
Learning by Demonstration
with Critique from a Human Teacher ∗

Brenna Argall
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, USA

bargall@cs.cmu.edu

Brett Browning
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, USA

brettb@cs.cmu.edu

Manuela Veloso
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, USA

mmv@cs.cmu.edu

ABSTRACT
Learning by demonstration can be a powerful and natural
tool for developing robot control policies. That is, instead
of tedious hand-coding, a robot may learn a control policy
by interacting with a teacher. In this work we present an al-
gorithm for learning by demonstration in which the teacher
operates in two phases. The teacher first demonstrates the
task to the learner. The teacher next critiques learner per-
formance of the task. This critique is used by the learner
to update its control policy. In our implementation we uti-
lize a 1-Nearest Neighbor technique which incorporates both
training dataset and teacher critique. Since the teacher cri-
tiques performance only, they do not need to guess at an ef-
fective critique for the underlying algorithm. We argue that
this method is particularly well-suited to human teachers,
who are generally better at assigning credit to performances
than to algorithms. We have applied this algorithm to the
simulated task of a robot intercepting a ball. Our results
demonstrate improved performance with teacher critiquing,
where performance is measured by both execution success
and efficiency.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Learning by demonstration can be an effective tool for the

development of policies to control robot behavior. We argue
that teaching by demonstration is a natural approach for a
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human teacher, as humans already employ demonstration
to teach other humans. As such, it enriches our knowledge
of human-robot interactions, while making robotics more
accessible to the general public. In comparison to the al-
ternative of hand-coding, demonstration opens robot policy
development to non-experts in the field. Beyond providing
the demonstration, a human teacher may additionally help
a robot learner by offering a critique on performance. We
argue that this role is also well-suited for human teachers,
who are generally good at evaluating task performance.

When learning by demonstration, a robot learns a control
policy from the demonstrated actions of a teacher. Most
work in this area places the majority of the learning burden
on the robot, with an exception being the work of Nicolescu
and Mataric [11]. One way a teacher can help shoulder some
of this burden is by commenting on learner performance. In
our presented algorithm, the robot first derives a control
policy from the demonstrations of a teacher. The teacher
then indirectly modifies the learner’s control policy through
a critiquing process. In particular, the learner, and not the
teacher, applies the teacher’s critique to the policy update.
We argue that this indirect policy modification technique is
well-suited to human teachers. That is, humans are gen-
erally good at assigning performance credit, but have less
intuition about assigning credit to underlying algorithms.
Additionally, a robot learner and human teacher will un-
doubtedly differ in physics and logic. Under this formula-
tion, a robot mechanism does not need to be performable,
or understood, by the human teacher to receive credit.

We contribute an algorithm for learning a robot’s con-
trol policy, in which the teacher provides both task demon-
strations and performance critiques. We argue that the cri-
tiquing task is natural and appropriate for a human teacher,
and simpler than hand coding a control policy. To validate
our approach we implemented a realistic simulation of a dif-
ferential drive robot, modelled on the SegwayRMP, perform-
ing a ball interception task. Our results show that human
teacher critiquing does improve task performance. We mea-
sure task performance by interception success and efficiency.

In the next section, we present background information
and review related work. Section 3 formalizes this learning
problem, while Section 4 describes our algorithm. In Sec-
tion 5 the problem domain is presented, and in Section 6
experiemental results. In the final section we conclude.

2. RELATED WORK
Applications of machine learning to robot behaviors occur
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at many levels, from high level reasoning [9] to low level mo-
tion control policies [4]. In this paper, we focus on learning
low level skills by demonstration.

Teaching a robot by demonstration provides training data
in the form of example executions by a teacher. A task is ex-
ecuted by a teacher, and the details of this execution, usually
in the form of paired observations and actions, are passed
on to the learner. The learner then generalizes from these
demonstrations in order to effectively execute the task it-
self. Work which has applied demonstration learning to the
development of low level robot control policies includes: [3]
learned the reward function used in control policy computa-
tions, [6] learned a heirarchy of neural networks for motion
control, and [10] represented motor behaviors sparsely with
via points. Local learning was used for motion control pol-
icy development by Atekson et al. [2]. The work presented
in this paper also uses local learning techniques, and like [5,
8] combines this with teaching by demonstration.

