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ABSTRACT
A crucial skill for fluent action meshing in human team ac-
tivity is a learned and calculated selection of anticipatory
actions. We believe that the same holds for robotic team-
mates, if they are to perform in a similarly fluent manner
with their human counterparts.

In this work, we propose an adaptive action selection
mechanism for a robotic teammate, making anticipatory de-
cisions based on the confidence of their validity and their
relative risk. We predict an improvement in task efficiency
and fluency compared to a purely reactive process.

We then present results from a study involving untrained
human subjects working with a simulated version of a robot
using our system. We show a significant improvement in
best-case task efficiency when compared to a group of users
working with a reactive agent, as well as a significant differ-
ence in the perceived commitment of the robot to the team
and its contribution to the team’s fluency and success. By
way of explanation, we propose a number of fluency metrics
that differ significantly between the two study groups.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Human Factors, Performance, Design, Experi-
mentation

Keywords
Human-Robot Interaction, Anticipatory Action Selection,
Fluency, Teamwork

1. INTRODUCTION
Two people repeatedly performing an activity together

naturally reach a high level of coordination, resulting in a
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fluent meshing of their actions. In contrast, human-robot in-
teraction is often structured in a stop-and-go fashion, induc-
ing delays and following a rigid turn-taking pattern. Aiming
to design robots that are capable peers in human environ-
ments, we try to attain a more fluent meshing of human and
machine activity.

In recent years, the cognitive mechanisms of joint action
have received increasing attention [20]. Among other fac-
tors, successful coordinated action has been linked to the
formation of expectations of each partner’s actions by the
other and the subsequent acting on these expectations [14,
22]. We argue that the same holds for collaborative robots:
if they are to go beyond stop-and-go interaction, agents must
take into account not only past events and current perceived
state, but also expectations of their human collaborators.

In this paper we present an adaptive anticipatory action
selection mechanism for a robotic teammate. We discuss
a cost-based framework for examining coordinated action
in shared-location human-robot teamwork, and investigate
our model in this scenario. We compare our framework to a
purely reactive agent acting within a traditional perception-
action loop, and — based on theoretical analysis — predict
an improvement in efficiency.

We then present results from a study involving untrained
human subjects working with a simulated version of a robot
using our anticipatory system. We show a significant im-
provement in best-case task efficiency when compared to
users working with a purely reactive agent. However, we
were not able to show this difference being significant when
measuring the mean score over repetitions. We attribute
this to the small number of repetitions used in our study.

That said, we are not interested solely in efficiency, but
also in the qualitative notion of fluency in coordinated action
meshing, ultimately leading to more appropriate collabora-
tive behavior. In a post-study survey we found a significant
difference in the perceived contribution of the robot to the
team’s fluency and success, as well as its commitment to
the team. Given there are no generally accepted measures
of teamwork fluency, we compare three candidate metrics
between the two conditions, finding the groups to differ sig-
nificantly in two (time between human and robot action,
and time spent in concurrent motion), but not in a third
(human idle time).

The remainder of the paper is structured as follows: In
Section 2 we briefly describe the cost-based Markov process
in which our agent is set, and in Section 3 outline a reactive
action-selection mechanism for an agent in this world. In
Section 4 we introduce our adaptive cost-optimizing antic-
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ipatory agent and analyze its behavior. Section 5 presents
and discusses results from the human subject study; Sec-
tion 6 discusses related work, and we conclude in Section 7
with future research directions.

2. WORLD DESCRIPTION
We model the team fluency problem as a discrete time-

based deterministic decision process including two agents, a
robot and a human, working together on a shared task.1

Both robot and human share a common workspace, which
at any time point is in one of a finite number of states. The
agents also have a number of states, which are different for
the robot and the human. The robot can only perceive the
state of the workspace if it is in a subset of states, called
perceptive states. Human and robot have distinct abilities,
described as two sets of actions. There is a transition func-
tion that maps certain state-action pairs to new states.

A central motivation of our model is to investigate aspects
of time associated with actions of two collaborating agents.
Therefore, state transitions are not atomic, and the decision
to take a particular action does not result in an immediate
state transition. Instead, moving between states takes time,
and is associated with a known discrete cost, which is a func-
tion of the states before and after the action. This cost can
be thought of as the ‘distance’ between states, or more gen-
erally — the duration it takes to transition between states.
We denote the cost of transitioning between states sk and
sl with d(sk, sl).

