
To appear in the ACM SIGGRAPH conference proceedings

Shader Algebra

Michael McCool Stefanus Du Toit Tiberiu Popa Bryan Chan Kevin Moule

Computer Graphics Lab, School of Computer Science, University of Waterloo

Figure 1: Some applications of shader algebra operations: surface and light shaders can be combined, output colors can be
processed (in this case, halftoning was applied), and any attribute or parameter can be replaced with a texture map.

Abstract

An algebra consists of a set of objects and a set of opera-
tors that act on those objects. We treat shader programs as
first-class objects and define two operators: connection and
combination. Connection is functional composition: the out-
puts of one shader are fed into the inputs of another. Com-
bination concatenates the input channels, output channels,
and computations of two shaders. Similar operators can be
used to manipulate streams and apply computational ker-
nels expressed as shaders to streams. Connecting a shader
program to a stream applies that program to all elements
of the stream; combining streams concatenates the record
definitions of those streams.

In conjunction with an optimizing compiler, these op-
erators can manipulate shader programs in many useful
ways, including specialization, without modifying the orig-
inal source code. We demonstrate these operators in Sh, a
metaprogramming shading language embedded in C++.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: real-time rendering, shader programming,
graphics hardware

1 Introduction

Specialized high-level shading languages are a standard part
of offline rendering systems and are now also available for
real-time systems. Programs written in these languages are
usually called shaders. Shaders can be downloaded to the
Graphics Processing Units (GPUs) used in hardware graph-
ics accelerators, to process attributes bound to streams of
either vertices or pixel fragments. We can interpret a shader
as a function that maps an input stream of homogeneous
records to an output stream of homogeneous records. To
allow strip-mined parallelism, operations on stream records
execute independently.

Shading languages can be used to apply GPUs to non-
traditional applications such as the solution of systems of
equations or simulation. The results of these computations
can be used for graphics applications, or the GPU can simply
be used as a numerical engine.

As shaders become larger and more complex the ability to
reuse and encapsulate code becomes more important. Shad-
ing languages can (and do) support standard forms of mod-
ularity such as subroutines, but other forms of modularity
are possible. A dataflow model, for instance, is very natu-
ral for shaders, and visual dataflow languages are also often
used in modeling and animation applications. Dataflow vi-
sual languages, in turn, are related to functional languages,
where higher-order functions provide useful forms of modu-
larity. Object-oriented constructions such as classes might
also be useful in shading languages.

In this paper, we present an algebra over shader objects.
This algebra consists of two binary operators: connection
and combination. Using these operators, we can manipulate
and specialize shaders without having to modify (or even
have access to) the source code of the original shaders. The

1

To appear in the ACM SIGGRAPH conference proceedings

addition of a shader algebra enables a functional style of
programming: shaders become first-class objects that can be
operated upon. The same operators can be used to express
general-purpose stream processing.

Our algebra is demonstrated in the context of Sh, an em-
bedded, metaprogrammable shading language implemented
entirely within C++. Sh is similar to an operator over-
loaded matrix/vector library. When used in “immediate”
mode, this is exactly what it is. However, sequences of op-
erations on Sh types can be captured in a “retained” mode
and compiled to another target, such as a GPU shading unit.
The result is a language that is as expressive as a custom
shading language but with all the power of C++ for creating
modular shaders. For instance, it is easy to add new types
to Sh, including operator overloading, or to use classes to
build parameterized or customized versions of shaders, or to
use function pointers to create procedurally parameterized
shaders. In Sh, the shader algebra extends and augments
these existing modularity capabilities.

2 Related Work

GPUs can be seen as a form of stream processor. Stream pro-
cessors are distinguished from vector processors by the fact
that on-chip temporary registers are available, so it is pos-
sible to perform a significant amount of arithmetic on each
stream record before the result needs to be written back
to memory. General-purpose stream processors have been
developed and graphics systems have been implemented on
them [Owens et al. 2000], but GPUs are also evolving to-
wards a more general-purpose architecture similar to stream
processors. General computations on GPUs have been stud-
ied by many researchers. In recent years many graphics, sim-
ulation, and numerical applications have been implemented
on GPUs [Trendall and Stewart 2000; Hillesland et al. 2003;
Bolz et al. 2003; Krüger and Westermann 2003].

A shading language is a domain-specific programming lan-
guage for specifying shading computations. Shade trees
[Cook 1984] captured expressions used to compute pixels
so if the parameters of the lighting model changed in a ray-
tracer, an image could be quickly recomputed without redo-
ing intersection calculations. Peachey and Perlin [Peachey
1985; Perlin 1985] developed the idea of procedural tex-
tures and lighting, and also experimented with noise func-
tions. Block shaders used a network of configurable modules
[Abram and Whitted 1990] described using either a visual or
a textual language. Explicit control was provided over the
order of execution of modules so that side effects could be
used for global communications. In their textual language,
a netlist (rather than an algebra) was used to specify the
connections between modules. However, the idea of con-
necting modules in a dataflow structure is closely related to
our algebra. Dataflow languages (visual and otherwise) have
also been used for procedural modeling [Hedelman 1984] and
lighting networks [Slusallek et al. 1998]. The CONDOR sys-
tem, for instance, was a constraint-based dataflow language
[Kass 1992], which compiled a visual language to C++ code.
The compiler was written in Lisp and Mathematica, and in-
cluded support for symbolic derivatives and interval analy-
sis. CONDOR was applied to both shading and geometric
modeling, as well as numerical optimization — a suite of ap-
plications similar to the problems being tackled by modern
GPUs. Operator-based systems such as GENMOD have also
been developed for procedural geometry [Snyder and Kajiya
1992; Snyder 1992].

