
Using Pixel Rewrites for Shape-Rich Interaction
George W. Furnas Yan Qu

School of Information
University of Michigan

Ann Arbor, MI
+1 734 763-0076

{ furnas, yqu } @ umich.edu

ABSTRACT
This paper introduces new interactive ways to create,
manipulate and analyze shapes, even when those shapes do
not have simple algebraic generators. This is made possible
by using pixel-pattern rewrites to compute directly with
bitmap representations. Such rewrites also permit the
definition of functionality maps, bitmaps that specify the
spatial scope of application functionality, and organic-
widgets, implemented right in the pixels to have arbitrary
form, integrated with the shape needs of the applications.
Together these features should increase our capabilities for
working with rich spatial domains.

KEYWORDS:
Graphical rewrites, pixel rewrites, graphical interaction,
shape manipulation, shape analysis.

INTRODUCTION
Many shapes in nature have no simple analytic description:
the ragged boundaries of a marsh, the meandering and
branching path of a river, the subtle outline of a thighbone.
For advanced analysis or computer manipulation, scientists
typically convert images of such shapes, by a process called
“vectorization,” into complex models in analytic geometry.
Similarly, designers work predominantly with algebraic,
“vector-based” models of CAD systems, and as a result it
can be a struggle to create more naturalistic shapes (e.g., an
artificial thighbone, a new car-body-shape).

The work here is part of a research program to explore the
possibilities offered by an alternative computational
approach, one working directly with bitmap representations
of shape. The basic inspiration is that bitmaps can easily
capture shapes that are difficult for algebraic expressions – a
digital photograph easily captures the shape of the marsh,
river, or thighbone outline. New pixel-based shape
manipulation algorithms allow increasingly powerful
computation directly with these bitmap shapes, opening the
way for their more serious use.

Making such pixel-based computations available for human
interaction in shape-rich tasks is, however, a research issue
in itself. In this paper, following preliminary work by [7],

we use accumulating experience with basic pixel-rewrite
algorithms to provide new interactive ways to create,
manipulate and analyze bitmap shapes, and new ways for
users to control that functionality. The remainder of this
section gives a brief introduction to pixel rewriting, and a
survey of related work. The second section shows how new
pixel rewriting algorithms for computation with shapes can
be coupled to user input to provide new, pixel-based
interactive application functionality. The third section
shows how pixel manipulations allow for ways to control
application functionality, using functionality bitmaps and
organic-widgets. The conclusion gives a summary and
suggests future work.

Pixel Rewriting Basics
To work with pixellated representations of shape we use a
Pixel Rewrite System (PRS) (e.g., [5]). A PRS is
essentially a graphical version of a rule-based production
system from Artificial Intelligence [3]: rules match
specified local pixel patterns on a canvas or “field” and then
rewrite them as different patterns. As carefully crafted sets
of rules repeatedly match and rewrite, the content of the
pixel field evolves over time, and shapes and contours
change in ways contingent on their contexts. The result is
a type of versatile pixel computation that can work with
arbitrary pixel shapes without ever having to convert them
to algebraic representations.

Figure 1 shows some simple rules, building blocks often
used in complex rule sets. The rule in (a) we call a “Flood”
since it will cause any pink color to spread out and take
over any neighboring white. It does this one pixel at a
time, by rewriting any white neighbor of a pink pixel to be
also pink. (This is a pixel-rewrite analogue of “filling” in
“Paint” programs.) A rule like this can, for example, tell if
two things are connected – start the flood at one and see if
it reaches the other. That capability is used, for example to
identify the full extent of a “blob” to be manipulated
(everything the flood can reach), or to send a “signal” from
one part of a shape to other connected parts.

Control flow in a pixel rewrite system is accomplished
using conflict resolution: When there are multiple matches,
a “winner” is selected based on factors like explicit rule
priorities and recency of match. For example, resolving
conflicts based on “other things being equal, fire the oldest
existing match” is what allows Flood (a) to spread out
breadth-first.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2003, April 5–10, 2003, Ft. Lauderdale, Florida, USA.
Copyright 2003 ACM 1-58113-630-7/03/0004…$5.00.

Ft. Lauderdale, Florida, USA • April 5-10, 2003 Paper: Techniques for On-screen Shapes, Text and Handwriting

Volume No. 5, Issue No. 1 369

Other rules can be used to mark special visual attributes of
the bitmap for further processing. One example, in (b), is
EdgeMark, which marks with blue all Left and Right edges
where turquoise meets gray. Still other rules provide the
basics of moving things around, as shown in (c) where the
rule simply moves orange pixels to the right. Yet other
rules explicitly change the shapes of things. For example,
the rule in (d) removes the square corners from curves.

Furnas, et al. [5][6] have shown how these and similar
simple rules can be used in many ways, as building blocks
of more complicated algorithms for working with shape.
For example, a monochromatic “blob” of arbitrary size and
shape can be moved over one pixel quite simply with only
local rewrites. First, it is flooded to identify its total
extent. Then the external leading edge is marked for
extension and the interior trailing edge marked in a
different color for deletion. A rule then deletes the marked
trailing edge pixels, and another converts the marked
leading edge to the original blob color. The result is a blob
of the original shape moved over one pixel. (We can move
multicolor blobs, using an underlying layer that has a
monochrome “shadow” of the blob shape to be moved.)