Thus when, at time t, an agent x decides to take an action
on a certain state sk, the world will be in the resulting state
sl only at time t+d(sk, sl). While the other agent may take
more actions during this time, the next time step at which
agent x will be able to take another action is t + d(sk, sl).
For sake of simplicity, we will sometimes denote d(sk, sl) as
dkl.

2.1 The Factory World
In our experiments we use a simulated factory setting

(Figure 1). The goal of the team is to assemble a cart made
of a Body, a Floor, two Axles, and four Wheels. The various
parts have particular ways to be attached to each other —
the Body is welded to the Floor, Axles are riveted to the
Floor and Wheels are attached to Axles using a wrench of
matching color. A component is a partially assembled cart
segment that includes one or more individual parts attached
to each other, for example Axle + Body + Floor.

The labor is divided between the human and the robot:
the human has access to the individual parts, and is capable
of carrying them and positioning them on the workbench.
The robot is responsible for fetching the correct tool and
applying it to the currently pertinent component configura-
tion in the workbench. Each part has a stock location (with
an infinite supply of parts), and each tool has a storage lo-
cation, to which it has to be returned for the robot to be
able to find it again. The workbench can, at any one time,
contain at most two components.

The above-described framework encompasses a state-space
of 2,160,900 distinct states.

1In this paper we include an abridged description of the
model, only as needed for the understanding of the subse-
quent analysis and study.

Figure 1: Simulated factory setting with a human
and a robot building carts, while sharing a work-
bench (gray circle), but dividing their tasks. The
robot has access to the tools (right and top-left of
workbench), whereas the human is responsible to
bring the parts (below the workbench). Top left
shows a completed cart.

The robot’s actions include going to each of the tool’s
locations, PickUp, PutDown, and Use. The latter only
changes the workbench if the robot is holding a tool and
is located at the workbench. The human’s action space is
similar, but with two more location actions, and no Use
action. The duration cost of a state transition that involves
navigation is the distance between the previous and the new
location. The duration cost for state transitions involving
the inventory of an agent, or changes to the workbench, is 1
in this implementation, but could theoretically be different
for each tool.

The robot can perceive the state of the workbench only
when it is located in it. Workbench state changes that
happen while the robot is in any other state are not ap-
plied to its internal representation. Moreover, we assume
that the robot has a function Φ that maps the workbench
state to the appropriate tool required to bond the two com-
ponents on the workbench. For example: φ(< Floor +
Axle1, Wheel1 > ) = Wrench1. This can be a lookup
table, or a simple decision process.

3. REACTIVE AGENTS
A baseline agent that is purely responsive to its environ-

ment and internal state, can be defined by an action policy
that waits in the workbench when Φ(WorkBench) = ∅, and
fetches tool x, uses it, returns it, and returns to the work-
bench when Φ(WorkBench) = x.

The obvious fallacy of this policy occurs when the same
tool is needed twice in a row (which can happen with the
wheels and axles, in the factory domain), resulting in a su-
perfluous sequence of returning and then fetching the same
tool. The näıve policy can therefore be improved by de-
laying the decision to return a tool until the state of the
workbench changes. This prevents the agent from returning
a tool before it is certain that it is not needed again in the
next step. We call this policy conservative tool return.

However, it is straightforward to demonstrate that there is
a negative impact of the “conservative tool return” strategy
in the case where the next tool needed is different than the
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current tool. Note that the cost effect of conservative tool
return is dependent not only on the known world configura-
tion, but also on the turnaround time of the human action
h, a quantity that can not be known but only estimated by
the robotic agent. Additionally, the overall expected cost
effect is dependent on the probability distribution on the
workbench configuration over time. It therefore makes sense
to discuss an action selection policy based on these factors,
which is the topic of the following section. We will then
frame the two reactive policies discussed here as a subset of
the proposed anticipatory policy.

4. ANTICIPATORY ACTION SELECTION
As discussed in the introduction, humans are remarkably

adaptive and increasingly effective when performing repeti-
tive trials of an identical task collaborating with a consistent
teammate. The use of educated anticipatory action based on
expectations of each other’s behavior may be a key ingredi-
ent in the achievement of this action fluency. In this section
we will attempt to adopt this insight in the human-robot
interaction domain within the discussed framework.

A necessary assumption for anticipatory action selection
in our agent is that the human collaborator will follow a
roughly consistent action pattern, i.e. will make similar de-
cisions under similar circumstances.