The RenderMan shading language has become a standard

[Hanrahan and Lawson 1990; Upstill 1990; Apodaca and
Gritz 2000; Pix 2000] and has strongly influenced other shad-
ing languages, particularly the idea of uniform and varying
parameters. However, the RenderMan standard, although
originally intended as a hardware API, is no longer used as
such, and modern GPU shading languages need to target
the hardware architecture of modern GPUs.

GPU shading languages include the OpenGL Shading
Language [Kessenich et al. 2003; Rost 2004], the Stanford
Real-Time Shading Language, [Proudfoot et al. 2001; Mark
and Proudfoot 2001], Microsoft’s HLSL, and Cg [Mark et al.
2003]. While useful for implementing shader kernels, these
languages do not address the implementation of multipass
algorithms involving several shaders, and binding of these
language to the host application is loose. CgFX and the
Direct3D Effects system provide mechanisms for specifying
multipass combinations of shaders and GPU state for each
pass, but provide only limited control mechanisms. The SGI
Interactive Shading Language [Peercy et al. 2000] compiles
shaders to a multipass implementation, but does not gener-
ate complex kernels, only primitive passes.

A system called Brook [Buck 2003; Buck et al. 2004] has
been developed to target both stream processors and GPUs.
Brook defines its own language as an extension of ANSI C.
This is implemented as a preprocessor that maps Brook pro-
grams to a C++/Cg implementation. Brook’s goals are sim-
ilar to ours, but Brook currently supports a more extensive
set of stream processing operators, such as reductions and
scatter, as well as multidimensional streams. In the short
term, we have focused instead on program specification, ma-
nipulation, and modularity abstractions.

We use a metaprogramming approach which gives us
many modularity constructs for free. Metaprogramming is a
useful mechanism for implementing domain-specific embed-
ded languages and binding them to a host application [El-
liott et al. 2000; Draves 1996]. Template metaprogramming
[Veldhuizen 1999; Lee and Leone 1996; Dawes and Abra-
hams 2003] has become a popular method for reorganizing
C++ code by using template rewriting rules as a functional
language at compile time. However, template rewriting is
inefficient, so it is hard to specify complex operations using
it. Also, template metaprogramming only generates C++
code for the host, not for a GPU. Code generation (textual
substitution) [Herrington 2003] is now a standard software
engineering tool, and can be used to embed another language
(such as an SQL query) into a host program and generate ap-
propriate boilerplate binding code. Languages such as ruby,
perl, tcl, or python can be used to specify textual trans-
formations on code. However, the embedded code is still
in a different language, integration with the host language
may be incomplete unless a very sophisticated preproces-
sor is implemented, and the build process becomes more
complex. Compiling such code now also depends on a tool
which also has to be maintained (for instance, if the input
is C++ plus some extensions, we need to maintain a parser
that tracks the latest version of C++). Our implementa-
tion approach is closest to that of Tick CC [Poletto et al.
1999], which defined special types and operators for repre-
senting and combining program fragments. However, rather
than extending C, we use the standard abstraction capabil-
ities of C++ to define interfaces to our new operations. We
then operate on our own internal representation of shaders to
perform optimizations. Sh does not use template metapro-
gramming to implement its optimizer. Our approach makes
it straightforward to implement (among other things) shader
specialization [Guenter et al. 1995].

2

To appear in the ACM SIGGRAPH conference proceedings

3 The Sh Library

Shader algebra operators have been implemented in Sh,
an embedded metaprogrammed shading “language” [Mc-
Cool et al. 2002]. Sh is available in open-source form; see
http://libsh.sourceforge.net. Sh is actually a C++ li-
brary API rather than an independent language. It is based
around a set of C++ types for representing small n-tuples
and matrices upon which appropriate operators have been
defined. In immediate mode, Sh operates like a standard
graphics matrix/vector library, executing its operations on
the host. However, sequences of Sh operations can also
be “recorded” using a retained-mode mechanism similar to
display lists and then compiled. Usually the Sh compiler
targets a GPU, although we can also target other plat-
forms, including other shading languages and the host CPU,
via a modular backend system. Sh has its own optimizer
that handles dead-code elimination and constant propaga-
tion (among other transformations). Sh also provides a
runtime engine that transparently manages buffers and tex-
tures and controls the scheduling of multipass (virtualized)
shaders.

Listing 1 gives a pair of Sh shader definitions for
a (modified) Blinn-Phong lighting model [Blinn 1977].
First, we declare a set of named parameters: phong_kd,
phong_ks, phong_spec_exp, phong_light_position, and
phong_light_color. This pair of shaders also depends on
the modelview and perspective matrix parameters, which
are global declarations shared by many other shaders. Pa-
rameters are declared outside of a shader definition, and so
can be acted upon in immediate mode on the host using
whatever operators are defined for their types. Parameters
are equivalent to uniform variables in RenderMan.

Then, we define a function phong_init that constructs
two shaders, phong_vert and phong_frag. These shaders
use the same types as we used for parameters, but
with some of the declarations marked with Input and
Output qualifiers. Actually, ShColor3f is a typedef
for ShColor<3,SH_TEMP,float> and ShInputColor3f is a
typedef for ShColor<3,SH_INPUT,float>, and similarly for
the other types. Temporary values local to the shader can
be defined with unqualified types or with SH_TEMP (the de-
fault second argument). Parameters and local temporaries
are distinguished only by their location of definition: inside
or outside a shader. Input and output attributes are bound
to the input and output data channels of the shaders us-
ing a set of rules that depend on their order of declaration
and their type. Input attributes act like varying variables.
Note the distinction between parameters and attributes: this
terminology is used extensively later.

