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ABSTRACT
Human control of multiple robots has been characterized by
the average demand of single robots on human attention or
the distribution of demands from multiple robots. When
robots are allowed to cooperate autonomously, however, de-
mands on the operator should be reduced by the amount
previously required to coordinate their actions. The present
experiment compares control of small robot teams in which
cooperating robots explored autonomously, were controlled
independently by an operator or through mixed initiative as
a cooperating team. Mixed initiative teams found more vic-
tims and searched wider areas than either fully autonomous
or manually controlled teams. Operators who switched at-
tention between robots more frequently were found to per-
form better in both manual and mixed initiative conditions.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—operator inter-
faces

General Terms
Human Factors, Measurement, Experimentation

Keywords
Human-robot interaction, metrics, evaluation, multi-robot
system

1. INTRODUCTION
Applications for multirobot systems (MRS) such as in-

terplanetary construction or cooperating uninhabited aerial
vehicles will require close coordination and control between
human operator(s) and teams of robots in uncertain environ-
ments. Human supervision will be needed because humans
must supply the perhaps changing, goals that direct MRS
activity. Robot autonomy will be needed because the aggre-
gate decision making demands of a MRS are likely to exceed
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the cognitive capabilities of a human operator. Autonomous
cooperation among robots, in particular, will be needed be-
cause it is these activities [6] that impose the greatest de-
cision making load. In addition to this form of high-level
supervision, humans are likely to be called upon to assist
with a variety of low-level problems such as sensor failures
or obstacles that robots cannot solve on their own [5].

Multiple robots substantially increase the complexity of
the operator’s task because attention must constantly be
shifted among robots in order to maintain situation aware-
ness and exert control. In the simplest case an operator con-
trols multiple independent robots interacting with each as
needed. Control performance at this task can be character-
ized by the average demand of each robot on human atten-
tion [4] or the distribution of demands coming from multiple
robots [13]. Increasing robot autonomy allows robots to be
neglected for longer periods of time making it possible for a
single operator to control more robots. Researchers investi-
gating the effects of levels of autonomy (teleoperation, safe
mode, shared control, full autonomy, and dynamic control)
on HRI [10, 11] for single robots have found that mixed-
initiative interaction led to better performance than either
teleoperation or full autonomy. This result seems consistent
with Fong’s collaborative control [5] premise that because it
is difficult to determine the most effective task allocation a
priori, allowing adjustment during execution should improve
performance.

The study of autonomy modes for MRS has been more
restrictive. Because of the need to share attention between
robots, teloperation has only been used for one robot out of
a team [15] or as a selectable mode [17]. Some variant of
waypoint control has been used in all MRS studies reviewed
[15, 4, 22, 21, 17, 20] with differences arising primarily in be-
havior upon reaching a waypoint. A more fully autonomous
mode has typically been included involving things such as
search of a designated area [15], travel to a distant way-
point [22], or executing prescribed behaviors [17]. In studies
in which robots did not cooperate and had varying levels
of individual autonomy [15, 4, 22, 21] (team size 2-4) per-
formance and workload were both higher at lower auton-
omy levels and lower at higher ones. So although increasing
autonomy in these experiments reduced the cognitive load
on the operator, the automation could not perform the re-
placed tasks as well. This effect would likely be reversed for
larger teams such as those tested in Olsen & Wood’s [16]
fan-out study which found highest performance and lowest
(per robot activity) imputed workload for the highest levels
of autonomy.
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Table 1: Recent MRS studies
Experiment World Robots Task Team

Nielsen et al. (2003) 2D simulator 3 Navigate/build map independent
Crandall et al. (2005) 2D simulator 3 Navigate independent

Trouvain & Wolf (2002) 2D simulator 2,4,8 Navigate independent
Trouvain et al. (2003) 3D simulator 1,2,4 Navigate independent

Parasuraman et al. (2005) 2D simulator 4,8 Capture the flag cooperative
Squire et al. (2006) 2D simulator 4,6,8 Capture the flag cooperative
Present Experiment USARsim 3D simulator 3 Search cooperative