The agent thus models the workbench as a first-order
Markov Process.2 The probability of the workbench state
at time t, σw

t , is thus conditional on σw
t−l and denoted as

pw
i|j ≡ Pr(σw

t = si|σw
t−l = sj)

The agent can learn the parameters of this Markov process
using a näıve Bayesian estimate. To do this, the agent keeps
a one-step history of the state transitions of the workbench.
A change from state sj to state si increases the counter ni|j .
Consequently, pw

i|j is computed as

pw
i|j =

ni|jP|ΣW |
k=1 nk|j

However, in order to estimate the cost of preemptive ac-
tion as described in the following section (which is ill-defined
for non-constructive workbench states), and also to reduce
the decision state space, the robot in our factory domain can
alternatively model the probability of the tool needed based
on the previous state: if Q(x) = {si : φ(si) = x} is the set of
workbench states that warrant tool x, the new probability
model learned is now

px|j ≡ Pr(σw
t ∈ Q(x)|σw

t−l = sj)

We estimate this model as follows: a change from state
sj to state si ∈ Q(x) increases the counter nx|j . Using a
Laplace correction [15] of 1, px|j is then estimated by

px|j =
nx|j + 1P|Tools|

k=1 nk|j + 1
2A presumably more realistic model would be to view the
collaboration as a Hidden Markov Model, with the hu-
man state transitions being hidden, and the workbench
transitions being the evidence layer of the model. How-
ever, since many of the human’s state transitions do not
affect the workbench state, and the probability of work-
bench transitions conditional on the human state transitions
Pr(σw

t = si|σh
t = sj) are not independent of σw

t−l, it is un-
clear whether such a model would indeed be of value in our
domain, and is therefore left to future investigation.

4.1 Action Selection
As the agent only perceives the workbench state (and

therefore information about the transition distribution) when
it is in the workbench state, it makes sense to make deci-
sions in terms of action sequences. The acquisition of these
sequences is beyond the scope of this paper, but suffice to
say that in our scenario the agent needs only to consider
action sequences that begin and terminate while it is in the
workbench state.

In the discussed factory domain we can identify four proto-
sequences: (1) Pick up a tool and use it; (2) Return a tool
and return to workbench; (3) Return a tool, bring a new
tool, and use it; (4) Do nothing and wait.

The action selection process operates as follows: at any
time the robot is in the workbench state, it evaluates the
cost of each of the proto-sequences. Proto-sequence 1 needs
to be grounded for each tool and proto-sequence 3 needs to
be grounded for each of the currently not held tools. Given
the probability distribution, the robot can compute the ex-
pected cost for choosing each of the strategies, and selects
a grounded sequence optimizing for cost. Note that in the
cost for proto-sequences 1–3, we assume that h is smaller
than twice the distance between the workbench and any
tool. Also note that the cost in our calculations includes
performing the correct action afterwards.

Denoting the current state of the workbench sj , and the
workbench position 0, the expected duration cost of proto-
sequence 1–3 are as follows:

Cost1(x) =px|j(2d0x + 2)+X
y 6=x

[py|j(3d0x + dxy + d0y + 4)]

Cost2(x) =

|Tools|X
y=1

[pk|j(2d0x + 2d0y + 3)]

Cost3(x, y) =py|j(d0x + dxy + dy0 + 3)+X
z 6=y

[pz|j(d0x + dxy + 2dy0 + dyz + dz0 + 5)]

The above costs are derived as follows: for proto-sequence
1, the expected cost is made up of (a) the expected cost if the
anticipated tool is correct, i.e. twice the distance from the
workspace to the tool position d0x, plus the cost of pickup,
plus the cost of using the tool = 2d0x + 2; and (b) the
expected cost in case the anticipated tool is incorrect —
three times d0x: getting the anticipated tool and returning
it, plus the distance to the correct tool dxy, plus the distance
back to the workspace d0y, plus two pickups, one put-down,
and one tool operation = 3d0x + dxy + d0y + 4. The costs
for proto-sequences 2 and 3 can be similarly derived.

Action sequence 4 is unique insofar as it is dependent
not only on the state transitions in the workbench, but also
on the behavior of the human teammate. If the human’s
next workbench-changing action is at time t + h, the cost
of waiting is the cost of performing the correct action with
complete confidence, plus h. For the case that the robot is
holding a tool z:
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Cost4 = pz|j +
X
y 6=z

[py|j(d0z + dzy + dy0 + 3)] + h

For the case that the robot is not holding a tool:

Cost4 =

|Tools|X
y=1

[py|j(2d0y + 2)] + h

However, Since h is not directly accessible to the robotic
agent, its estimate can be used as a confidence parameter,
adjusting between an aggressively anticipatory behavior and
a more cautious approach.