Shaders can refer to parameters previously declared out-
side the shader definition. However, shaders cannot assign
to parameters. When a shader is loaded into the appropriate
GPU unit, copies of the values of the necessary parameters
are loaded into constant registers (or bound to texture units;
Sh considers textures to be a kind of array-valued parame-
ter). If in immediate mode a new value is assigned to a
parameter that is in use by a bound shader, the copy in the
GPU is automatically updated. The net effect is that pa-
rameters act like external variables relative to the definition
of the shader, and C++ scope rules can be used to manage
the binding of parameters to shaders.

Since parameters are bound to shaders using the scope
rules of C++ and the way we “capture” a sequence of Sh
operations, all C++ modularity and control constructs can
be used to organize Sh shaders. Listing 2 gives a more in-

ShMatrix4x4f modelview; // MCS to VCS transformation

ShMatrix4x4f perspective; // VCS to DCS transformation

ShColor3f phong_kd; // diffuse color

ShColor3f phong_ks; // specular color

ShAttrib1f phong_spec_exp; // phong specular exponent

ShPoint3f phong_light_position; // VCS light position

ShColor3f phong_light_color; // light source color

ShProgram phong_vert, phong_frag;

void phong_init () {

phong_vert = SH_BEGIN_PROGRAM("gpu:vertex") {

ShInputNormal3f nm; // IN(0): normal vector (MCS)

ShInputPosition3f pm; // IN(1): position (MCS)

ShOutputNormal3f nv; // OUT(0): normal (VCS)

ShOutputVector3f lv; // OUT(1): light-vector (VCS)

ShOutputVector3f vv; // OUT(2): view vector (VCS)

ShOutputColor3f ec; // OUT(3): irradiance

ShOutputPosition4f pd; // OUT(4): position (HDCS)

ShPoint4f pvt = modelview | pm;

vv = -pvt(0,1,2);

lv = normalize(phong_light_position + vv);

nv = normalize(modelview | nm);

ec = phong_light_color * pos(nv | lv);

pd = perspective | pvt;

} SH_END;

phong_frag = SH_BEGIN_PROGRAM("gpu:fragment") {

ShInputNormal3f nv; // IN(0): normal (VCS)

ShInputVector3f lv; // IN(1): light-vector (VCS)

ShInputVector3f vv; // IN(2): view vector (VCS)

ShInputColor3f ec; // IN(3): irradiance

ShOutputColor3f fc; // OUT(0): fragment color

vv = normalize(vv);

lv = normalize(lv);

nv = normalize(nv);

ShVector3f hv = normalize(lv + vv);

fc = phong_kd * ec +

phong_ks * pow(pos(hv | nv), phong_spec_exp);

} SH_END;

}

Listing 1: Blinn-Phong lighting model shaders.

volved Sh example that uses a class to control access to the
parameters, uses a template argument to specify the num-
ber of light sources, uses a construction argument to pass in
the resolution of the texture maps, uses a template struct
and the alternative template-based declaration of Sh types
to coordinate the values passed between vertex and fragment
shaders, and uses C++ control constructs to loop over the
light sources. We can also use C++ functions and function
pointers (the latter can be used to simulate the interface
mechanism of Cg, among other applications). Users can also
define their own types and add them to the system, including
operator overloading. For instance, we have developed types
to represent compressed textures, sparse matrices, complex
numbers, quaternions, and geometric algebra constructs.

In addition to the ability to use C++ modularity and
control constructs, the Sh metaprogramming approach has
other advantages. First, shaders can be constructed algo-
rithmically. For instance, we have generated shaders to rep-
resent arbitrary polygons procedurally by finding a minimal
CSG tree and generating code to evaluate it. Secondly, no
glue code is required to bind shaders to the host application;
they act like part of it. Third, Sh shaders can be debugged
using a standard IDE by first running them in immediate
mode, where the code executes on the host (although we are
developing more specialized debugging tools).

3

To appear in the ACM SIGGRAPH conference proceedings

template <int NLIGHTS>

class BlinnPhong {

public:

ShTexture2D<ShColor3f> kd;

ShTexture2D<ShColor3f> ks;

ShAttrib1f spec_exp;

ShPoint3f light_position[NLIGHTS];

ShColor3f light_color[NLIGHTS];

template <ShVariableKind IO> struct VertFrag {

ShPoint<4,IO,float> pv; // position (VCS)

ShTexCoord<2,IO,float> u; // texture coordinate

ShNormal<3,IO,float> nv; // normal (VCS)

ShColor<3,IO,float> ec; // total irradiance

};

ShProgram vert, frag;

BlinnPhong (int res) : kd(res,res), ks(res,res) {

vert = SH_BEGIN_PROGRAM("gpu:vertex") {

ShInputNormal3f nm; // normal vector (MCS)

ShInputTexCoord2f u; // texture coordinate

ShInputPosition3f pm; // position (MCS)

VertFrag<SH_OUTPUT> vf;

ShOutputPosition4f pd; // position (HDCS)

vf.pv = modelview | pm;

vf.u = u;

vf.nv = normalize(modelview | nm);

pd = perspective | vf.pv;

for (int i=0; i<NLIGHTS; i++) {

ShVector3f lv =

normalize(light_position[i] - vf.pv(0,1,2));

vf.ec += light_color[i] * pos(vf.nv|lv);

}

} SH_END;

frag = SH_BEGIN_PROGRAM("gpu:fragment") {

VertFrag<SH_INPUT> vf;

ShOutputColor3f fc; // fragment color

ShVector3f vv = normalize(-vf.pv(0,1,2));

ShNormal3f nv = normalize(vf.nv);

fc = kd(vf.u) * vf.ec;

ShColor3f kst = ks(vf.u);

for (int i=0; i<NLIGHTS; i++) {

ShVector3f lv =

normalize(light_position[i] - vf.pv(0,1,2));

ShVector3f hv = normalize(lv + vv);

fc += kst * pow(pos(hv|nv),spec_exp) * light_color[i];

}

} SH_END;

}

};

Listing 2: Encapsulated Blinn-Phong lighting model.