For cooperative tasks and larger teams individual auton-
omy is unlikely to suffice. The round-robin control strat-
egy used for controlling individual robots would force an
operator to plan and predict actions needed for multiple
joint activities and be highly susceptible to errors in predic-
tion, synchronization or execution. A series of experiments
using the Playbook interface and the RoboFlag simulation
[17, 20] provide data on HRI with cooperating robot teams.
These studies found that control through delegation (call-
ing plays/plans) led to higher success rates and faster mis-
sions than individual control through waypoints and that as
with single robots [10, 11] allowing the operator to choose
among control modes improved performance. Again, as in
the single robot case, the improvement in performance from
adjustable autonomy carried with it a penalty in reported
workload. Another recent study [19] investigating supervi-
sory control of cooperating agents performing a fire fighting
task found that human intervention actually degraded sys-
tem performance. In this case, the complexity of the fire
fighting plans and the interdependency of activities and re-
sources appeared to be too difficult for the operator to fol-
low. For cooperating teams and relatively complex tasks,
therefore, the neglect-tolerance assumption [4, 16] that hu-
man control always contributes may not hold. For these
more complex MRS control regimes it will be necessary to
account for the arguments of Woods et al. [25] and Kirlik’s
[9] demonstration that higher levels of autonomy can act to
increase workload to the point of eliminating any advantage
by placing new demands on the operator to understand and
predict automated behavior. The cognitive effort involved
in shifting attention between levels of automation and be-
tween robots reported by [20] seems a particularly salient
problem for MRS.

The present study investigates human interaction with a
cooperating team of robots performing a search and rescue
task. It compares performance between autonomous teams,
manually controlled robots, and operators interacting with
a cooperating team in order to identify the contributions
of each to system performance. Table 1 organizes details
of recent MRS studies. All were conducted in simulation
and most involve navigation rather than search. This is sig-
nificant because search using an onboard camera requires
greater shifts between contexts than navigation which can
more easily be performed from a single map display [1, 14].
Our experiment uses USARsim [23], a high fidelity game
engine-based robot simulator we developed to study HRI
and multi-robot control. USARsim provides a physics based
simulation of robot and environment that accurately repro-
duces mobility problems caused by uneven terrain [24], haz-
ards such as rollover [23], and provides accurate sensor mod-
els for laser rangefinders [3] and camera video [2]. This level

of detail is essential to posing realistic control tasks likely
to require intervention across levels of abstraction. Previous
studies have not addressed the issues of human interaction
with cooperating robot teams within a realistically complex
environment. Results from 2D simulation [17, 20], for ex-
ample, are unlikely to incorporate tasks requiring low-level
assistance to robots, while experiments with noncooperat-
ing robots [15, 4, 22, 21] miss the effects of this aspect of
autonomy on performance and HRI.

2. THE SIMULATOR AND MULTI-ROBOT
SYSTEM

The present study used three simulated Activemedia P2-
DX robots equipped with Sick laser range finder and ptz
camera. We built the MrCS (Multi-robot Control System), a
multi-robot communications and control infrastructure with
accompanying user interface to conduct these studies. MrCS
provides facilities for starting and controlling robots in the
simulation, displaying camera and laser output, and sup-
porting inter-robot communication through Machinetta [18].
Machinetta is a distributed mutiagent system with state-
of-the-art algorithms for plan instantiation, role allocation,
information sharing, task deconfliction and adjustable au-
tonomy [18]. The distributed control enables us to scale
robot teams from small to large. In Machinetta, team mem-
bers connect to each other through reusable software prox-
ies. Through the proxy, humans, software agents, and differ-
ent robots can work together to form a heterogeneous team.
Basing team cooperation on reusable proxies allows us to
quickly change size or coordination strategies without affect-
ing other parts of the system. MrCS provides Machinetta
proxies for robots, human interaction (control), and user
interface (display). The robot proxy provides low-level au-
tonomy such as guarded motion, waypoint control (moving
form one point to another while automatically avoiding ob-
stacles) and middle-level autonomy in path generation. It
also communicates between the simulated robot and other
proxies to enable the robot to execute the cooperative plan
they have generated. In the current study plans are quite
simple and dictate moving toward the nearest frontier that
does not conflict with search plans of another robot. The
user interacts with the system through the user interface
which sends messages to robot proxies and reacts to their
responses. Sensor outputs from the camera and laser go di-
rectly to the interface without passing through any proxy.
The user interface built for MrCS is reconfigurable enabling
the user to resize and layout the components. A typical in-
terface configuration is shown in Figure 1. On the left side
are the global information components: the Robots List (the
upper panel) that shows each team member’s execution state
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Figure 1: The Graphic User Interface.