Using the above notation, we can now rephrase the previ-
ously discussed reactive agent behaviors. The näıve agent’s
policy can be viewed as selecting proto-sequence 2 when-
ever it is holding a tool in the workbench, and selecting
proto-sequence 1 whenever a tool is warranted. The agent
employing conservative tool return can be rephrased as se-
lecting proto-sequence 4 whenever no tool is warranted, and
selecting proto-sequence 1 or 3 if a workbench state warrants
a tool.

4.2 Performance with a Human Teammate
In a theoretical analysis we find that using the anticipa-

tory action selection mechanism initially results in a per-
formance that is either identical or slightly less efficient
than that of a reactive agent. However, in repeating trials
with a consistent human the anticipatory behavior becomes
increasingly rewarding, quickly outperforming the reactive
agent. For example, using h = 250 in the factory scenario,
we usually see the agent outperforming the reactive agents
within 2 trials, and converging into full anticipatory behav-
ior within 10 trials. A more detailed comparative analysis of
the described strategies is currently underway in a separate
publication.

In actual trial runs with an experienced and consistent hu-
man teammate, we can see evidence to that effect. Whereas
the reactive agent with conservative tool return remains con-
stant at a construction cost3 of circa 800, the anticipatory
adaptive agent shows a significant improvement after the
first trial and again at the sixth trial, finally settling at a
lower per-cart construction cost of circa 650 (see: Figure 2).

Finally, note that inconsistency on the human teammate’s
part delays the anticipatory behavior of the agent, resulting
in slower convergence into a fluent and efficient activity pat-
tern.

5. HUMAN SUBJECT STUDY
To investigate the effect of adaptive anticipatory action

selection, we conducted a human subject study. We ex-
pected to see an increase in efficiency as predicted by the
theoretical analysis, as well as an increase in the perceived
contribution of the robot to the team’s fluency and success.

5.1 Experimental Design
We recruited 32 participants (15 female) from the MIT

community through email solicitation and posters. Partici-
pants arrived at our laboratory and were arbitrarily assigned

3The cost units, when measured with a human teammate,
are in simulation frames, running at 30 frames per second.
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Figure 2: Change in per-cart construction time
with an expert consistent human vis-a-vis the reac-
tive agent (left) and the adaptive anticipatory agent
(right).

to one of two experiment conditions. Subjects in Group A
interacted with a reactive agent using the “conservative tool
return” policy; those in Group B interacted with an antici-
patory agent.

All the participants received the following identical in-
structions (edited for brevity, omitting user interface in-
structions):

In this study you play a video game. This game
has two characters, Symon, a forklift-like robot
in a cart factory and an avatar representing you,
the human. Symon is surrounded by four tools:
the welder, the rivet gun and two wrenches. The
human is surrounded by six kinds of cart com-
ponents: a floor, a body, two kinds of axles, and
two kinds of wheels. In the center of the screen
is a round workspace.

In this game your goal is for the human-robot
team to build 10 carts. Each of the team mem-
bers has their own role in this joint effort. The
human’s role is to bring components to the workspace,
the robot’s role is to attach the car parts using
the tools. The following tools attach the follow-
ing components:

1. The wrench attaches a wheel to the match-
ing color axle

2. The welder attaches the floor to the body

3. The rivet gun attaches both the axles to the
floor

A complete car has one floor, one body, two axles
(one of each kind), and four wheels (two of each
kind).

The robot can only use a tool if there are exactly
two cart parts in the workspace. Each of these
parts can be made up of more than one simple
components. For example - the workspace could
contain one part made up of an axle with two
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wheels, and one part made up of a floor with a
body attached to it. In this case the robot could
use the rivet gun. If there are more or less than
two parts in the workspace, the robot can’t do
anything.

Your goal is to build cars in the least amount
of time. A cart’s construction time is measured
from the moment the first part is dropped in
the workspace and until the cart is completed.
You can always see your best score and your last
score, as well as the all-time best score, in the
corner of the screen.

The instructions were phrased so as to imply the impor-
tance of the team as a joint performing entity. To control for
instruction bias, neither group was told whether the robot
will adapt to their behavior. Before beginning the experi-
ment, participants were allowed to practice for an unlimited
amount with the software, set to their assigned experimental
condition.

