
Interactive Robot Task Training through Dialog and
Demonstration

Paul E. Rybski, Kevin Yoon, Jeremy Stolarz, Manuela M. Veloso
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA, 15213

{prybski,kmy,jstolarz,mmv}@cs.cmu.edu

ABSTRACT
Effective human/robot interfaces which mimic how humans
interact with one another could ultimately lead to robots be-
ing accepted in a wider domain of applications. We present
a framework for interactive task training of a mobile robot
where the robot learns how to do various tasks while observ-
ing a human. In addition to observation, the robot listens
to the human’s speech and interprets the speech as behav-
iors that are required to be executed. This is especially
important where individual steps of a given task may have
contingencies that have to be dealt with depending on the
situation. Finally, the context of the location where the task
takes place and the people present factor heavily into the
robot’s interpretation of how to execute the task. In this
paper, we describe the task training framework, describe
how environmental context and communicative dialog with
the human help the robot learn the task, and illustrate the
utility of this approach with several experimental case stud-
ies.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous

General Terms: Algorithms, Experimentation

Keywords: Learning by demonstration, Human-robot in-
teraction

1. INTRODUCTION
The field of human-robot interaction (HRI) is developing

rapidly as robots become more capable of operating with
people in natural human environments. For robots to be
accepted in the home and in workspaces, people will need
to be able to interact with them in a natural and familiar
fashion. Robotic sensing, cognitive, and actuating capabil-
ities will need to achieve a certain level of complexity such
that humans can treat them more as teammates or part-
ners in order for the research community to reach this goal.
Such enabling capabilities include the ability to recognize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI’07, March 8-11, 2007, Arlington, Virginia, USA.
Copyright 2007 ACM 978-1-59593-617-2/07/0003 ...$5.00.

the presence and activities of nearby people, possess a spa-
tial and semantic notion of the shared environment, and
understand (a subset of) natural human languages. By al-
lowing robots to behave and interact more socially with and
around people, we believe that they will more readily be
accepted by non-technical individuals as part of their daily
lives and routines.

One of the most important methods that humans have for
communicating with each other is spoken language [14]. We
believe that a crucial challenge for the field of human-robot
interaction is to enable a robot to be taught a task (or a set of
tasks) by a human in the same fashion that the human might
teach another person. In this paper, a task is a temporally
ordered set of operations. Tasks can have multiple outcomes
depending on the state of the environment and the objects or
people within it. We are interested in exploring algorithms
that would allow a human to show a robot how to accomplish
a task in a natural fashion and to have the robot interact in
an intelligent dialog with the human in order to verify the
correctness of the task.

In this paper, we describe a set of algorithms for a mo-
bile robot that will allow it to learn a complex task from
a human through a combination of spoken commands, ob-
servation and imitation of a human performing that task,
and engaging in simple spoken language dialog to verify and
append to the learned task sequence. Our approach to task
learning allows the robot to iteratively learn different out-
comes of subtasks by querying the human for more informa-
tion. By engaging the robot as an active partner in the task
training process, we believe that more complex tasks can be
trained.

2. RELATED WORK
Robot task learning through interaction with humans is

an area that has been studied in a number of different areas
of research. In [19], a human teaches a robot arm through
multiple demonstrations how to maneuver through complex
configurations using guarded moves. In [7], a robot arm is
taught to build blocks in a controlled environment where
a human shows the required configuration of blocks to the
robot and the robot replicates them. In [5], a robot arm
attempts to generalize its motion from multiple examples of
being teleoperated through a series of actions. Additionally
the robot asks the user for its intentions of each step so that
it can generalize by knowing, for example, that a block had
to be moved just because it was in the way of another, not
because it was an essential part of the task. In general, the

49

literature on human/robot task training where the robot is a
manipulation device focus primarily on recognition and plan
building where the generated plans are robust to objects be-
ing in different initial conditions. In contrast, when training
mobile robots through demonstration, the focus is more on
the mobility of the platform and understanding where the
human is in relation to other objects and features in the envi-
ronment. In [16], Hidden Markov Models (HMMs) are used
to learn and classify detected human actions as gestures.
The robot performs a basic block distribution task after fol-
lowing the human teacher to learn the context of where the
blocks should be sorted. The paradigm of learning from
observation has also been used very successfully to train hu-
manoids on specific tasks [4] as well as action generation [1].
Our interests are primarily with mobile platforms that will
interact directly with humans in their environments. Tech-
niques for learning control policies via user input have been
explored in [20] as well.