and the thumbnail of the individual’s camera view; and the
global Map (the bottom panel) that shows the explored ar-
eas and each robot’s position. From the Robot List, the
operator can select any robot to be controlled. In the cen-
ter are the individual robot control components. The upper
component, Video Feedback, displays the video of the robot
being controlled. It allows the user to pan/tilt and zoom
the camera. The bottom component is the Mission panel
that shows the controlled robot’s local situation. The local
map is camera up, always pointing in the camera’s direc-
tion. The local map is overlaid with laser data in green and
a cone showing the camera’s FOV in red. With the Mission
panel and the Video Feedback panel, we support situation
awareness at three ranges. The FOV presented in the red
cone shows the operator where he is looking through the
camera providing close range SA. Combining this informa-
tion with the range data shown in the red cone, can give the
operator better awareness at medium distances. The green
range data shows the open regions around the robot provid-
ing local information about where to go in the next step. In
contrast, the lower map provides the user long range infor-
mation that helps her make a longer term plan. The mission
panel displays the robot’s current plan as well to help the
user understand what the robot is intending to do. When
a marked victim or another robot is within the local map
the panel will represent them even if not sensed. Besides
representing local information, the Mission panel allows the
operator control a robot by clearing, modifying, or creat-
ing waypoints and marking the environment by placing an
icon on the map. On the right is the Teleoperation panel
that teleoperates the robot or pans/tilts the camera. These
components behave in the expected ways.

3. METHOD

3.1 Participants
14 paid participants, 19-35, years old were recruited from

the University of Pittsburgh community. None had prior
experience with robot control although most were frequent
computer users. Only two reported playing computer games
for more than one hour per week.

3.2 Procedure
The experiment started with collection of the participant’s

demographic data and computer experience. The partici-
pant then read standard instructions on how to control ro-
bots via MrCS. In the following 10 minute training session,
the participant practiced each control operation and tried
to find at least one victim in the training arena under the
guidance of the experimenter. Participants then began a
twenty minute session in Arena-1 followed by a short break
and a twenty minute session in Arena-2. At the conclusion
of the experiment participants completed a questionnaire.

3.3 Experimental Design
In the experiment, participants were asked to control 3

P2DX robots (Figure 2) simulated in USARsim to search for
victims in a damaged building. Each robot was equipped
with a pan-tilt camera with 45 degrees FOV and a front
laser scanner with 180 degree FOV and resolution of 1 de-
gree. The participant interacted with the robots through
MrCS with fixed user interface shown in Figure 1. Once a
victim was identified, the participant marked its location on
the map. The testing worlds were simulated versions of the
NIST Reference Test Arena, Yellow Arena [8]. Two similar
testing arenas were built using the same elements with dif-
ferent layouts. In each arena, 14 victims were evenly distrib-
uted in the world. We added mirrors, blinds, curtains, semi-
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Figure 2: P2DX robot