In general, the example executions of a teacher will not
apply directly to a learner. Many techniques rely upon an
unknown mapping from teacher observations and actions to
robot observations and actions. This correspondence issue
has been addressed by [1, 12, 13], with [7] circumventing
part of this problem by having the learner follow the teacher
and record its own observations. Furthermore, the demon-
stration data provided by the teacher may not be well-suited
for the generalization techniques employed by the learner.
Other difficulties arise when good teacher data is unavail-
able for certain parts of the observation space, though we
do not address this issue in this work. Any of these reasons
may lead to poor learner performance.

One way to help the learner is to offer a critique on its
performance. Helping the learner in this manner is a topic
which has been explored at a high level, with the goal of
social interactions for their robot, by Nicolescu and Mataric
[11]. The algorithm presented in this paper similarly makes
uses of the advice of a teacher. However, our approach in-
corporates the critique of a teacher at a low level, into the
motion control policy computation. The use of a critique is
also a key difference between our approach and traditional
reinforcement learning frameworks. By having the teacher
reward learner executions, we exploit the use of a human to
overcome the challenge of credit assignment.

3. PROBLEM FORMALISM
To formally describe our teaching approach, we first make

use of the Markov Decision Process (MDP) framework to de-
fine the robot control problem, and then we will introduce
the teacher. Thus, we have a robot repeatedly taking actions
in the world according to some control policy and observing
their outcome, with the goal of maximizing the reward it
collects. More formally, let us describe the problem as the
tuple < S, A, P, R >, where S defines the set of states de-
scribing the robot and its world, A is the set of actions the
robot can perform, and P : S ×A× S → � is a probability
function describing the state-action transitions. Thus, at
each time step the state of the world is given by st ∈ S and
the robot selects some action at ∈ A. The probability of
being in a given state using a 1-step Markov independence
assumption is then defined by:

P
`
st+1|st, at, st−1, at−1, · · · , a0´

= P
`
st+1|st, at´

(1)

In our framework, we assume that the robot cannot di-

rectly observe the state of the world. Rather, the robot ob-
serves a mapping of the world state defined as H : S → O,
a mapping from the world states onto O, the set of obser-
vations. We assume that the mapping is sufficiently rich for
the robot to perform the task even with this mapping. The
robot chooses actions based on its observation of the world
state with its control policy π : O → A (see Figure 1A).
The reward function R : S × A → � defines the payoff
achieved by the robot given the state of the world and the
action taken. Learning for the robot consists of changing its
control policy π so as to increase the reward it collects.

Figure 1: (A) A single time step of learner control
policy execution. (B) Update of internal memory M
using teacher critique.

In this paper, we focus on the problem of teaching rather
than reinforcement learning. Thus, we introduce a teacher
that is able to interact with the robot in two modes: by
demonstrating an example, and by critiquing the robot’s
performance on a given example. We do not consider the
mapping problem, and so demonstration consists of giv-
ing the robot a set of performed trajectories. Formally,
teacher executions produce trajectories, which are sequences
of state-action pairs showing the trace of the teacher’s per-
formance when starting from some initial condition in the
world. The teacher provides the robot with the set TR =
{tr1, · · · , trK} derived from these trajectories, where tri =

((o0
i , a

0
i ), · · · , (oki

i , aki
i )) and each (ot

i, a
t
i) pair ot

i ∈ O, at
i ∈ A

describe the observation and corresponding action selected
at time t. Note that o0

i = H
`
s0

i

´
, where s0

i ∈ S is the initial
world state. We will refer to these trajectories TR as the
training set.

The second mode of interaction with the teacher is cri-
tiquing, whereby the robot attempts the problem starting
from some initial state of the world and the teacher critiques
the resulting learner execution trace. The teacher provides
a signal g ∈ {0, 1} that labels each time step as either good
(1), or bad (0). Thus, the robot can form a critiqued trajec-
tory for the test run as tc =

`
(o0, a0, g0), · · · , (oL, aL, gL)

´
.