Hierarchical task decomposition is a powerful representa-
tion for segmenting large tasks into more reasonable sub-
tasks. In [6], a behavior framework is defined for teams of
AIBO robots. Behaviors are used to control both individual
robots and the entire team, with the team behaviors hav-
ing additional constraints that facilitate multi-robot control.
In [17], a framework for a human teaching a robot from ba-
sic sequences, to tasks, to behaviors is defined where the
teacher can construct these in a hierarchical fashion. Our
approach also makes use of a hierarchy of tasks in order for
more complex tasks to be constructed out of simpler build-
ing blocks.

The use of speech as a mechanism for task training is pow-
erful because of the amount of information that can be trans-
ferred. A domain in which a robot navigates in a miniature
town is defined in [8]. In this work, a mapping of phrases
to simple primitives and the combination of these primitives
when more complex phrases or instructions are given is de-
fined. The complex ’behaviors’ can then be referred to in
subsequent instructions for the robot. If the robot is inca-
pable of following the instructions, it asks for clarification.
The use of spoken dialog for disambiguation of spoken utter-
ances and to request additional information is important as
it facilitates the understanding between human and robot.
Dialog with a human has been very successfully employed
in [18] for understanding human perspectives and resolving
linguistic ambiguities. Another effort which uses a grounded
situational model for learning percepts from human speech
is described in [10]. We believe very strongly that the mo-
bile robots should engage the human in dialog in order to
gain a better understanding of their world and a large part
of our effort focuses on how this can be done.

Our work is most closely related to the human/robot task
training research of [11, 12]. In this body of work, a robot
observes a human doing a task and learns to associate spe-
cific behaviors with the actions that the human is perform-
ing. The human speaks to the robot to tell it when to pay
attention and when to perform some simple tasks such as
picking up a block. Multiple training sessions on the same
task are generalized to form a single representation. Finally,
if the robot is having problems with a task, it attempts to
communicate this by getting the human’s attention and try-
ing to perform the difficult task while he or she is watching.
Our research also falls in the category of plan learning [21,
22], whereby we are interested in methods by which the

domain-specific plans can be created through the general-
ization of observed data. Our focus is on learning plans
interactively.

Our approach to the problem of a robot learning a task
through human observation is to combine prior knowledge
and contextual information, including environment features
and the presence of nearby humans, with the use of spoken
language dialog. We believe that mobile robots that inter-
act with and learn from humans will be required to make
heavy use of both. The use of question asking and dialog
eliminates some need for repeated viewing of a task because
contingencies can be told to the robot rather than requiring
the robot experience them.

3. USING SPEECH TO BUILD BEHAVIOR
NETWORKS

Our goal is to investigate methods by which a human can
teach a task to a robot in a natural fashion such as how
humans might interact with each other. When consider-
ing how humans teach tasks to each other, we note that
a combination of both demonstration and verbal instruc-
tions can be used. If the teacher and the learner both have
shared knowledge of all of the concepts that are referenced,
then the teacher only needs to verbally describe the task
sequence. However, as is more often the case, a combina-
tion of both demonstration and verbal descriptions must be
used in order to successfully teach a human a new task.
Our behavior learning architecture supports a combination
of these methodologies. In order to derive a mapping from
human actions (and speech) to robot actions, the robot re-
quires both a set of behaviors that will allow it to perform
the tasks required of it as well as behaviors necessary for
doing the learning. Additionally, the robot must be able to
differentiate between those language utterances which spec-
ify specific behaviors that should be executed by the robot,
and those utterances which refer specifically to the structure
of the task to execute. These structures of our architecture
are described in the following sections.