4 Operators

Two operators are defined: connection, which is defined
as functional composition or application, and combination,
which is equivalent in the case of Sh to concatenation of
source code. These operators are defined over shader ob-
jects and create new shader objects. Shader objects can be
thought of as functions that take an ordered sequence of n
inputs and map them to an ordered sequence of m outputs.

4.1 Connection

Suppose we have a shader object q1 with n inputs and k
outputs and another shader object p1 with k inputs and
m outputs. The connection operator creates a new shader
object with n inputs and m outputs by taking the outputs
of q1 and feeding them in the same order to the inputs of
p1. In other words, it performs functional composition.

We denote this operator in Sh using the “<<” operator,
with inputs on the right and outputs on the left. For in-
stance, the k outputs of q1 can connected to the k inputs of
p1 using “p1 << q1”.

The outputs of q1 must match the inputs of p1 in num-
ber, size, and type (both storage and semantic). These are
checked dynamically, at C++ runtime.

4.2 Combination

Suppose we are given two shader objects p2 and q2. Let p2
have n inputs and m outputs, and let q2 have k inputs and
` outputs. We define the combination of p2 and q2 to have
n+k inputs and m+ ` outputs, with the inputs and outputs
of p2 appearing first, followed by the inputs and outputs of
q2. The computations of p2 and q2 are both performed,
with the local variables of each in different scopes.

We denote this operator in Sh using “&”, and so the com-
bination of p2 and q2 can be denoted with “p2 & q2”. Note
that “&” binds more loosely than “<<”.

Because of the way Sh is defined, the combination opera-
tor is equivalent to the concatenation of the source code of
the input shaders, using two separate scopes. Such a con-
catenation would ensure that the inputs and outputs of p2
are declared before q2, and so would give the same result as
defined above.

Both operators do not simply build a network of shaders.
They actually operate on the internal representation of the
shader to build a completely new shader, which is ultimately
run through the full suite of optimizations and virtualiza-
tions supported by the Sh backend.

For vertex and fragment shaders, a special ShPosition*
semantic type is defined which is semantically equivalent to
an ShPoint* but binds to the special position input and
output of these shader units on GPUs. The last definition
always dominates, so if a position is computed in two shaders
that are combined, only the position in the second shader
will be used, and the first position will be converted to a
point.

5 Manipulators

Use of shader algebra operators alone can result in redundant
computation. However, the “<<” operator, in conjunction
with the optimizer in the Sh compiler (particularly dead code
removal) and the definition of some simple “glue” shader
programs, can be used to specialize shaders and eliminate
such redundant computations.

For instance, suppose we combine two shader programs
and the resulting shader computes the same value twice (in
two different ways, so we cannot discover this fact automati-
cally). We can define a simple program that copies its inputs
to its outputs except for one of the redundant results. This
simple shader can be connected to the output of the com-
bined shader and the Sh dead code eliminator will remove
the redundant computation.

Unfortunately, to satisfy the type rules for connecting
shader programs, we need to define the interface of each
such glue shader to match the particular interface types of
the given base shader. This is annoying if all we want to do is
rearrange the inputs and outputs of a shader. We would like
to be able to specify simple rearrangements inline, within an
expression.

Sh provides some shortcuts, similar to manipulators in
the C++ iostream library, for manipulating the input and
output channels of shaders. These manipulators are really

4

To appear in the ACM SIGGRAPH conference proceedings

functions that return instances of either shader program ob-
jects or instances of special manipulator classes. Manipula-
tor classes store information about the particular manipula-
tion required. When combined with a shader in an expres-
sion, the appropriate glue shader is automatically generated,
using introspection over the shader programs it is combined
with, to perform the desired manipulation. This second ap-
proach is used to automatically resolve type issues.

There are three kinds of manipulators: primitive ma-
nipulators that build primitive shaders directly (returning
ShProgram objects rather than manipulator objects), those
that take a fixed number of inputs, and those that con-
sume all inputs. Primitive and fixed-input manipulators
can be combined with the “&” operator to create more com-
plex manipulations. Expandable manipulators that consume
all available inputs can only be combined with programs
and other manipulators using the “<<” operator. Supported
primitive manipulators include the following:

keep<T>(int n = 1): Generates a program that copies n
channels of type T from its input to its output.

lose<T>(int n = 1): Generates a program that reads n
channels of type T from its input and discards them
(no outputs).

access(A t): Inserts a texture lookup into a channel. The
input is a texture coordinate of the appropriate dimen-
sionality (depending on type A) and the output is the
return/storage type of the texture type A.

Supported fixed-input manipulators include the following:

shDup(int n = 2): Reads one input channel, and creates n
duplicates on its output.

shKeep(int n = 1): Copies n channels from its input to its
output.

shLose(int n = 1): Reads n channels from its input and
discards them (no outputs).

Expandable input manipulators include the following:

shExtract(T i): Moves the referenced channel to the be-
ginning of the attribute list, rearranging the other chan-
nels to close the gap.

shDrop(T i): Discards the referenced channel, and rear-
ranges the other channels to close the gap.

shSwizzle(T i0, T i1, ...): Performs a swizzle of the
given indices. The inputs are rearranged into the or-
der given by the arguments. Note that duplication and
deletion of inputs is also possible.

shRange(T i0)(T i1, T i2): Takes an arbitrary sequence
of (T i) (to identify a single channel) or (T i1, T i2)
(to identify a channel range) postfixes. This manipula-
tor is an alternative form for specifying a swizzle.