In our model the robot stores an internal memory M , from
which its policy π is derived. M is seeded with the training
set TR, such that M = G(TR). It is updated according
to M ′ = U(M, g), and thus incorporates into π the critique
stored in tc (Fig. 1B).

Finally, we formulate the teaching problem as: “To devise
an algorithm to modify the robot’s control policy π based on
the demonstrated training set TR provided by the teacher
and the memory M of critiqued robot performance, so as to
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maximize its reward.” The goal of our system is therefore
to improve the learner policy, such that the summed reward
from R is maximized.

Note that this approach makes the key assumption that
the teacher has some unknown control policy Πteach : S →
A that can be represented in the robot’s observation space
as πteach : O → A and still perform well (although not
necessarily optimally).

4. ALGORITHM
In this section we present our algorithm for learning by

demonstration with critiquing.

4.1 Overview
Learning for our system occurs in two phases. During

the first training phase, example trajectories of observation-
action pairs are built during teacher task execution. The
set of these trajectories are provided by the teacher as the
training dataset TR. This dataset will be used by the learner
to form its internal representation M .

01 Given TR, Icritiq

02 M ← G(TR)
03 While !done learning
04 sample s0

i ∈ Icritiq

05 While !teacher satisfied
06 initialize world to s0

i

07 While !task done
08 execute at according to π = NN(ot, M)
09 end
10 tc← teacher critique of execution
11 For gi ∈ tc
12 M ← U(M, gi)
13 end for
14 end while
15 end while

Figure 2: Psuedo-code for the demonstration with
critiquing algorithm.

In the second critiquing phase, the learner executes its
control policy π and updates it based on the critique of the
teacher (psuedo-code in Fig. 2). In particular, the learner
begins by building an internal data representation M from
TR. M is used to compute π using local learning tech-
niques. To initialize the world, initial condition s0

i is sam-
pled from the set Icritiq ∈ S of initial states (explicitly de-
scribed in Section 5.4). The learner executes π (lines 07-09).
The teacher observes and critiques this execution, produc-
ing tc. Based upon teacher feedback tc, the learner up-
dates M (lines 11-13) and subsequently π. The teacher may
request the learner to execute this updated π, to monitor
the effects of the critique. This cycle of execution-critique-
update (lines 05-14) continues until the teacher is satisfied
with learner performance. After this, a new initial condi-
tion s0

i is sampled from Icritiq to reinitialize the world, and
learner execution begins again.

The entire algorithm of learning from demonstration with
critiquing may therefore be described as follows:

1. Train

(a) Teacher generates training dataset TR.

(b) Learner derives M from TR, policy π from M .

2. Critique

(a) Learner executes π from initial conditions.

(b) Teacher observes and critiques learner performance,
producing tc with labels g.

(c) Learner updates memory M based on critique,
thereby modifying π.

(d) Repeat from (2a), to the satisfaction of the teacher.

With this algorithm, the learner uses the teacher’s critique
to modify its internal represenation of how the demonstra-
tion data is used. The critique is therefore applied in a
manner meaningful to the learner, and appropriate to its
control policy update. Having the learner apply the critique
eliminates the effort and potential error in the teacher guess-
ing effective ways to critique the actual policy derivation, or
the actual policy update.

We exploit the use of a human to overcome the issue of
credit assignment, by having the teacher reward an exe-
cution trajectory point. This is a key difference between
our work and traditional reinforcement learning frameworks.
The reward generated by the system is represented within
the teacher’s evaluation and critique of learner performance,
and steps towards the maximization of this reward are taken
when the learner incorporates the critique into its policy up-
date. The learner itself, however, has no explicit concept of
reward maximization. We thus try to optimize the expected
average reward, as estimated by the teacher, and therefore
do so in an indirect manner.