5.2 Results
Of the participants, five had to be eliminated from the

study. Two violated the experimental protocol, one expe-
rienced a software crash, one was significantly inattentive,
resulting in scattered behavior, and for one subject the log-
ging functionality was not working, resulting in a loss of
data. This left us with 27 subjects, 14 in Group A and 13
in Group B. All 32 completed a post-study survey regarding
their experience.

Table 1: Total cart completion metrics for untrained
human subjects in the reactive (Group A) and adap-
tive anticipatory condition (Group B). We compare
each subject’s best score in ten trials, mean score
over ten trials, and tenth trial.

Score Group A Group B
metric mean std.dev. mean std.dev T(25)

Best 1091.6 200.5 930.1 105.6 2.59;
p < 0.02

Mean 1423.5 328.6 1233.3 227.5 1.73;
not signif.

Final 1182.4 274.3 1030.7 154.8 1.75;
not signif.

Table 1 shows total cart construction measures for the
population. Cost units are in simulation frames at 30 frames
per second.

Each subject’s best performance is significantly better at
a confidence level of 98% in the adaptive anticipatory case
compared to the reactive case. Measuring the mean con-
struction time over ten trials, as well as the time for con-
struction of the tenth cart, we find the subjects in the antici-
patory case to be better (at p < 0.1), but not significantly at
a 95% confidence level. We believe that this is in part due to
the fact that several subjects in Group B took a number of
inconsistent trials to identify that the robot was adaptive,
leading to a convergence to a stable construction pattern
only in the last few carts (see also: 5.3.2). According to this
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Figure 3: Self-report differences between partici-
pants in the reactive (Group A) and the anticipa-
tory action (Group B) conditions. All differences
are significant at p < 0.01.

hypothesis, both the mean and the final cart construction
cost would be significantly lower in the anticipatory case if
there were more trial runs per subject.

5.2.1 Survey
In the post-experimental survey, we found significant dif-

ferences between participants in the two groups (Figure 3).
On a seven-point Likert scale, subjects in the anticipatory
action agent “Group B” selected a significantly higher mark
than those in the reactive agent “Group A” when asked
whether:

• “The robot’s performance was an important
contribution to the success of the team.”:
Group A: 4.88 [SD=1.71] ; Group B: 6.38 [SD=1.2];
T(30)=2.87; p < 0.01

• “The robot contributed to the fluency of the
interaction.”:
Group A: 4.13 [SD=1.54]; Group B: 5.69 [SD=1.4];
T(30)= 2.99; p < 0.01

• “It felt like the robot was committed to the
success of the team.”:
Group A: 2.8 [SD=2.0]; Group B: 5.0 [SD=1.73]; T(30)=
3.21; p < 0.005

The two groups did not differ significantly when subjects
were asked whether they themselves were “committed to the
success of the team”, or whether they “trusted the robot to
do the right thing at the right time.” Both groups averaged
between 6 and 7 on these two questions.

5.2.2 Measures of Fluency
In an attempt to ground the subject’s perceptions of flu-

ency as well as those of the robot’s appropriate teamwork in
behavioral terms, we try to measure the fluency of the teams.
However, while there is a body of work measuring verbal flu-
ency, there are no generally accepted measures of fluency in
shared-location joint action. In this work, we propose three
fluency metrics, and compare the mean performance of the
two groups along these measures.

Concurrent motion In post-experiment interviews, some
of our participants noted a sense that the team was
well synchronized when “both team members were con-
stantly in motion”. We measured the percentage of
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Figure 4: Three measures of fluency per cart averaged over study groups A (reactive) and B (anticipatory).
(a) percentage of concurrent motion within trial; (b) percentage of human idle time; (c) aggregate time
between human PutDown to robot Use delay.

frames within each trial in which both human and
robot were in motion (i.e. in transition between two
location-based internal states), and found those to be
significantly different between the two groups (A: 0.23
[SD=0.08]; B: 0.32 [SD=0.08]; T(25)=3.11; p < 0.005).
Figure 4(a) shows the mean percentage of concurrent
motion for each of the 10 trials, averaged over sub-
jects in each group. The graph shows that while the
percentage of concurrent motion is improving for both
groups, it does so at a higher rate in the anticipatory
action condition.