To identify channels by position an integer is used for T.
Negative numbers may be used to specify the position of a
channel counted from the end of the attribute list, with -1
identifying the last channel. Channels can also be identified
by name, using const char * for T. Names are unfortu-
nately not automatically assigned to Sh variables, since C++
has no standard way to find out the names of its own vari-
ables. A name method is therefore provided on all Sh types to

provide string names for such identification purposes (other
metadata can also be attached for introspection purposes).

Combinations of shKeep and shLose with “&” can be used
to describe mappings that retain a subset of outputs. The
shExtract manipulator is useful when combined with cur-
rying, described later, to replace a named attribute with a
parameter. The shSwizzle (not to be confused with the
swizzle operator on tuples) and shRange manipulators are
generally useful when adapting the interface of some shaders
to others, or to the order in which data is presented.

These manipulators cannot handle all possible cases. In
particular, types are retained, and sometimes extra compu-
tation (such as normalization of vectors) is required. Ma-
nipulators are just a convenience; more complex adaptation
of the input and output of shaders, including type casts and
any additional computation required, can always be accom-
plished by defining suitable “glue” shaders.

6 Streams

Stream objects are represented in Sh using the ShChannel
template class and ShStream class. Extensions of the shader
algebra to streams enable a general-purpose stream process-
ing computational model.

A channel is a sequence of elements of the type given as
its template argument. Channels are an abstraction and
the channel data representation is opaque, but channel data
can be used as a vertex array input. The Sh runtime uses
the most efficient operations and representations available
for managing buffers, and timestamps updates to data to
avoid data transfers whenever possible. For instance, under
OpenGL the NVIDIA backend uses textures and pbuffers,
while the ATI backend uses überbuffers. When/if super-
buffers are available, Sh will use those, or whatever buffer
management interface is most efficient on a given platform.

Streams are containers for several channels of data, and
are specified by combining channels (or other streams) with
the “&” operator. Streams only refer to channels, they do
not create copies. A channel can still be referenced as a
separate object, and can also be referenced by more than
one stream at once. For convenience, an ShChannel of any
type can also be used directly as a single-channel stream.

Sh uses a reference-counting garbage collection scheme.
Most Sh types are in fact smart pointers to separate data
items. Even if a channel is destroyed (explicitly or implic-
itly), if a stream refers to this data the memory will not be
released. Type information is also represented internally in
most Sh objects to support dynamic type checking.

In addition to being viewed as a sequence of channels,
a stream can also be seen as a sequence of homogeneous
records, each record being a sequence of elements from
each component channel. Stream programs or kernels con-
ceptually map an input record type to an output record
type. If an ShProgram is compiled with the "gpu:stream" or
"cpu:stream" profile, it can be applied to streams. Stream
kernels are applied in parallel (conceptually) to all records
in the stream.

The connect operator is overloaded to permit the appli-
cation of kernels to streams. For instance, a program p can
be applied to an input stream a and its output directed to
an output stream b as follows:

b = p << a;

When specified, the above stream operation will execute im-
mediately, and will return when it is complete (later on we

5

To appear in the ACM SIGGRAPH conference proceedings

plan to add a retained mode to permit greater optimization).
At the point of execution, Sh will check (dynamically) that
the input and output types of the program match the types
of the input and output streams.

Use of “p << a” alone creates an unevaluated program
kernel, which is given the type ShProgram (and can be as-
signed to a variable of this type, if the user does not want
execution to happen immediately). What actually happens
is that input attributes are replaced with fetch operators
in the intermediate language representation of the program.
These fetch operators are initialized to refer to the given
stream’s channels. Such program objects can also be inter-
preted as procedural streams. Such a bound but unevalu-
ated program will only be executed when it is assigned to
an output stream.

The implementation of the << operator permits currying.
If a shader is applied to a stream with an insufficient number
of channels, an unevaluated program with fewer inputs is
returned. This program requires the remainder of its inputs
before it can execute.

In a functional language, currying is usually implemented
with deferred execution. Since in a pure functional language
values in variables cannot be changed after they are set,
this is equivalent to using the value in effect at the point
of the curry. However, in an imperative language, we are
free to modify the value provided to the curried expression.
We could copy the value at the point of the curry, but this
would be expensive for stream data. Instead, we use deferred
read semantics: later execution of the program will use the
value of the stream in effect at the of point actual execution,
not the value in effect at the point of the currying. This is
useful in practice, as we can create (and optimize) a network
of kernels and streams in advance and then execute them
iteratively.

The << operator can also be used to apply programs to
Sh tuples. A mixture of tuple and stream inputs may be
used. In this case, the tuple is interpreted as a stream all of
whose elements are the same value. The same by-reference
semantics are applied for consistency. Effectively, an input
“varying” attribute is converted into a “uniform” parameter,
a useful operation.

Since we provide an operator for turning a varying at-
tribute into a uniform parameter, we also provide an inverse
operator for turning a parameter into an attribute. Given
program p and parameter x, the following removes the de-
pendence of p on x, creating a new program object q:

ShProgram q = p >> x;

The parameter is replaced by a new attribute of the same
type, pushed onto the end of the input attribute list.

The “&” operator can be applied to streams, channels, or
tuples on the left hand side of an assignment. This can be
used to split apart the output of a kernel. For instance,
let a, b, and c be channels or streams, and let x, y, and z
be streams, channels, or tuples. Then the following binds
a program p to some inputs, executes it, and extracts the
individual channels of the output:

(a & b & c) = p << x << y << z;

This syntax also permits Sh programs to be used as subrou-
tines (let all of a, b, c, x, y, and z be tuples).