transparent boards, and wire grid to add difficulty in situ-
ation perception. Bricks, pipes, a ramp, chairs, and other
debris were put in the arena to challenge mobility and SA in
robot control. Figure 2 shows a corner of the testing world.
We used a within subjects design with counterbalanced pre-
sentation to compare mixed initiative and manual condi-
tions. Under mixed initiative, the robots analyzed their
laser range data to find possible exploration paths. They
cooperated with one another to choose execution paths that
avoided duplicating efforts. While the robots autonomously
explored the world, the operator was free to intervene with
any individual robot by issuing new waypoints, teleoperat-
ing, or panning/tilting its camera. The robot returned back
to auto mode once the operator’s command was completed
or stopped. While under manual control robots could not
autonomously generate paths and there was no cooperation
among robots. The operator controlled a robot by giving
it a series of waypoints, directly teleoperating it, or pan-
ning/tilting its camera. As a control for the effects of auton-
omy on performance we conducted “full autonomy” testing
as well. Because MrCS doesn’t support victim recognition,
based on our observation of the participants’ victim identifi-
cation behaviors, we defined detection to have occurred for
victims that appeared on camera for at least 2 seconds and
occupied at least 1/9 of the thumbnail view. Because of the
high fidelity of the simulation, and the randomness of paths
picked through the cooperation algorithms, robots explored
different regions on every test. Additional variations in per-
formance occurred due to mishaps such as a robot getting
stuck in a corner or bumping into an obstacle causing its
camera to point to the ceiling so no victims could be found.
Sixteen trials were conducted in each area to collect data
comparable to that obtained from human participants.

4. RESULTS
In this experiment, we studied the interaction between a

single operator and a robot team in a realistic interactive
environment where human and robots must work tightly to-
gether to accomplish a task. We first compared the impact
of different levels of autonomy by evaluating the overall per-
formance as revealed by the number of found victims, the
explored areas, and the participants’ self-assessments. For
the small robot team with 3 robots, we expected similar

Figure 3: Victims as a function of area explored

results to those reported in [15, 4, 22, 21] that although au-
tonomy would decrease workload, it would also decrease per-
formance because of poorer situation awareness (SA). How
a human distributes attention among the robots is an inter-
esting problem especially when the human is deeply involved
in the task by performing low level functions, such as identi-
fying a victim, which requires balancing between monitoring
and control. Therefore, in addition to overall performance
measures, we examine: 1) the distribution of human interac-
tions among the robots and its relationship with the overall
performance, and 2) the distribution of control behaviors,
i.e. teleoperation, waypoint issuing and camera control,
among the robots and between different autonomy levels,
and their impacts in the overall human-robot performance.

4.1 Overall measurement
All 14 participants found at least 5 of a possible 14 (36%)

victims in each of the arenas. The median number of vic-
tims found was 7 and 8 for test arena 1 and 2 respectively.
Two-tailed t-tests found no difference between the arenas
for either number of victims found nor the percentage of
the arena explored. Figure 3 shows the distribution of vic-
tims discovered as a function of area explored. These data
indicate that participants exploring less than 90% of the
area consistently discovered 5-8 victims while those cover-
ing greater than 90% discovered between half (7) and all
(14) of the victims.

Within participant comparisons found wider regions were
explored in mixed-initiative mode, t(13) = 3.50, p < .004,
as well as a marginal advantage for mixed-initiative mode,
t(13) = 1.85, p = .088, in number of victims found. Com-
paring with “full autonomy”, under mixed-initiative condi-
tions two-tailed t-tests found no difference (p = 0.58) in
the explored regions. However, under full autonomy mode,
the robots explored significantly, t(44) = 4.27, p < .001,
more regions than under the manual control condition (Fig-
ure 4). Using two-tailed t-tests, we found that participants
found more victims under mixed-initiative and manual con-
trol conditions than under full autonomy with t(44) = 6.66,
p < .001, and t(44) = 4.14, p < .001 respectively (Figure 5).
The median number of victims found under full autonomy
was 5.
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Figure 4: Regions explored by mode

Figure 5: Victims found by mode

In the posttest survey, 8 of the 14 (58%) participants re-
ported they were able to control the robots although they
had problems in handling some components. All of the re-
maining participants thought they used the interface very
well. Comparing the mixed-initiative with the manual con-
trol, most participants (79%) rated team autonomy as pro-
viding either significant or minor help. Only 1 of the 14 par-
ticipants (7%) rated team autonomy as making no difference
and 2 of the 14 participants (14%) judged team autonomy
to make things worse.