4.2 Learner Execution and Teacher Critique
The first part of the critiquing phase is marked by learner

execution. The internal data representation M is constructed
by associating a scaling factor mj

i with each training set

observation-action pair
`
oj

i , a
j
i

´ ∈ TR. Thus,

M =

8>><
>>:

“`
o1
1, a

1
1, m

1
1

´
, · · · ,

“
ok1
1 , ak1

1 , mk1
1

””
,

· · · ,“`
o1

K , a1
K , m1

K

´
, · · · ,

“
okK

K , akK
K , mkK

K

””
9>>=
>>; .

The values mj
i are initially set to 1.

Local learning techniques on M are used to derive the pol-
icy π. In particular, we used a 1-Nearest Neighbor (1-NN)
approach because it has been successfully applied to other
robot control problems [5], and is comparatively simple and
straightforward to implement. When using 1-NN, the clos-
est datapoint is found within the training set, according to
some distance metric, and its associated action is selected
for execution.

Formally, the learner constructs a current query point ot

from its observations. The scaled distance to each observa-
tion point oj

i ∈ M is computed, according to some metric

D. The value mj
i is the scaling factor. The minimun is

determined,

at = arg mini,jD(ot, oj
i , m

j
i ), (2)

and the action aj
i ∈ M , associated with this minimum, is

executed.
The second part of the critiquing phase is marked by

teacher critique. For each learner execution, the teacher
selects entire chunks of the trajectory to be flagged as good
g = 1 or bad g = 0. Chunk sizes are determined dynam-
ically by the teacher, and may range from a single point
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to all points in the trajectory (typical chunk size in this
work was on the order of 20-30 points). Though here it is
binary, this critique may easily extend to incorporate con-
tinuous values. The learner then takes this information and
updates its control policy by updating M . Specifically, a
value mj

i ∈ M is increased if its associated action aj
i was

taken during a portion of the learner execution which has
been flagged as poor. Formally, for each time step t of the
learner execution trace, the algorithm determines the action
aj

i ∈ M that was executed by the learner. We update mj
i

according to

mj
i ←

(
mj

i + κ
ˆ
D(ot, oj

i , m
j
i )

˜−1
if g = 0

mj
i if g = 1

)
(3)

where κ > 0 is some constant. To monitor the effects of
the critique, the teacher may then request that the learner
repeat execution with the updated policy π.

To update mj
i in this manner means that datapoints whose

recommendations gave poor results (according to the cri-
tique of the teacher) will be seen as further away during the
nearest neighbor distance calculation. This method of relat-
ing success to distance scaling is similar to that employed
by Bentivegna in [5]. The amount by which mj

i is increased
is scaled inversely with distance, so that points will not be
unjustly penalized if recommending for remote areas of the
observation space.

5. EXPERIMENTS
In this section, we describe the experiment domain for our

algorithm. To ground our explanation, and to validate our
approach, we use a ball interception task. That is, a robot
must learn to intercept a moving ball (Fig. 3). In particular,
we look at interception using a differential drive robot. Since
a differential drive robot may only drive forward or turn, and
cannot go sideways, interception of a moving ball becomes a
difficult task. It also depends heavily upon the dynamics of
the world, and so writing an appropriate control policy can
be challenging in the absence of accurate predictive world
motion models.

These first results were gathered in simulation, but care
was taken to keep the simulated domain realistic. We are
currently in the process of applying this algorithm to a real
robot platform (Fig. 4A).

5.1 Domain Description
The state of the world S ∈ �9 is an 9-dimensional vector

consisting of the differential-drive robot position, orienta-
tion, linear and rotational speed st

R =
`
xt

R, yt
R, θt, vt, ωt

´
and the ball position and speed st

B =
`
xt

B , yt
B , ẋt

B , ẏt
B

´
.