3.1 Behaviors
The fundamental building block of the robot’s control sys-

tem is the behavior. Simply speaking, behaviors are func-
tions which map a set of inputs, including sensor informa-
tion as well as derived state information, to a set of actions.
Internally, every behavior is defined as a finite state ma-
chine with an explicit start state and potentially multiple
termination states, depending on whether the behavior was
successful in achieving its goals. Individual behaviors are
the fundamental building blocks for more complex tasks.
Behaviors are responsible for relatively simple control op-
erations such as tracking a person and navigating between
waypoints. On termination, a behavior will report whether
it was successful or whether it had failed. One such fail-
ure condition includes not being able to reach the goal in a
timely fashion (timeout).

A list of relevant behaviors used by our robots is as follows:

• Goto(x,y)/Goto(name) Allows the robot to navi-
gate safely from its current position to either a location
specified in its global coordinates or else to a named
location.

• Say(s)/Tell(s,p)/Ask(s,p) Generates speech from
the robot’s speech synthesizer. The first form simply

50

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Behavior / Task

Task Item

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

<Link1, Link2,...>

Return Cases

<Link1, Link2,...>

Return Cases

Task Item

<Link1, Link2,...>

Return Cases

Task Item Task Item

Task Item

[Name]<Param1, Param2,...>

[Name]<Param1, Param2,...>[Name]<Param1, Param2,...>

[Name]<Param1, Param2,...>

Behavior / Task

Behavior / TaskBehavior / Task

Behavior / Task

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

Precondition List

<Item1, Item2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Task Item

Behavior / Task

<Link1, Link2,...>

Return Cases

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>[Name]<Param1, Param2,...>

<Link1, Link2,...>

Return Cases

[Name]<Param1, Param2,...>

Behavior / Task

Task Item Task Item

Behavior / Task

Behavior / Task

Task Item

(i) (ii) (iii)

Figure 1: (i) The task item, the basic task building block. (ii) An example task consisting of four primitive
task items. (iii) The completed task is invoked to create a more complex hierarchical task by linking it with
simple task items.

causes the robot to speak an utterance s. The second
requires that the robot identify and speak the utter-
ance to a particular person p who is present. The third
speaks the utterance to a specific person and waits for
a response.

• Follow(p)/ComeHere(p) Causes the robot to lo-
cate person p, and drive towards them. The first form
is a continuous following behavior while the second
stops when the robot comes within a meter of the per-
son.

In addition to the general behaviors for navigating and
interacting with people, a set of specific task training be-
haviors has been defined:

• LearnTask This behavior causes the robot to listen
to each utterance of the human and construct a task
out of them.

• FollowLearnTask This behavior invokes the Follow
behavior and drives the robot after the teacher and
allows the robot to learn the task based on both the
spoken utterances as well as the location of the teacher.

In order for the locations in the environment to be seman-
tically meaningful as part of the training process, a map of
the environment is provided to the robot which contains
linguistic information regarding physical locations. For in-
stance, the locations of named objects such as “couch”, “ta-
ble”, and “television” can be added to the map as well as
general locations of rooms such as “lab” or “living room.”
This a priori information is used to ground locations that
are either mentioned in the human’s speech or are visited as
the human walks about the environment.

3.2 Tasks
A task is defined as a group of behaviors connected in

a graph structure, where each link in the graph represents
a transition between one behavior and the next. Individ-
ual task items are wrappers for generic behaviors that allow
the behaviors to be sequentially ordered. A task item, illus-
trated in Figure 1(i), includes three different components:
(1) A precondition list that must be true before the task
can execute; (2) the name of a behavior (or even another
task) and the parameter list that will be passed in for ex-
ecution; and (3) links to additional task items that will be
executed based on the return status of the executing behav-
ior. In general, a task item may have any number of links
to additional task items. This fan-out is limited only by the
expressiveness of the task and the language used to describe
it. Typically, the outcomes of a particular task are either
Success or Failure which is equivalent to an If conditional
branching statement in a declarative programming language
(but is not limited to just two outcomes.)

A complete task consists of a set of task items that are
linked in the form of a directed acyclic graph (DAG), as
shown in Figure 1(ii). The links that connect individual
task items are directional and thus specify a temporal rela-
tionship between the two tasks where the first task in this
temporal relationship must execute before the second is able
to do so. The “root” node of the DAG is the initial start-
ing state. There can be an arbitrary number of potential
end states, which are specified as the leaf nodes with no
additional nodes connected to them afterward.