Human idle time Another candidate for a measure of flu-
ency is the amount of time the human spent waiting
for the robot. We postulated that if the human was to
spend much time waiting, it would feel like the team
was not working fluently. However, we found no signif-
icant difference between the two groups in terms of the
percentage of human waiting time (Figure 4(b)). Both
groups seemed to decrease the human waiting time at
an approximately equal rate, and with similar results.
This is probably a result of the human adaptation to
the robot’s behavior.

Time between human and robot action A final mea-
sure of fluency is the time between the human’s Put-
Down action and the robot’s subsequent Use action.
We found this measure to be significantly lower for
Group B (A: 436.78 [SD=48.8]; B: 310.64 [SD=78.84];
T(25)=5.04; p < 0.001), and more decidedly so for the
second half of each subject’s trial sequence, after the
robot has adapted to the human’s construction pat-
tern (A: 432.07 [SD=49.23]; B: 205.08 [SD=125.38];
T(25)=6.28; p < 0.001) (Figure 4(c)). In the reactive
case, there is virtually no improvement across trials.

5.3 Discussion
The open-ended segment of the post-experiment question-

naire reveals a qualitative difference between the two con-
ditions. Several subjects in Group B noticed the anticipa-
tory behavior and remarked on it positively, e.g.: “it was
nice when [the robot] anticipated my next move”, or “[the]

robot’s anticipation of my actions was impressive and ex-
citing”. Negative remarks in Group B usually referred to
a desire for even more anticipatory behavior, such as “[the
robot] could do better by getting the first tool before/while
I take the first part, because it was a consistent process and
could be predicted”, or “the robot should watch what I’m
grabbing in advance.”

Somewhat surprisingly, many subjects in Group A — with-
out having been informed that the study was related to an-
ticipatory action or that the robot was meant to be adaptive
— noted with frustration that the robot did not predict their
actions. We view this tendency as indicative of the fact that
adaptiveness and anticipatory action are natural expecta-
tions of a robotic teammate in a repetitive task. Quotes from
Group A included: “I was hoping that the robot would learn
to anticipate more”, “I expected more predictive behavior
from the robot”, “[the] robot was not able to anticipate [the]
human’s actions”, and “it might have been more efficient if
after a few carts the robot could pick up on the order in
which i was bringing in the parts and be prepared with the
equipment to join it.”

Group A’s positive comments regarding the robot’s per-
formance were limited to remarks shaped by a low level of
expectation from the agent: “The robot seemed to do what
was expected”, “the robot did not mess up”, and “the robot
was highly responsive and never let the human down with
its predictability,” were representative responses in this con-
dition.

5.3.1 Notions of Teamwork
It is interesting to note that several subjects in Group A

noted that the team felt “lopsided”, that “the human was
the one who strategized, the robot just sat there”, that the
human “was more important than the robot”, and that “the
team’s performance was highly dependent on human inno-
vation”. Subjects in this group concluded that “the robot
seemed more like an assembly tool than a team member”,
that they “didn’t see the robot as a team player”, that the
robot was used “as a tool”, and one subject said that they
“didn’t get a sense that the robot really cared about the
success of the team.” In contrast, in Group B only one sub-
ject noted that they “felt that the success or failure of the
task was [their] responsibility.” Conversely, one other stated
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that they “trusted [the robot] more over time, as it seemed
to anticipate what [they were] going to do.” The rest of
the subjects in Group B did not address the balance of the
team, the issue of trust, or that of commitment, in any way.

5.3.2 Effect of Repetition Size
As noted in Section 5.2, we believe that the relatively mi-

nor improvement in mean task efficiency through anticipa-
tory action is related to the small number of repeating trials
in the experiment. Appraisal of server logs, as well as user
testimony, reveals that in many cases subjects experimented
with various construction strategies in the first few runs,
which caused the Bayesian model to converge more slowly.
This seemed to be particularly true when subjects noticed
that the robot changed its behavior, causing them to experi-
ment with different construction sequences in an attempt to
reveal the robot’s modus operandi. One reason for this be-
havior was the experiment’s insistence on identical instruc-
tions for both groups, not revealing that the robot would
adapt to the human’s consistent behavior. Several subjects
explicitly noted that the team would have performed better
had they known in advance that the robot learned to an-
ticipate their actions. Another possible way to counter this
effect would be to discount the learning over time (see also:
Section 7).