4.2 Human interactions
Participants intervened to control the robots by switch-

ing focus to an individual robot and then issuing commands.
Measuring the distribution of attention among robots as the
standard deviation of the total time spent with each robot,
no difference (p = .232) was found between mixed initiative
and manual control modes. However, we found that under
mixed initiative, the same participant switched robots sig-
nificantly more often than under manual mode (p = .027).
The posttest survey showed that most participants switched

Figure 6: Victims vs. switches under mixed-
autonomy mode

Figure 7: Victims vs. switches under manually con-
trol mode

robots using the Robots List component. Only 2 of the 14
participants (14%) reported switching robot control inde-
pendent of this component.

Across participants the frequency of shifting control among
robots explained a significant proportion of the variance in
number of victims found for both mixed initiative, R2 =
.54, F (1, 11) = 12.98, p = .004, and manual, R2 = .37,
F (1, 11) = 6.37, p < .03, modes (Figures 6 and 7).

An individual robot control episode begins with the pre-
observation in which the participant collects the robot’s in-
formation and then makes a control decision, and ends with
the post-observation phase in which the operator observes
the robot’s execution and decides to turn to the next ro-
bot. Using a two-tailed t-test, no difference was found in
either total pre-observation time or total post-observation
time between mixed-initiative and manually control condi-
tions. The distribution of found vicitims among pre- and
post-observation times (Figure 8) shows, however, that the
proper combination can lead to higher performance.

13



Figure 8: Pre and Post observation time vs. found
victims

4.3 Interaction methods
Three interaction methods: waypoint control, teleopera-

tion control, and camera control were available to the op-
erator. Using waypoint control, the participant specifies a
series of waypoints while the robot is in pause state. There-
fore, we use the times of waypoint specification to measure
the amount of interactions. Under teleoperation, the par-
ticipant manually and continuously drives the robot while
monitoring its state. Time spent in teleoperation was mea-
sured as the duration of a series of active positional control
actions that were not interrupted by pauses of greater than
30 sec. or any other form of control action. For camera
control, times of camera operation was used because the op-
erator controls the camera by issuing a desired pose, and
monitoring the camera’s movement.

While we did not find differences in overall waypoint con-
trol times between mixed-initiative and manual modes, mixed-
initiative operators had shorter, t(13) = 3.02, p < .01, con-
trol times during any single control episode, the period dur-
ing which an operator switches to a robot, controls it and
then switches to another robot.

Figure 9 shows the relationship between victims found and
total waypoint control times. In manual mode this distri-
bution follows an inverted ‘U’ with too much or too little
waypoint control leading to poor search performance. In
mixed-initiative mode by contrast the distribution is skewed
to be less sensitive to control times while holding a better
search performance, i.e. more found victims (see section
4.1).

Overall teleoperation control times, t(13) = 2.179, p < .05
were reduced in the mixed-initiative mode as well, while
teleoperation times within episodes only approached signif-
icance, t(13) = 1.87, p = .08. No differences in camera con-
trol times were found between mixed-initiative and manual
control modes. It is notable that operators made very little
use of teleoperation, .6% of mission time, and only infre-
quently chose to control their cameras.

5. CONCLUSION
In this experiment, the first of a series investigating con-

trol of cooperating teams of robots, cooperation was limited

Figure 9: Victims found as a function of waypoint
control times

to deconfliction of plans so that robots did not re-explore the
same regions or interfere with one another. The experiment
found that even this limited degree of autonomous cooper-
ation helped in the control of multiple robots. The results
showed that cooperative autonomy among robots helped the
operators explore more areas and find more victims. The
fully autonomous control condition demonstrates that this
improvement was not due solely to autonomous task per-
formance as found in [19] but rather resulted from mixed
initiative cooperation with the robotic team. The supe-
riority of mixed initiative control was far from a foregone
conclusion since earlier studies with comparable numbers of
individually autonomous robots [15, 4, 22, 21] found poorer
performance for higher levels of autonomy at similar tasks.
We believe that differences between navigation and search
tasks may help explain these results. In navigation, moment
to moment control must reside with either the robot or the
human. When control is ceded to the robot the human’s
workload is reduced but task performance declines due to
loss of human perceptual and decision making capabilities.
Search by contrast can be partitioned into navigation and
perceptual subtasks allowing the human and robot to share
task responsibilities improving performance. This explana-
tion suggests that increases in task complexity should widen
the performance gap between cooperative and individually
autonomous systems. We did not collect workload measures
to check for the decreases found to accompany increased au-
tonomy in earlier studies [15, 4, 22, 21], however, eleven of
our fourteen subjects reported benefiting from robot coop-
eration.