7 Examples

Listing 3 gives an example of the use of shader algebra oper-
ators to manipulate shaders. This example takes the Blinn-
Phong fragment shader given in Listing 1 and converts the
parameters phong_kd and phong_ks into attributes, and then
feeds these new attributes with the results of texture reads.
The coordinates fed into these texture reads, in turn, are
generated by a noise function, generating the image shown
in Figure 3 [Hart et al. 1999]. Note that the light and
dark wood actually have different reflectances. With some
changes in parameters this shader can also be used for mar-
ble. One advantage of Sh that should be pointed out here
is that the noise function is opaque, but actually may be
implemented using hidden texture reads. Sh manages both
textures and shaders in an integrated manner, something not
done by other GPU shading languages, and made possible by
the close binding to the host application. A diagrammatic
representation of the effect of the various manipulators and
shader algebra operators in this example is shown in Fig-
ure 2.

ShAttrib2f wood_freq;

ShAttrib1f wood_scale;

ShAttrib1f wood_noise_scale;

ShTexture1D<ShColor3f> wood_kd(256);

ShTexture1D<ShColor3f> wood_ks(256);

ShProgram wood_vert, wood_frag;

void wood_init() {

// modify phong vert to pass through model space position

wood_vert = phong_vert & keep<ShPoint3f>();

wood_vert = wood_vert << (shKeep(1) & shDup(2));

// define kernel to generate texture coords from noise

ShProgram wood_frag_inc = SH_BEGIN_PROGRAM("gpu:fragment") {

ShInputPoint3f x; // IN(0): model space position

ShOutputTexCoord1f u; // OUT(1): texture coordinate

ShPoint3f scaledX = x(0,1,2)*wood_scale*0.5;

ShAttrib1f noise = sturbulence(scaledX);

u = frac(wood_scale*(x(1,2)|x(1,2))+wood_noise_scale*noise);

} SH_END;

// make two copies of texture coords (one for ks, one for kd)

wood_frag = shDup(2) << wood_frag_inc;

// feed texture coords into texture lookups for ks and kd

wood_frag = (access(wood_kd) & access(wood_ks)) << wood_frag;

// convert ks and kd parameters to input attributes

ShProgram wood_frag_base = phong_frag >> phong_kd >> phong_ks;

// replace new inputs with our noise-based texture lookups.

wood_frag = wood_frag_base << (shKeep(4) & wood_frag);

}

Listing 3: Wood defined by modifying texture coordinates
of Blinn-Phong lighting model.

Listing 4 gives a stream program to update the state of a
particle system [Sims 1990]. This program implements sim-
ple Newtonian physics and can handle collisions with both
planes and spheres. The particles are rendered by feeding
the particles back through the GPU as a vertex array (code
for this is not shown). Screenshots are shown in Figure 4.
This example demonstrates the use of deferred read seman-
tics for currying. The state stream is defined and bound
to the particle program object along with some uniform
parameters. The result is assigned to the update program
object, which triggers compilation and optimization. The
update object now has compiled-in access to the channels

6

To appear in the ACM SIGGRAPH conference proceedings

pointed to by the state stream. The inner loop is very sim-
ple and fast. In particular, all shader compilation is done
during setup. This example demonstrates that the use of
shader algebra operations in conjunction with the stream
and channel objects permits the application of Sh to non-
shading (general-purpose) applications such as simulation.

Shader algebra operations can be used for many other
things. For instance, they can be used to combine “light”
and “surface” shaders, or to “plug in” post-processors such
as tone mapping or halftoning. Any parameter or attribute
can also be replaced with a texture. In fact, it is just as
easy to replace any attribute or parameter with a procedure,
or to perturb attributes like normals to implement bump
mapping on any surface shader. All these possibilities are
demonstrated in Figures 1 and 5. These images were all
generated by combining a small number of basic shaders
with simple expressions.

Specialization is also very useful. For instance, we have
implemented a “universal” vertex shader that does a number
of standard operations, including transformation of normals,
tangents, vertices, and texture coordinates. We then just use
shader algebra expressions to specialize it to generate only
the outputs we need for a given fragment shader. Only in
exceptional circumstances do we have to write vertex shader
code. In this case named outputs and inputs and the named
versions of the manipulators are especially useful.

A shader algebra expression is not always the best way
to manipulate a shader. As mentioned earlier, subroutines,
classes, and other mechanisms are also useful to modularize
shaders. However, shader algebra expressions and manipu-
lators can express simple and common operations on shaders
in a relatively straightforward and expressive manner.

Figure 3: Images generated with the simple Blinn-Phong
shader, two parameter settings for the encapsulated Blinn-
Phong shader, and the wood shader derived using shader
algebra operators. See Listings 1, 2, and 3.

8 Conclusions

We have presented an algebraic approach to modularity in
shaders. This approach is based on a treatment of shaders
and stream kernels as objects that can be acted upon. Ex-
tension of the operators in this algebra to the application
of programs to streams and tuples permit the invocation of
stream computations and the reorganization of attributes

// SETUP

particle = SH_BEGIN_PROGRAM("gpu:stream") {

ShInOutPoint3f Ph, Pt;

ShInOutVector3f V; ShInputVector3f A;

ShInputAttrib1f delta;

Pt = Ph; // Physical state update

A = cond(abs(Ph(1)) < 0.05, ShVector3f(0.,0.,0.), A);

V += A * delta;

V = cond((V|V) < 1.0, ShVector3f(0.0, 0.0, 0.0), V);

Ph += (V + 0.5 * A) * delta;

struct { // Declare spheres

ShInputPoint3f center;

ShInputAttrib1f radius;

} spheres[num_spheres];

ShAttrib1f mu(0.1), eps(0.3);

for (int i = 0; i < num_spheres; i++) { // Sphere collisions

ShPoint3f C = spheres[i].center;