The robot may directly make observations about its own
state and ball position. Observations available to the robot
were chosen to consist of (φt, φ̇t, θ̇t, dt, ḋt, dt

R) ∈ O (Fig. 4B):

• φt Robot-relative ball angle

• φ̇t 1-time step difference φt − φt−1

• θ̇t 1-time step difference on the global robot angle
θt − θt−1

• dt Robot-relative ball distance ‖(xt
B , yt

B)− (xt
R, yt

R)‖
• ḋt 1-time step difference dt − dt−1

• ḋt
R 1-time step difference on the global robot distance

traveled ‖(xt
R, yt

R)− (xt−1
R , yt−1

R )‖

Figure 3: The motion of a real robot represented
within our simulated world (top). A simulated ball
interception task (bottom).

We assume the robot uses a differential-drive mechanism
with a low-level controller that takes desired robot velocity
input commands1. Thus, at =

`
vt

cmd, ωt
cmd

´
. The actions

encoded within the training set consist of Δωt
cmd and Δvt

cmd,
where

• Δωt
cmd 1-time step difference in commanded rotational

robot speed ωt
cmd − ωt−1

cmd

• Δvt
cmd 1-time step difference in commanded

translational robot speed vt
cmd − vt−1

cmd

1While other arrangements are possible, this approach is
common to many robot platforms

Figure 4: (A) A SegwayRMP robot. (B) State of
the world observed by our simulated robot.
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Note that within this formulation, observations and ac-
tions within the training set may be grouped according to
which action command they influence. Specifically, (φt, φ̇t, θ̇t,

Δωt
cmd) influence action command ωt

cmd, and (dt, ḋt, ḋt
R,

Δvt
cmd) influence vt

cmd.

5.2 Simulated Dynamics
Here we describe the dynamics of our simulated domain.

For the robot, motion is propagated by simple differential
drive simulation (Fig. 3) of the robot’s global location in
space xR, yR and global orientation θR

xt+1
R = xt

R + vtcos(θt) (4)

yt+1
R = yt

R + vtsin(θt) (5)

θt+1 = θt + ωt · dt . (6)

For the ball, motion is propagated by a constant velocity
model with a simple exponential decay on the initial ball
velocity ẋ0

B , ẏ0
B to mimic frictional loss,

ẋt+1
B = αẋt

B ẏt+1
B = αẏt

B (7)

xt+1
B = xt

B + αtẋt
Bdt yt+1

B = yt
B + αtẏt

Bdt (8)

where α ∈ [0, 1] is the decay constant. These positions gen-
erated within the domain are bounded above and below,
with both the ball and the robot being constrained to re-
main within these bounds. We assume there are dynamic
limitations on the performance of the robot whereby its lin-
ear and rotational accelerations are limited to [−v̇max, v̇max]
and [−ω̇max, ω̇max], and its linear and rotational velocity
bounded within [−vmax, vmax] and [−ωmax, ωmax], respec-
tively.

5.3 Performance Evaluation
To measure the performance of our algorithm, trajectory

executions were evaluated for success and efficiency. Since
these measures were used by our teacher when forming a
critique, it was along such criterion that we expected to see
learner performance improve. A successful interception is
defined by (a) the relative distance to the ball falling below
some threshold and (b) the ball and robot both remaining
within bounds. Execution efficiency is measured by trajec-
tory length.

The teacher demonstrates during the training phase from
initial world conditions in the set Itrain, and the learner
during the critiquing phase from those in the set Icritiq. We
define a critiquing round as execution from a single initial
condition in Icritiq.

To evaluate the benefit of critiquing, we introduce a third
testing phase, within initial conditions Itest. This phase was
carried out after every n critiquing rounds, for evaluation
purposes only. For our implementation, n = 20. The learner
would execute the most recent update on its policy π, but no
teacher critiquing would occur. Executions were evaluated
for interception success and efficiency, as defined above.

5.4 Algorithm Application
We now present the specifics of applying our algorithm to

the stated problem domain. The teacher interacts in two
different phases of our system. During the critiquing phase,
the teacher was a human. Since this intial work was done
in simulation, during the training phase the teacher was a
hand-written control policy. Our intent is that when ap-

plying this algorithm to our real robot, teacher interaction
during the training phase will also be performed by a human.