Finally, tasks are named entities that can be referred to
in the Behavior/Task slot of a task item. This nesting of
tasks within task items can be arbitrarily deep and allows
for the generation of complex tasks that reuse previously-
defined tasks. An example of a hierarchical task structure
is shown in 1(iii).

51

3.3 Training through Speech and Interaction
When executing the LearnTask behavior, the robot lis-

tens to the speech uttered by the teacher and uses it to
build the network of task items. The FollowLearnTask
behavior is a proper superset of the LearnTask behavior
which is capable of building task structures from speech ut-
terances but also uses the presence of the human and the
robot’s own location in the environment to learn additional
behavior structures.

3.3.1 Learning from Language
The LearnTask behavior is invoked when the human

says to the robot: ‘‘When I say <TaskLabel>’’ where
TaskLabel is the name that will be assigned to this task.
Each utterance spoken afterwards will be taken as either a
specific statement of action or as a meta command which
will either open a conditional link or will close one. For
example, consider the statement:

‘‘If’’ <test-condition>

<actionlist>

‘‘Otherwise’’

<actionlist>

‘‘Before’’

<actionlist>

The test-condition is a boolean expression which checks
the state of the environment according to the robot’s sensors
and internal state variables. The items called actionlist

are (potentially empty) lists of actions that are spoken by
the human. The quoted text consist of the explicit key-
words that the robot will recognize as meta-commands. The
Before keyword denotes the end of an If statement. Both
the Otherwise and Before keywords are not necessary if
their corresponding lists of actions are empty.

Note that there is no limit to the number of tasks that can
be spoken in the If or Otherwise blocks. Nested If state-
ments are also supported, as shown in the example below
and in Figure 2.

>> When I say deliver message

>> If Person1 is present

>> Give message to Person1

>> Otherwise

>> If Person2 is present

>> Give message to Person2

>> Otherwise

>> Report message delivery failure

>> Before

>> Before

>> Goto home

Note the need for the two Before statements. Each one
is necessary so that the robot knows how to attach the next
task item in the graph. If the overall task becomes very
complex with multiple levels of nested If statements, this
can rapidly become difficult for the human to describe. Sec-
tion 3.3.3 describes a mechanism for avoiding this by itera-
tively constructing the task.

Every Goto command that is learned for a task – whether
explicitly commanded or inferred as is the case with the be-
havior FollowLearnTask – imposes a locational precondi-
tion (that can be overridden by other Goto commands) on
subsequent behaviors and tasks within that task. The as-
sumption is that the actions within a task can and should

If Person1 is present

Give message
to Person1

True

If Person2 is present

False

Return home

Give message
to Person2

True

Report message
delivery failure

False

Figure 2: Example task list sequence illustrating
nested If links.

only be performed when the robot is where it was when it
learned them.

3.3.2 Learning by Demonstration
The FollowLearnTask is invoked when the human says

to the robot: “Here is what to do when I say
<TaskLabel>” As stated previously, the FollowLearn-
Task has the capabilities of the LearnTask behavior for
generating tasks from purely linguistic models. However,
this behavior adds the capability to follow the human and
generate task items from non-linguistic modes of communi-
cation. When invoked, this behavior will drive the robot up
to the teacher and wait until the teacher says something or
moves to a new location. Changes in location are compared
against the robot’s internal map of the environment. If the
robot is near a labeled object in its map, its position will be
registered as linguistic components such as “by the chair”
or “in the kitchen”, otherwise the position will register as
an explicit x, y location.