Our most interesting finding involved the relation between
performance and switching of attention among the robots.
In both the manual and mixed initiative conditions partici-
pants divided their attention approximately equally among
the robots but in the mixed initiative mode they switched
among robots more rapidly. Psychologists [12] have found
task switching to impose cognitive costs and switching costs
have previously been reported [7, 20] for multirobot control.
Higher switching costs might be expected to degrade per-
formance, however in this study, more rapid switching was
associated with improved performance in both manual and
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mixed initiative conditions. We believe that the map com-
ponent at the bottom of the display helped mitigate losses
in awareness when switching between robots and that more
rapid sampling of the regions covered by moving robots gave
more detailed information about areas being explored.

The frequency of this sampling among robots was strongly
correlated with the number of victims found. This effect,
however, cannot be attributed to a change from a control to
a monitoring task because the time devoted to control was
approximately equal in the two conditions. We believe in-
stead that searching for victims in a building can be divided
into a series of subtasks involving things such as moving a ro-
bot from one point to another, and/or turning a robot from
one direction to another with or without panning or tilt-
ing the camera. To effectively finish the searching task, we
must interact with these subtasks within their neglect time
[4] that is proportional to the speed of movement. When we
control multiple robots and every robot is moving, there are
many subtasks whose neglect time is usually short. Missing
a subtask means we failed to observe a region that might
contain a victim. So switching robot control more often
gives us more opportunity to find and finish subtasks and
therefore helps us find more victims. This focus on subtasks
extends to our results for movement control which suggest
there may be some optimal balance between monitoring and
control. If this is the case it may be possible to improve an
operator’s performance through training or online monitor-
ing and advice.

We believe the control episode observed in this experi-
ment corresponds to a decomposed subtask of the team and
the linear relationship between switches and found victims
reveals the independent or weak relationship among the sub-
tasks. For a multi-robot system, decomposing the team goal
into independent or weakly related sub goals allowing the
human to intervene into the sub goals is a potential way to
improve and analyze human multi-robot performance. From
the view of interface design, the interface should fit the sub
goal decomposition (or sub goal template) and help the op-
erator in attaining SA.

6. REFERENCES
[1] D. Bruemmer, D. Few, R. Boring, J. Marble,

M. Walton, and C. Nielsen. Shared understanding for
collaborative control. IEEE Transactions on Systems,
Man, and Cybernetics: A, 35(4):494–504, July 2005.

[2] S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, and
J. Wang. Quantitative assessments of usarsim
accuracy. In Proceedings of PerMIS 2006, August
2006.

[3] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff.
High fidelity tools for rescue robotics: Results and
perspectives. In Robocup 2005: Robot Soccer World
Cup IX, pages 301–311, July 2005.

[4] J. W. Crandall, M. A. Goodrich, D. R. Olsen, and
C. W. Nielsen. Validating human-robot interaction
schemes in multitasking environments. IEEE
Transactions on Systems, Man, and Cybernetics, Part
A, 35(4):438–449, 2005.

[5] T. W. Fong, C. Thorpe, and C. Baur. Advanced
interfaces for vehicle teleoperation: Collaborative
control, sensor fusion displays, and remote driving
tools. Autonomous Robots, 11(1):77–85, July 2001.

[6] B. Gerkey and M. Mataric. A formal framework for
the study of task allocation in multi-robot systems.
International Journal of Robotics Research,
23(9):939–954, 2004.

[7] M. Goodrich, M. Quigley, and K. Cosenzo. Switching
and multi-robot teams. In Proceedings of the Third
International Multi-Robot Systems Workshop, March
2005.

[8] A. Jacoff, E. Messina, and J. Evans. Experiences in
deploying test arenas for autonomous mobile robots.
In Proceedings of the 2001 Performance Metrics for
Intelligent Systems (PerMIS) Workshop, Mexico City,
Mexico, September 2001.