The hand-written control policy which guided our teacher’s
motion was a set of simple rules to adjust rotational and
translational speed. We treat this control policy as a black
box. It is worthwhile to note is that this control policy is
not optimal for the domain, and does not always success-
fully intercept the ball. This is because it was hand coded
by a human without knowledge of what that optimal solu-
tion might be, and our goal was not to optimize this policy,
but rather to investigate the knowledge transfer between
teacher and robot.

Figure 5: Single time step from an execution-
critique-update cycle. (A) The learner executes pol-
icy π from M . (B) This execution is critiqued by the
teacher, the learner updates M ′ ←M and then exe-
cutes an updated policy π′ from M ′.

A single execution-critique-update cycle within the cri-
tiquing phase is shown in Figure 5. During our nearest
neighbor calculations, the distance metric used was Euclidean,

D(ot, oj
i , m

j
i ) = mj

i

“
ot − oj

i

”T

Σ−1
“
ot − oj

i

”
. (9)

Here Σ is a diagonal matrix which encodes the range of
each observation dimension, and thus removes the effect of
different units in each dimension. The factor mj

i scales the
entire distance calculation based upon the past recommen-
dation success of observation point oj

i . In its update (Eq.3),
κ = 0.1 was set based upon typical ’close’ distances within
the domain. Additionallly, the amount by which mj

i could
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increase between time steps was bounded above by 1. Thus
the mj

i of a poorly performing data point was increased by
the maximum amount of 1 if located within distance κ of the
query point, and by an amount less than 1 (which decayed
exponentially with distance) otherwise.

The physical dimensions of the simulated world corre-
spond to a Segway scale and were 5.0m x 10.0m. The world
was robot-centric. At each execution run start the robot
was located at the center of the world (0, 0), and oriented
towards (1, 0). Due to symmetry, a control policy developed
for one 5.0m x 5.0m quadrant easily translates into a control
policy for the full 5.0m x 10.0m world, by simply flipping the
sign on all x locations and rotational velocity commands ωt.
We operated within the quadrant of positive x, y positions,
with (0, 0) located in the lower left corner.

The acceleration and velocity constraints which were set
for the simulated robot are comparable for our real differ-
ential drive robot (Table 1). Ball speeds were also set to be
bounded such that ‖ẋt

B , ẏt
B‖ < 2.5m/s and decayed accord-

ing to Eq.7 with α = 0.99.

v̇max 3.0 m/s2 ω̇max 7.0 rad/s2

vmax 2.0 m/s ωmax 3.0 rad/s

Table 1: Acceleration and Velocity Constraints

Each initial condition consisted of initial ball position and
speed, and robot state. Three distinct sets of initial con-
ditions existed for each phase, so that Itest �= Icritiq �=
Itrain. They were generated from a uniform subsampling
of S, within set ranges. Itest and Icritiq were sampled con-
tinuously, and Itrain from a grid. The size of each set was
100, 120 and 127, respectively. The ranges of the subsam-
pling were: x0

B , y0
B ∈ [0.0, 5.0] and ẋ0

B , ẏ0
B ∈ [−2.5, 0.0]. Note

that within such ranges, the ball is constrained to travel
initially towards the robot. The initial conditions were ad-
ditionally pruned for feasiblity with simple checks, such as
whether the robot travelling at top speed could even reach
the location where the ball would go out of bounds before
the ball did.

6. RESULTS
Now we present the results of applying our algorithm to

the stated problem domain. In particular, we show learner
performance to improve with critiquing. This performance
improvement is shown through an increase in interception
successes, as well as the more efficient execution of success-
ful trajectories. On both of these measures, learner perfor-
mance not only improves, but comes to exceed the perfor-
mance of its teacher. An example cycle of learner execution
and teacher critique, along with the subsequent improve-
ment in learner execution, is demonstrated in Figure 6.

6.1 More Successful Executions
Learner performance was found to improve with teacher

critiquing. This improvement was seen both within individ-
ual subsets of the critiquing phase, as well as under valida-
tion by an independent test set.