3.3.3 Iterative Task Learning through Dialog
Once the human has taught the robot how to do the task,

several verification steps are taken. First, the human can
ask whether the robot understands the task after it has
completed. The robot will verbally describe each task in
the form that the human has described it. Additionally, be-
cause it is challenging for a person to describe an arbitrarily
complex task with many conditional statements, particu-
larly when those conditional statements are deeply nested,
the human has the option of only specifying the true condi-
tional part of any particular conditional statement. That is,
only a single traversal through the tree is initially needed.
When the robot is asked to verify the task, it will traverse
the tree and look for any conditional statements that do not
have an otherwise condition associated with them. In this
case, the robot will notify the human and inquire whether
this was expected. If the human intended more tasks to be
added at this point, then task training is resumed and the

52

User has finished dictating
 task structure

For each ’if’ node
in task graph

’Otherwise’ case was unspecified?

yes

Ask for tasks to insert

no

Append task specified by <userCmd>
to ’otherwise’ branch

userCmd != done

Ask if task should terminate
 here or link back to main graph

userCmd = done

Figure 3: Verification dialog that checks for unspec-
ified ’otherwise’ cases.

human can either speak a new set of commands, or teach
the robot with a set of commands and actions. This pro-
cess is repeated for every If-node in the behavior network
that does not have an explicit Otherwise case. It allows the
human to only have to demonstrate a single instance of a
task to the robot, leaving the robot to keep track of when
to ask for more details when necessary. The algorithm for
this iterative process is shown in Figure 3 and an example
is described in Section 5.

4. ROBOTS: CMASSIST
Our team of robots, called CMAssist (shown in Figure 4),

are based on the ER1 mobile robot platform from Evolu-
tion Robotics. Mobility is provided by a custom set of DC
motors. The robots have a CAMEO [15] omnidirectional
camera rig mounted on the top of their sensor mast. People
are identified and tracked by color histograms [2]. The top
camera is also used for landmark identification by visually
recognizing objects with clusters of SIFT [9] features. A par-
ticle filter localization algorithm [3] is used to maintain an
estimate of the robot’s pose through its environment. The
robots use a stereo camera for obstacle avoidance as well
as to assist with tracking people. Computational power is
provided by two Pentium-M laptops.

Understanding of human speech is done in two parts.
First, IBM ViaVoice is used for the initial capture and pro-
cessing of the spoken utterances. A natural language pro-
cessing system called NAUTILUS [13], developed by the
Naval Research Labs (NRL), is used to process the utter-
ances and match them against an a priori grammar that
represents what the robot can understand. These programs
are run on a third computer that the robots connect to wire-
lessly.

5. EXPERIMENTAL VALIDATION
To validate our task-learning architecture, we trained the

robot to give a tour of our lab. We labeled four circular
regions1 in the robot’s map of our lab: Lab center, Door,

1Note that although the regions we defined in this experi-
ment were circular, they could have been of arbitrary shape.

Figure 4: The robots of CMAssist 2006: Erwin and
Carmela.

CMAssist Robots, and Robot dogs. The tour consists of
greeting a visitor at the door and leading the visitor to where
the robots are located, where it asks a lab member to talk
about them.

We broke down the task into the sub-tasks Give the CMAs-
sist tour and Give the robot dogs tour which were trained
using the LearnTask mechanism. Next, we trained the
top-level task Give the lab tour that invokes the two learned
tasks by using the FollowLearnTask mechanism. Finally,
we executed the Give the lab tour task twice: once under
conditions in which it would succeed and once under condi-
tions in which the robot was rendered unable to successfully
complete certain parts of the task. In so doing, we demon-
strate the use of precondition-propagation during training
and precondition-checking at runtime to enable the robot to
gracefully carry on with the rest of a task when it is unable
to complete a part of it.

5.1 Interactive Task Training
The following training dialog was used to train the Give

the robot dogs tour task and demonstrates the system’s abil-
ity to verify branches of the task tree that were not explicitly
stated by the trainer (Section 3.3.3). The lines starting with
“>>” indicate what the human says. The lines starting
“R>>” indicate what the robot says.

>> When I say give the robot dogs tour

>> say These are the robot dogs

>> if Jeremy is there

>> Ask Jeremy to talk about the robot dogs

>> before

>> Say That concludes the robot dogs tour

(1)>> Is that understood?

R>> Yes, you said if Jeremy is there: ask

Jeremy to talk about the robot dogs.

before say that concludes the robot dogs

tour. Is this correct?

>> yes

R>> Now checking unspecified ’otherwise’

cases. If Jeremy is there is FALSE,

should I say that concludes the robot dogs

tour?