5.3.3 Effect of “Best Score” Indicator
We also believe that the display of the game’s all-time

“Best Score” in the user interface was detrimental to the
experiment as it might have caused subjects to experiment
with different strategies instead of forming a consistent be-
havior pattern. Originally intended to motivate subjects to
faster performance, the exceedingly good record time (only
possible with a well-adapted agent) provoked subjects to
question their strategy attaining a significantly worse score,
and subsequently to change it several times over the course
of the experiment.

6. RELATED WORK
Most work related to joint action — whether in philos-

ophy, psychology, or artificial intelligence — has been con-
cerned with a goal-oriented view of the problem, paying lit-
tle attention to the quality of action meshing and fluency
of teamwork, both as it is perceived by the team members,
and as it effects quantitative measures of the collaboration.

In this body of work, joint action is usually described as
solving a problem where the participants share the same goal
and a common plan of execution. Grosz pointed out, in this
context, that collaborative plans do not reduce to the sum
of the individual plans, but consist of an interplay of actions
that can only be understood as part of the joint activity [9].

In Bratman’s detailed analysis of Shared Cooperative Ac-
tivity he defines certain prerequisites for an activity to be
considered shared and cooperative [3]. He stresses the im-
portance of mutual responsiveness, commitment to the joint
activity, and commitment to mutual support. Supporting
Bratman’s guidelines, Cohen and Levesque propose a for-
mal approach to building artificial collaborative agents [18].
Their notion of joint intention is viewed not only as a per-
sistent commitment of the team to a shared goal, but also
implies a commitment on part of all its members to a mu-
tual belief about the state of the goal. These principles have

been used in a number of human-robot teamwork architec-
tures [11, 1].

Much work has been done in the field of Discourse Theory,
investigating discourse as a collaborative activity. Grosz and
Sidner have analyzed the structure of discourse and subse-
quently modeled shared plans as a separate extension, rather
than a composition of simple, single-agent plans [10]. Later
work has further elaborated the workings of collaborative
discourse, in terms of plans, beliefs, goals, and actions (e.g.
[17, 2]). Collaborative discourse systems have been devel-
oped and implemented on screen-based and robotic dialog
systems, taking into account both the verbal and the non-
verbal aspects of discourse (e.g. [19, 21]). Still, the ques-
tion of fluency in action meshing has not been part of this
corpus. Moreover, as these works focused mainly on lin-
guistic dialog, they have not addressed the case of nonver-
bal shared-location teamwork, or the improvement thereof
through repetitive joint execution of a task.

Human-robot teamwork has also remained mostly in the
turn-taking domain. Some have studied a robotic arm as-
sisting a human in an assembly task [13]. Their work ad-
dressed issues of vision and task representation, but does
not investigate joint adaptation, and does not address the
timing issue. Other work studies human-robot collaboration
with an emphasis on dialog and control, aimed primarily at
teleoperation [7, 12] . Some frame human-robot collabora-
tion in the context of mixed-initiative control and shared
autonomy, arbitrating between the robot’s autonomy and
direct human control, but also fail to address the question
of shared-location fluency [5, 8].

Some work in shared-location human-robot collaboration
has been concerned with the mechanical coordination of
robots in shared tasks with humans (e.g. [23]). This work
is predominantly concerned with single-action control and
safety issues.

We have previously presented work in shared-location human-
robot teamwork, investigating the role of nonverbal behav-
ior on teamwork [11, 4]. While this task-level work included
turn-taking and joint plans, anticipatory action and fluency
have not been addressed.

Timing and synchronization have been reviewed on the
motor level in the context of a human-robot synchronized
tapping problem [16]. Anticipatory action, without relation
to a human collaborator, has been investigated in robot nav-
igation work, e.g. [6].

7. CONCLUSION
We have presented work investigating the effect of adap-

tive anticipatory action on the efficiency and fluency of ac-
tion in human-robot teamwork. We hope to initiate an in-
terest in the question of shared-location action timing, and
have presented initial results on both the theoretical analysis
of this method and its effect on untrained humans.

Several improvements to our method present themselves:
in the discussed framework, the robot has no knowledge of
the structure of the task. Domain-specific knowledge can
decrease the action space at each decision point and fortify
the accuracy of the probabilities of subsequent states. We
believe that our system can also be made more robust by
introducing a discount factor in the learned state transition
distribution, making more recent moves by the human team-
mate more salient to the robot. Furthermore, the estimate
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of the human’s turnaround time h should be state-specific
and could be learned by the robot during the collaboration.
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