Testing with the independent test set was performed inter-
mittently throughout the critiquing phase, to mark learner
progress. Figure 7 shows learner improvement, where each
datapoint represents the result of executing from all con-
ditions within Itest. The learner begins executions using

Figure 6: Example learner execution made more ef-
ficient by critiquing. (A) The robot initially inter-
cepts the ball, but the loop in its trajectory is in-
efficient. (B) The teacher critiques this trajectory,
flagging the loop as poor. (C) The robot repeats the
execution successfully without a loop. Arrow heads
indicate direction of travel, and the red circle the
distance threshold for successful interception. Note
that the hand-written control policy of our teacher
does not successfully intercept the ball.

the initial internal memory M derived from TR (Initial M),
which it updates after each critiquing round. After the fi-
nal critiquing round, a final version of M exists (Final M).
Learner percent success, using the initial and final versions
of M , are shown in Table 2. The percent improvement on
learner performance (Table 3) on the test set was 25.00%
(calculated as the difference in the number of successes using
Inital M and Final M , over the number of successes using
Initial M). For comparison, these same initial conditions
were tested with the teacher’s hand-written control policy.
The learner’s performance improved upon the teacher’s by
12.90%. To check performance with the set upon which the
learner was critiqued, the same results were gathered with
initial conditions Icritiq, with similar results.

Learner, Learner,
Condition Set Initial M Final M Teacher

Icritiq 55.00% 71.67% 61.67%
Itest 56.00% 70.00% 62.00%

Table 2: Execution Percent Success

Condition Set Impr over Self Impr over Teacher

Icritiq 30.31% 16.22%
Itest 25.00% 12.90%

Table 3: Learner Percent Improvement in Success
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Figure 7: Improvement in learner performance on
the test set with critiquing rounds (solid line).
(Hand-written control policy test set performance
provided for comparison, dashed line).

That the learner was able to perform better than the
hand-coded control policy underlines the benefits of critiquing
within this domain. The hand-coded policy is not optimal
for the domain. By critiquing our robot’s executions, we
were able to correct for some demonstration error and im-
prove the robot’s performance beyond the capabilities of
the demonstration control policy, and all in a simple and
straightforward manner.

6.2 More Efficient Executions
Learner executions were found to become more efficient

with critiquing. That is, the robot intercepts the ball faster,
indicated by a reduction in trajectory length. In particu-
lar, we compared the average lengths of learner execution
with the initial version of M , learner execution with the fi-
nal version of M , and teacher execution (Table 4). With
the independent test set, critiquing enabled the learner to
reduce the length of its executions by 27.98% (Table 5).
Note that we consider only scenarios in which both learner
and teacher are initially successful, since for the same initial
ball position and velocity a successful interception is always
faster, and therefore has a shorter trajecotry length, than
an unsuccessful one.

Learner, Learner,
Condition Set Initial M Final M Teacher

Icritiq 2.94 2.03 2.97
Itest 2.73 1.96 2.87

Table 4: Average Execution Length (seconds)

Condition Set Impr over Self Impr over Teacher

Icritiq 44.94% 31.59%
Itest 27.98% 31.71%

Table 5: Percent Reduction in Execution Length

The criteria by which the teacher critiqued learner per-
formance was a combination of ball interception success and
human intuition. These criteria depended heavily upon the
teacher determining when the execution began to ’go wrong’,

and passing judgement on whether the robot was doing
something ’smart’. For example, taking a very convoluted
path to the ball would be considered ’not smart’, even if the
interception was successful (Fig. 6). To formally define a
metric for credit assignment which determines ’wrongness’
and ’smartness’, however, would be quite difficult. It is ex-
actly in these sort of intuitive judgement calls when having
the critiquing teacher be human becomes so important to
the system.

6.3 Retention of Initial Critique Success
In the critiquing phase, M is updated after each critiquing

round. For most past executions, we would expect this new
information to improve learner performance. For some, how-
ever, it is possible that performance might decline.