>> no

53

say These are the
 robot dogs

if Jeremy is there

Ask Jeremy to talk
about the robot dogs

True

say That concludes
the robot dogs tour

False

(i) Initial task as spoken by the human.

say These are the
 robot dogs

if Jeremy is there

Ask Jeremy to talk
about the robot dogs

True

say Unfortunately Jeremy
is not around to
talk about them

False

say That concludes
the robot dogs tour

(ii) After querying the human on the implicit connection of
the otherwise case.

Figure 5: The process of iteratively constructing
a task through dialog between the human and the
robot.

R>> What shall I do if Jeremy is there is FALSE?

Say ’done’ to end.

(2)>> Say Unfortunately Jeremy is not around to

talk about them

>> done

R>> After I say Unfortunately Jeremy is not

around to talk about them shall I say That

concludes the robot dogs tour? Say yes to

confirm or say no to exit the task at this

point.

>> yes

R>> Task training is complete. Thank you.

Figure 5(i) shows the generated task at (1). The FALSE
condition still links to the task specified after Before. The
robot, however, reminded the user that an Otherwise case
was not given and prompted him/her to insert tasks during
this time. After (2) was inserted, the user had the option of
making the task exit or link back into the task sequence and
chose the latter. Figure 5(ii) shows the final task structure.
The Give the CMAssist tour task was trained in a similar
manner.

say These are the
CMAssist robots

if Kevin is there

Ask Kevin to talk about
the CMAssist robots

True

say Unfortunately Kevin
is not around to
talk about them

False

say That concludes
the CMAssist tour

go to the robot dogs

say These are the
 robot dogs

if Jeremy is there

Ask Jeremy to talk
about the robot dogs

True

say Unfortunately jeremy
is not around to
talk about them

False

say That concludes
the robot dogs tour

go to the lab center

go to the door

say Welcome to the multi-robot lab

go to the cmassist robots

say Thank you for visiting

Figure 6: The hierarchical task of giving the lab
tour with pre-defined tasks expanded to show their
individual task. The dotted arrows show the implicit
preconditions enforced by the GoTo behaviors.

Finally, Give the lab tour was trained using FollowLearn-
Task. The resulting task structure is shown in Figure 6.
The training sequence is shown below with the actions of
the human teacher denoted in brackets ([]). The letters
beside the teacher’s actions correspond to the marked lo-
cations in Figure 7(i), which shows the path of the robot
during training.

(a)>> When I say give the lab tour

[Walk to the door]

(e)>> say Welcome to the Multi-robot lab

[Walk to the CMAssist robots]

(f)>> give the CMAssist tour

[Walk to the robot dogs]

(g)>> give the robot dogs tour

[Walk to the center of the lab]

(h)>> say Thank you for visiting

>> Thank you

54

(i) Robot paths while following a human teacher dur-
ing training (�) and while executing the tour task (2).

(ii) The path of the robot when an obstacle prevented
it from reaching the robot dogs.

Figure 7: A top-down view of the process of training and executing the Give the lab tour task. The grey
circles denote pre-labeled regions where sub-tasks are learned and executed in this top-down view of the lab.
An example of failure recovery during execution is shown on the right.

5.2 Robust Task Execution
For the first execution trial, the scene was set such that

the Give the lab tour task would execute successfully. Kevin
was near the CMAssist robots, Jeremy was near the robot
dogs, and the paths between locations were not obstructed.
The robot successfully carried out the task as shown in the
following execution transcript. As before, the letters corre-
spond to the marked locations in Figure 7(i) (Robot actions
are shown in <>.)

(a) >> Give the lab tour

(b) R>> Welcome...

(c) R>> These are the CMAssist robots. Kevin, could

you talk about the CMAssist robots?

<Wait for signal of completion from Kevin>

R>> That concludes the CMAssist tour

(d) R>> These are the robot dogs. Jeremy, could you

talk about the robot dogs?

<Wait for signal of completion from Jeremy>

R>> That concludes the robot dogs tour

(a) R>> Thank you...

In the second execution trial (Figure 7(ii)), we modified the
environment so that the task would not successfully com-
plete. This time, Kevin was not present in the room and an
obstacle obstructed the path between the CMAssist robots
and the robot dogs. The execution transcript follows:

(a) >> Give the lab tour

(b) R>> Welcome...