ShAttrib1f r = spheres[i].radius;

ShVector3f PhC = Ph - C;

ShVector3f N = normalize(PhC);

ShPoint3f S = C + N * r;

ShAttrib1f collide = ((PhC|PhC) < r * r) * ((V|N) < 0);

Ph = cond(collide, Ph - 2.0 * ((Ph - S)|N) * N, Ph);

ShVector3f Vn = (V|N) * N;

ShVector3f Vt = V - Vn;

V = cond(collide, (1.0 - mu) * Vt - eps * Vn, V);

}

ShAttrib1f under = Ph(1) < 0.0; // Collide with ground

Ph = cond(under, Ph * ShAttrib3f(1.0, 0.0, 1.0), Ph);

ShVector3f Vn = V * ShAttrib3f(0.0, 1.0, 0.0);

ShVector3f Vt = V - Vn;

V = cond(under, (1.0 - mu) * Vt - eps * Vn, V);

Ph(1) = cond(min(under, (V|V) < 0.1), ShPoint1f(0.0f), Ph(1));

ShVector3f dt = Pt - Ph; // Avoid lines disappearing

Pt = cond((dt|dt) < 0.02, Pt + ShVector3f(0.0, 0.02, 0.0), Pt);

} SH_END;

// define stream specifying current state

ShStream state = (pos & pos_tail & vel);

// define update operator, bind to inputs

ShProgram update = particle << state << gravity << delta;

// add collision specifications (compiler uses uniforms)

for (int i = 0; i < num_spheres; i++) {

update = update << ShAttrib3f(scene_spheres[i].center[0],

scene_spheres[i].center[1],

scene_spheres[i].center[2])

<< ShAttrib1f(scene_spheres[i].radius);

}

...

// IN INNER LOOP

// execute state update (input to update is compiled in)

state = update;

Listing 4: Particle system state update implemented as a
stream program.

and parameters. In addition to modularity, the shader al-
gebra operations also enable a general-purpose stream pro-
cessing computational model.

Several issues remain in the Sh implementation. Arbitrary
length shaders can be defined in Sh but may not execute on
a given GPU target. We currently virtualize some resources
(such as the number of outputs) but not all. This adversely
affects portability. We are in the process of implementing
virtualization algorithms to convert long GPU programs into
multipass implementations automatically. Multipass imple-
mentation can also be used to support data-dependent con-
trol constructs. Sh supports syntax for data-dependent con-
trol constructs but currently these can only be used for CPU
compilation targets. However, in the meantime C++ con-

7

To appear in the ACM SIGGRAPH conference proceedings

access(wood_kd)

access(wood_ks)

Rasterizer

keep<ShPoint3f>(1)

phong_vert

shDup(2)

shKeep(1) wood_frag_baseshKeep(4)

shDup(2)wood_frag_inc

Figure 2: Diagrammatic representation of manipulator expressions to compute wood shaders from phong shaders.

Figure 4: Frames from the particle system animation corre-
sponding to Listing 4.

trol constructs can be used for conditional compilation and
unrolled loops.

The examples given here for the shader algebra are limited
in complexity. Once virtualization is supported, modularity
will become much more important. For instance, a ray tracer
framework might use shader algebra operations to “plug in”
shaders for surfaces, after which the overall system (includ-
ing the raytracer core as well as the plugged-in shader code)
could then be compiled and optimized as a unit.

The shader algebra could be extended in various ways.
Stride, sorting, scatter/gather, and indexing operations
could be added to manipulate streams. Lifting arithmetic
operators to programs and streams would also be useful.
Applying addition to two program objects should generate
a simple program and connect it to the input programs to
add all output channels together. Similarly, operators like
“+=” could be overloaded on streams to support the invoca-
tion of reduction operators. These additions would lead to
a higher-level stream processing language that manipulates
streams in the same way that shaders manipulate records.

Figure 5: The normals (and/or tangents) used for any light-
ing model can be perturbed to implement bump mapping.

This stream language would operate in “immediate mode”,
but it would also be useful to define a “retained mode” for se-
quences of stream operations (in the same manner as shaders
retain sequences of tuple operations) so that they could be
precompiled and optimized.

Acknowledgements

This research was sponsored by grants from ATI, the Com-
munications and Information Technology Ontario (now a di-
vision of the Ontario Centres of Excellence), the National
Science and Engineering Research Council of Canada, Bell
University Labs, the Canadian Foundation for Innovation,
the Ontario Research and Development Challenges Fund and
by hardware donations from ATI and NVIDIA. The coop-
eration and assistance of other members of the Computer
Graphics Lab is also appreciated, especially Zheng Qin, Jack
Wang, Zaid Mian, Ju-Lian Kwan, Edwin Vane, Filip Spačeǩ,
David Larsson and Gabriel Moreno-Fortuny.

8

To appear in the ACM SIGGRAPH conference proceedings

References

Abram, G. D., and Whitted, T. 1990. Building block
shaders. Computer Graphics (Proc. SIGGRAPH) 24, 4
(Aug.), 283–288.

Apodaca, A. A., and Gritz, L. 2000. Advanced Render-
Man: Creating CGI for Motion Pictures. Morgan Kauf-
mann.

Blinn, J. F. 1977. Models of light reflection for com-
puter synthesized pictures. Computer Graphics (Proc.
SIGGRAPH) (July), 192–198.

Bolz, J., Farmer, I., Grinspun, E., and Schröder, P.
2003. Sparse matrix solvers on the GPU: Conjugate gra-
dients and multigrid. ACM Trans. on Graphics (Proc.
SIGGRAPH) 22, 3 (July), 917–924.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fata-
halian, K., Houston, M., and Hanrahan, P. 2004.
Brook for GPUs: Stream computing on graphics hard-
ware. ACM Trans. on Graphics (Proc. SIGGRAPH) 23,
3 (August).