When updating mj
i (Eq. 3), our metric does not take into

consideration where query points are in relation to training
data points. Rather, only the distance between is consid-
ered. Consider two query points located at identical dis-
tances to, but in orthogonal directions from, a given train-
ing point. The training point’s recommended action might
be appropriate for one query point but not the other, and
so its execution would incur different successes, and there-
fore also different critiques, for each. By such reasoning, it
is possible in general that trajectory executions may incur
critiques which effectively reverse the critiques of earlier ex-
ecutions, or penalize recommendations which actually are
appropriate under different conditions. Therefore, a trajec-
tory which executed successfully under a prior version of M
may possibly perform poorly under a later version of M .
Consequently, whether a critique was initially successful is
not necessarily captured by whether the trajectory executes
successfully under the final version of M . The incorporation
of query point orientation into the update of mj

i is thus a
potential improvement for this algorithm.

To investigate the initial success of a given critique, we
first looked at a trajectory’s execution success before receiv-
ing its critique, using internal memory M . We then com-
pared this to the success of the repeat execution immediately
following the critiquing round, using the modified M ′. Ta-
ble 6 presents a summary of initial execution successes (in
groups of 20 averaged critiquing rounds, for compactness).
Indeed, the average post-critique, modified M ′ success of
74.17% exceeds 71.67% (Table 2), the average percent suc-
cess of executing Icritiq with the final version of M that
results from completing all critiquing rounds. This indi-
cates that not all successful critiques are properly retained
within M , though we take note that a net result of improved
performance is in any case still observed.

Starting M , Modified M ′,
Round pre-critique post-critique

1-20 65.00% 80.00%
21-40 60.00% 75.00%
41-60 50.00% 55.00%
61-80 50.00% 60.00%
81-100 65.00% 90.00%
101-120 75.00% 85.00%
Average 60.83% 74.17%

Table 6: Pre- and Post-Critique Percent Success
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6.4 Reduction in Effective Critiquing
Our results show a reduction in effective teacher critiquing

as the robot executes within the environment. By effective
critiquing, we mean a trajectory which successfully inter-
cepts the ball following a critique from the teacher. Note
that this decrease was paralleled by an overall increase in
robot performance on the test set.

Figure 8: Number of critiquing rounds which re-
sulted in successful interceptions (solid line). (To-
tal number of critiquing rounds shown for reference,
dashed line).

In total, 36/120 of the trajectories executed from the ini-
tial conditions of Icritiq were chosen by the teacher for cri-
tique. After critiquing a trajectory, the teacher would ask
the learner to repeat execution, to verify that actions which
had been flagged as poor were corrected. On average, the
learner was asked to repeat a critiqued execution 2.61 times.
Repetitions were no longer requested once the teacher de-
termined a successful trajectory (a) had been satisfactorily
executed, (b) was infeasible for the robot given world con-
straints, or (c) was infeasible given the underlying training
data. Note that the later two reasons might be cause for the
teacher to never critique a trajectory in the first place, if be-
lieving successful execution to be infeasible for the robot.

In particular, we identify two distinct sources for learner
execution error. First are errors which result from learner
application of the underlying training data, which may be
corrected by our algorithm and the critique of the teacher.
Second are errors that result from an inadequacy in training
data or physical capability, which cannot be corrected by our
algorithm. As this first form of error reduces, so do the op-
tions for our teacher to provide effective critiques within the
domain. Indeed, the number of effectively critiqued trajec-
tories did not increase linearly with the number of executed
trajectories (Fig. 8).

7. CONCLUSIONS
We contribute an algorithm for learning a robot’s control

policy, which makes use of both the demonstrations and cri-
tique of a teacher. We have argued that this critiquing task
is well-suited for a human teacher, and simpler than hand-
coding a control policy. We validate the algorithm with a
first application in simulation, and it produces an effective
control policy for the domain. The results of our simula-
tion application demonstrate that the critique of a human
teacher does improve task performance, where task perfor-
mance is measured by both execution success and efficiency.

On both measures learner performance not only improved,
but came to exceed the performance of its teacher. Future
work will focus on implementing this algorithm on a Seg-
wayRMP robots performing a similar task.
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