(c) R>> These are the CMAssist robots.

R>> Unfortunately Kevin is not around to talk

about them

R>> This concludes the CMAssist tour

(i) <Robot is blocked by obstacle. Attempt to reach

robot dogs fails due to timeout.>

(a) R>> Thank you...

The robot greeted the guest at the door (b) and traveled
to the CMAssist robots where it then initiated the Give the
CMAssist tour task (c). However, Kevin was not present
and the task graph was traversed appropriately (by stating
that Kevin was not available). Then, blocked by an obsta-
cle at (i), the robot could not reach the robot dogs location,
resulting in the Goto behavior eventually timing out. The
next item in the task was to Give the robot dogs tour but
because this task was preconditioned on the robot’s being
in the robot dogs region, it was skipped entirely. The robot
then returned to position (a) where it ended the tour nor-
mally.

6. SUMMARY AND FUTURE WORK
In this work, we have described an algorithm for training

robots which involves the combination of spoken language
understanding, dialog, and physical demonstration. Our ap-
proach allows a human to interact with a robot in a more
natural and familiar fashion in order to train it on a new
task. Our task representation allows tasks to be constructed
from smaller subtasks in order to create complex hierarchi-
cal structures. Once an initial task is demonstrated to the
robot, the robot can verify the task with the human and per-
mit the human to add additional conditional cases, thus in-
creasing robustness. Finally, the execution of the task itself
is made robust to failure by checking for necessary precon-
ditions in the environment before executing the associated
task item as well as by timing out on a task if the robot
is not making progress. Disambiguation of commands and

55

words is handled by the NLP module. If a spoken utterance
does not fit the known grammar, vocabulary, or even the re-
sponse expected by the behavior, the robot notifies the user
that it does not understand and requests that the command
be repeated.

The system described in this paper has successfully demon-
strated the feasibility of our proposed task training algo-
rithms. We are encouraged by these results and are actively
exploring mechanisms for improving the expressiveness and
robustness of the algorithms. One such area for improve-
ment stems from the fact that CMAssist’s learned behavior
structure is represented as a DAG. One shortcoming with
this representation is that learned plans cannot have cycles,
such as repeating a sequence of operations ‘n’ times. In
future work, we plan on evaluating alternate plan represen-
tations such as domain-specific planners with loops [21, 22]
or grounded situational models [10]. Another area of active
improvement includes addressing the robot’s task learning
capabilities. These are only as expressive as its ability to
understand the physical world around it. To address this,
we are actively working to improve the robot’s perceptual
modules to include recognition of additional objects as well
as the ability to recognize a much larger set of activities
performed by people. Another area that we are exploring
is how to increase the functional capabilities of our robot.
Because our robots do not have manipulators, the kinds of
tasks that the robots can learn are solely based on nav-
igation to different locations. CMAssist can then mainly
handle tasks which involve traveling to a specific location
and querying/interacting with people found there. Tasks
that are more complex, such as those which might involve
manipulation, can be addressed through additional robotic
hardware (we are currently examining how to add manipu-
lators to our robots) as well as through the addition of more
complex behavior modules which are designed to perform
such tasks. The CMAssist perceptual module would need
to be enhanced to handle recognition of human manipula-
tion actions as well as visual recognition of the objects that
are to be manipulated.

7. ACKNOWLEDGMENTS
We would like to thank the Naval Research Labs for devel-

oping the NAUTILUS natural language processing system
and for helping us understand how to use it.

This research was supported by the National Business
Center (NBC) of the Department of the Interior (DOI) un-
der a subcontract from SRI International. The views and
conclusions contained in this document are those of the au-
thor and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, by the NBC, DOI, SRI or the US Government.

8. REFERENCES
[1] D. Bentivegna, C. Atkeson, and G. Cheng. Learning from

observation and practice at the action generation level. In
IEEE International Conference on Humanoid Robots,
Karlsruhe and Munich, Germany, September/October 2003.

[2] J. Bruce and M. Veloso. Fast and accurate vision-based
pattern detection and identification. In Proceedings of the
2003 IEEE International Conference on Robotics and
Automation, Taiwan, May 2003, to appear.