Buck, I. 2003. BrookGPU web site.
http://graphics.stanford.edu/projects/brookgpu/ .

Cook, R. L. 1984. Shade trees. Computer Graphics (Proc.
SIGGRAPH) 18, 3 (July), 223–231.

Dawes, B., and Abrahams, D. 2003. Boost++ web site.
http://www.boost.org .

Draves, S. 1996. Compiler generation for interactive graph-
ics using intermediate code. In Dagstuhl Seminar on Par-
tial Evaluation, 95–114.

Elliott, C., Finne, S., and de Moor, O. 2000. Compil-
ing embedded languages. In SAIG/PLI, 9–27.

Guenter, B., Knoblock, T., and Ruf, E. 1995. Special-
izing shaders. In Proc. SIGGRAPH, 343–350.

Hanrahan, P., and Lawson, J. 1990. A language for
shading and lighting calculations. In Computer Graphics
(SIGGRAPH ’90 Proceedings), 289–298.

Hart, J. C., Carr, N., Kameya, M., Tibbitts, S. A.,
and Coleman, T. J. 1999. Antialiased parameterized
solid texturing simplified for consumer-level hardware im-
plementation. In Proc. SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, ACM Press, 45–53.

Hedelman, H. 1984. A data flow approach to procedural
modeling. IEEE CG&A 3, 1 (January), 16–26.

Herrington, J. 2003. Code Generation in Action. Manning
Publications.

Hillesland, K. E., Molinov, S., and Grzeszczuk, R.
2003. Nonlinear optimization framework for image-based
modeling on programmable graphics hardware. ACM
Trans. on Graphics (Proc. SIGGRAPH) 22, 3 (July), 925–
934.

Kass, M. 1992. CONDOR: Constraint-based dataflow. In
Proc. SIGGRAPH, 321–330.

Kessenich, J., Baldwin, D., and Rost, R. 2003. OpenGL
2.0 Shading Language, 1.051 ed., Feb.

Krüger, J., and Westermann, R. 2003. Linear alge-
bra operators for GPU implementation of numerical al-
gorithms. ACM Trans. on Graphics (Proc. SIGGRAPH)
22, 3 (July), 908–916.

Lee, P., and Leone, M. 1996. Optimizing ML with
run-time code generation. In SIGPLAN Conference on
Programming Language Design and Implementation, 137–
148.

Mark, W. R., and Proudfoot, K. 2001. Compiling to
a VLIW fragment pipeline. In Proc. Graphics Hardware,
SIGGRAPH/Eurographics.

Mark, W. R., Glanville, R. S., Akeley, K., and Kil-
gard, M. J. 2003. Cg: A system for programming graph-
ics hardware in a C-like language. ACM Trans. on Graph-
ics (Proc. SIGGRAPH) 22, 3 (July), 896–907.

McCool, M. D., Qin, Z., and Popa, T. S. 2002. Shader
metaprogramming. In Proc. Graphics Hardware, 57–68.

Owens, J. D., Dally, W. J., Kapasi, U. J., Rixner, S.,
Mattson, P., and Mowery, B. 2000. Polygon render-
ing on a stream architecture. In Proc. Eurographics/SIG-
GRAPH Workshop on Graphics Hardware, 23–32.

Peachey, D. 1985. Solid texturing of complex surfaces.
Computer Graphics (Proc. SIGGRAPH) 19, 3 (July),
279–286.

Peercy, M. S., Olano, M., Airey, J., and Ungar, P. J.
2000. Interactive multi-pass programmable shading. In
Proc. SIGGRAPH, 425–432.

Perlin, K. 1985. An image synthesizer. Computer Graphics
(Proc. SIGGRAPH) 19, 3 (July), 287–296.

Pixar. 2000. The RenderMan Interface, version 3.2, July.

Poletto, M., Hsieh, W. C., Engler, D. R., and
Kaashoek, M. F. 1999. ’C and tcc: a language and
compiler for dynamic code generation. ACM Trans. on
Programming Languages and Systems 21, 2, 324–369.

Proudfoot, K., Mark, W. R., Hanrahan, P., and
Tzvetkov, S. 2001. A real-time procedural shading
system for programmable graphics hardware. Computer
Graphics (Proc. SIGGRAPH) (Aug.), 159–170.

Rost, R. J. 2004. OpenGL Shading Language. Addison-
Wesley.

Sims, K. 1990. Particle animation and rendering using data
parallel computation. Computer Graphics (Proc. SIG-
GRAPH) 24, 4 (August), 405–413.

Slusallek, P., Stamminger, M., Heidrich, W., Popp,
J.-C., and Seidel, H.-P. 1998. Composite lighting simu-
lations with lighting networks. IEEE CG&A 18, 2 (Mar.),
22–31.

Snyder, J. M., and Kajiya, J. T. 1992. Generative model-
ing: A symbolic system for geometric modeling. Computer
Graphics (Proc. SIGGRAPH) 26, 2 (July), 369–378.

Snyder, J. M. 1992. Interval analysis for computer graph-
ics. Computer Graphics (Proc. SIGGRAPH) 26, 2 (July),
121–130.

Trendall, C., and Stewart, A. J. 2000. General calcula-
tions using graphics hardware, with applications to inter-
active caustics. In Rendering Techniques ’00 (Proc. Eu-
rographics Workshop on Rendering), Springer, 287–298.

Upstill, S. 1990. The RenderMan Companion: A Program-
mer’s Guide to Realistic Computer Graphics. Addison-
Wesley.

Veldhuizen, T. L. 1999. C++ templates as partial evalua-
tion. In ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation.

9