[9] A. Kirlik. Modeling strategic behavior in human
automation interaction: Why an ’aid’ can (and
should) go unused. Human Factors, 35:221–242, 1993.

[10] J. Marble, D. Bruemmer, and D. Few. Lessons learned
from usability tests with a collaborative cognitive
workspace for human-robot teams. In IEEE
International Conference on Systems, Man and
Cybernetics, pages 448–453, October 2003.

[11] J. Marble, D. Bruemmer, D. Few, and
D. Dudenhoeffer. Evaluation of supervisory vs.
peer-peer interaction with human-robot teams. In
Proceedings of the 37th Annual Hawaii International
Conference on System Sciences, January 2004.

[12] N. Meiran, Z. Chorev, and A. Sapir. Component
processes in task switching. Cognitive Psychology,
41(4):211–253, 2000.

[13] J. Nickerson and S. Steven. Attention and
communication: Decision scenarios for teleoperating
robots. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, January
2005.

[14] C. Nielsen and M. Goodrich. Comparing the usefulness
of video and map information in navigation tasks. In
Proceedings of the 2006 Human-Robot Interaction
Conference, Salt Lake City, Utah, March 2006.

[15] C. Nielsen, M. Goodrich, and J. Crandall.
Experiments in human-robot teams. In Proceedings of
the 2002 NRL Workshop on Multi-Robot Systems,
October 2003.

[16] D. R. Olsen and S. Wood. Fan-out: Measuring human
control of multiple robots. In Proceedings of the 2004
Conference on Human Factors in Computing Systems
(CHI 2004), pages 231–238, 2004.

[17] R. Parasuraman, S. Galster, P. Squire, H. Furukawa,
and C. Miller. A flexible delegation-type interface
enhances system performance in human supervision of
multiple robots: Empirical studies with roboflag.
IEEE Systems, Man and Cybernetics-Part A, Special
Issue on Human-Robot Interactions, 35(4):481–493,
July 2005.

[18] P. Scerri, D. Pynadath, L. Johnson, P. Rosenbloom,
M. Si, N. Schurr, and M. Tambe. A prototype
infrastructure for distributed robot-agent-person
teams. In International Conference on Autonomous
Agents, pages 433–440, Melbourne, Australia, 2003.

[19] N. Schurr, J. Marecki, M. Tambe, P. Scerri,
N. Kasinadhuni, and J. Lewis. The future of disaster
response: Humans working with multiagent teams
using defacto. In AAAI Spring Symposium on AI
Technologies for Homeland Security, 2005.

15



[20] P. Squire, G. Trafton, and R. Parasuraman. Human
control of multiple unmanned vehicles: effects of
interface type on execution and task switching times.
In Proceedings of the 2006 Human-Robot Interaction
Conference, pages 26–32, Salt Lake City, Utah, March
2003.

[21] B. Trouvain, C. Schlick, and M. Mevert. Comparison
of a map- vs. camera-based user interface in a
multi-robot navigation task. In Proceedings of the
2003 International Conference on Robotics and
Automation, pages 3224–3231, October 2003.

[22] B. Trouvain and H. L. Wolf. Evaluation of multi-robot
control and monitoring performance. In Proceedings of
the 2002 IEEE Int. Workshop on Robot and Human
Interactive Communication, pages 111–116, September
2002.

[23] J. Wang, M. Lewis, and J. Gennari. A game engine
based simulation of the nist urban search and rescue
arenas. In Proceedings of the 2003 Winter Simulation
Conference, pages 1039–1045, December 2003.

[24] J. Wang, M. Lewis, S. Hughes, M. Koes, and
S. Carpin. Validating usarsim for use in hri research.
In Proceedings of the Human Factors and Ergonomics
Society 49th Annual Meeting, pages 457–461,
September 2005.

[25] D. Woods, J. Tittle, M. Feil, and A. Roesler.
Envisioning human-robot coordination in future
operations. IEEE Transactions on Systems, Man, and
Cybernetics: C, 34(2):210–218, May 2004.

16