[3] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo
localization for mobile robots. In Proceedings of the 1999
IEEE International Conference on Robotics and Automation,
pages 1322–1328, 1999.

[4] M. Ehrenmass, R. Zöllner, O. Rogalla, S. Vacek, and
R. Dillmann. Observation in programming by demonstration:
Training and execution environment. In IEEE International
Conference on Humanoid Robots, Karlsruhe and Munich,
Germany, September/October 2003.

[5] H. Friedrich and R. Dillmann. Robot programming based on a
single demonstration and user intentions. In 3rd European
Workshop on Learning Robots at ECML’95., 1995.

[6] G. A. Kaminka, Y. Elmaliach, I. Frenkel, R. Glick, M. Kalech,
and T. Shpigelman. Towards a comprehensive framework for
teamwork in behavior-based robots. In Proceedings of the
Eighth Conference on Intelligent Autonomous Systems
(IAS-8), 2004.

[7] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching:
Extracting reusable task knowledge from visual observation of
human performance. Transactions on Robotics and
Automation, 10:799–822, 1994.

[8] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein. Mobile
robot programming using natural language. Robotics and
Autonomous Systems, 38(3–4):171–181, 2002.

[9] D. Lowe. Object recognition from local scale-invariant features.
In Proceedings of the Seventh IEEE International Conference
on Computer Vision, pages 1150–7, 1999.

[10] N. Mavridis and D. Roy. Grounded situation models for
robots: Where words and percepts meet. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Beijing, China, October 2006.

[11] M. Nicolescu and M. Matarić. Linking perception and action in
a control architecture for human-robot domains. In Proceedings
of the Thirty-Sixth Hawaii International Conference on
System Sciences (HICSS-36), Hawaii, USA, January 2003.

[12] M. Nicolescu and M. Matarić. Natural methods for robot task
learning: Instructive demonstration, generalization and
practice. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multi-Agent
Systems, Melbourne, Australia, July 2003.

[13] D. Perzanowski, A. Schultz, W. Adams, E. Marsh, and
M. Bugajska. Building a multimodal human-robot interface.
IEEE Intelligent Systems, 16(1):16–21, January/February
2001.

[14] D. B. Roe and J. G. Wilpon. Voice Communication Between
Humans and Machines. National Academy Press, Washington,
DC, 1994.

[15] P. E. Rybski, F. de la Torre, R. Patil, C. Vallespi, M. M.
Veloso, and B. Browning. Cameo: The camera assisted meeting
event observer. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation, New
Orleans, April 2004.

[16] P. E. Rybski and R. M. Voyles. High-level task training of a
mobile robot through human gesture recognition and
imitation. In Proceedings of the IEEE International
Conference on Robotics and Automation, volume 1, pages 664
– 669, May 1999.

[17] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching
robots by moulding behavior and scaffolding the environment.
In Human-Robot Interaction, Salt Lake City, Utah, March
2006.

[18] D. Sofge, J. G. Trafton, N. Cassimatis, D. Perzanowski,
M. Bugajska, W. Adams, and A. C. Schultz. Human-robot
collaboration and cognition with an autonomous mobile robot.
In F. Groen, N. Amato, A. Bonarini, E. Yoshida, and
B. Kröse, editors, In Proceedings of the 8th Conference on
Intelligent Autonomous Systems (IAS-8), pages 80–87. IOS
Press, March 2004.

[19] R. M. Voyles, J. D. Morrow, and P. K. Khosla. Towards
gesture-based programming: Shape from motion primoridal
learning of sensorimotor primitives. Robotics and Autonomous
Systems, 22:361–375, November 1997.

[20] Y. Wang, M. Huber, V. Papudesi, and D. Cook. User-guided
reinforcement learning of robot assistive tasks for an intelligent
environment. In Proceedings of the IEEE/RJS International
Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, 2003. IEEE.

[21] E. Winner and M. Veloso. Analyzing plans with conditional
effects. In Proceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems, Toulouse, France,
April 2002.

[22] E. Winner and M. Veloso. DISTILL: Towards learning
domain-specific planners by example. In Proceedings of
ICML’03, Washington, DC, August 2003.

56

