold-
ing experiences per task and up to fifteen moulding experi-
ences per scaffold were needed. The robot however executed
the behaviour successfully.

Figure 6 shows the “Tidy Up” task extended by training
the robot to recognise the copper objects and placing them
in the “cupboard”. The training sequence here involved cre-
ating a new task “MoveToCupDropObject”, extending the
“Tidy Up” task to execute the “MoveToCupDropObject”
task if the robot could see the cupboard. Two negative ex-
amples were also required. The robot is trained to ignore the
cupboard if it has the plastic object. Similarly it is trained
to ignore the basket if has the copper object.

In some of the training episodes there were indications
that suggested that some tasks can be very difficult to demon-
strate. For example, the alignment of the robot to success-
fully pick up a film canister must be precise. If the robot is
too close the gripper cannot grasp it, if the robot is slightly
misaligned the canister can be knocked over. Demonstrat-
ing this ability to the robot as a sub-task proved difficult as
the range of possible state attributes was very small in this
instance. We think that it may be that certain useful com-
ponent tasks such as these may be better defined pre-coded
as basic primitives i.e. as factory presettings.

6. DISCUSSION
We have described and implemented a robot social learn-

ing architecture, inspired from the study of social animals,
that allows a human trainer to teach a physical robot with-
out explicit programming. The teaching is based on building
up hierarchical sets of reusable competences via interactive
scaffolding. Each competence is based on the assumption
that experiences captured by the robot as a result of di-
rected human training can be re-applied when the robot
experiences a new situation which is similar to those in its
set of stored experiences. Thus it “self-imitates”, generalis-
ing by reproducing its own behaviour in new contexts. The



training takes place in real-time and although relatively new
the architecture appears to scale from simple to moderately
complex tasks successfully. However further experimenta-
tion to access performance on tasks of very high complexity
will be necessary.

To date we have also obtained limited feedback on the
use of the system by non-roboticists where informal tests
have indicated that it may not be obvious to a non-technical
trainer that a robot may need a developmental program to
learn to carry out complex tasks. Although this seems a nat-
ural assumption which is made when training other adults,
children or animals. This may be simply due to inexperi-
ence with “intelligent” machines or that the robot itself does
not “advertise” the fact that it lacks basic skills. Machines
up to now have been engineered mostly to work precisely as
specified, they are usually not expected to have to be taught
or developed in any way.

In our future research we intend to further study these
issues and also use the architecture to further investigate
how robots could learn from each other.
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