The ability to move things around is a fundamental piece
of functionality for interacting with shapes. The fact that
we can do it right in the pixels means that we can move
arbitrary blobs, even if they do not have easy vectorized
representations. If they are in the pixels we can move them.
It also means that we can make variations of the algorithms
that take into account local pixel context – resulting in
versions of blob-move that react to context – for example
avoiding obstacles, deforming around them, recursively
pushing them out of the way, as desired.

The primary interest here is in those algorithms that
provide functionality valuable for end user interactive
applications. For example, [6] presents a pixel-rewrite
algorithm to find the shortest paths between arbitrarily
shaped objects through arbitrarily shaped obstacle fields.
This can be used directly to automatically draw useful
curves for users, say to connect two designated components
in an engineering layout diagram. The algorithms can also
build on each other. For example, suppose a user draws
some such connecting curve by hand and then decides she
has drawn it to be too long and loose, and wants to
“tighten it up”. If she had drawn the curve right in the
pixels, she previously would have had to do a lot of
erasing and redrawing. Instead we can use the shortest-path
algorithm as a component in a larger algorithm that can

successively shorten such long pixel curves, right in the
pixel array. (A simple example of such shortening is in
Figure 2. See [5] for the algorithm.)

As another example, it is common in graphical design to
want to move groups of things closer together, or to spread
them out evenly over arbitrarily shaped areas. Typically,
such positioning is done by hand. We can do this
automatically with a PRS by combining two basic
algorithms. First is a “pixel-radar” algorithm that starts at
some location and can tell in what direction the nearest
object or obstacle lies. It sends out a radiating “radar”
signal via a flood which, upon hitting another object,
initiates a reverse flood, or “echo”. The reflected echo
eventually reaches the original source, and its direction of
arrival can be used by subsequent algorithms. For
example, combining it with the blob-move algorithm, we
can get a blob to re-position itself closer to the reflecting
object. Running this iteratively in parallel for a set of
blobs, we create an “auto-converge-by-radar” capability,
causing the arbitrary shapes to cluster together ever more
closely. Alternately, we can have the blob move away from
the reflection signal, producing an “auto-disperse-by-radar”
capability, and it will eventually spread the arbitrarily
shaped objects out in surrounding arbitrarily shaped areas,
automatically.

Note how the pixel level computations of these algorithms
differ from those used in early stages of computer vision,
e.g., in morphological analysis [12], or in image
processing [11] and photo manipulation (e.g.,
Photoshop®). In those systems, typically a single “rule”
applies simultaneously at all locations to transform
quantitatively (e.g., with Gaussian filters) all the pixel
values in the image as a function of their neighbors. These
accomplish operations like blurring, edge enhancement or
repairs of small gaps. In a PRS, the complexly self-
sequencing sets of rules, each of which has rich non-linear
dependence on local context, accomplish more qualitatively
complex behavior, including moving things around,

(b) EdgeMark

(a) Flood
(c) MovePixel
 (to right)

(d) 8 - Connected

Key:
 Allow…

LR - Reflect
Rot & Refl

Rotations

x,y -
translations

only
Figure 1: Four single-rule systems. The rules can match rotated or reflected versions of their patterns if so indicated.

 (a) (b) (c)

Figure 2: “Tightening up” a curve. The endpoints are fixed,
but the curve (a) is one iteration shorter in (b), and several
more iterations shorter in (c).

Paper: Techniques for On-screen Shapes, Text and Handwriting CHI 2003: NEW HORIZONS

370 Volume No. 5, Issue No. 1

analyzing geometric properties, and finding routes.

The rewrites used in PRSs are technically most closely
related to formal systems called Array Grammars (AG)[13],
that rewrite elements in a two- or higher-dimensional grid.
In most AG work, like other grammar-based systems for
shape (e.g., L-systems [9] and Shape Grammars[15]), the
primary interest has been on parsing and generating shapes,
and as a result work has focused on the highly tractable but
less powerful Context Free (CF) or Context Sensitive (CS)
grammars – systems that make very restricted use of
context in the match and rewrite process. This rather
technical point is important because the unrestricted
rewrites we use in our PRSs are formally known to be
much more powerful – they can implement any computable
function. Such power, enhanced by a so-called conflict
resolution scheme (ways for the programmer to control
what happens when two different rules want to fire at once)
allows us a versatile way to manipulate and transform, in
quite arbitrary ways, shape on the canvas.

Several of these sorts of powerful grid-based rewrite
systems have been explored in the HCI community. Furnas
[4] proposed BITPICT, a pixel rewrite system, as a
possible model for a kind of forward chaining graphical
reasoning. Yamamoto [16] devised several powerful
programming extensions to the BITPICT language. In
neither of these was there any special focus on the potential
for interacting with rich shapes.

Several other systems (e.g., Agentsheets[10], Chemtrains
[1], and Coco/Kidsim[14]) have pursued grid-based
rewrites with an emphasis on the ability to make
simulations for teaching programming or fostering
scientific understanding of processes. Though they explored
various technical complexities along the way that are useful
to us (on conflict resolution, modularization, and control),
many aspects of these systems (e.g., large, many-pixel cell
sizes; non-pixel data structures) were designed to support
the simulation and teaching aims. Here by contrast, we are
interested in manipulating and analyzing rich shapes. As a
result, the system is optimized to work with individual
pixels, bitmaps are the main data structure throughout, and
rule sets of interest here are for useful shape manipulations,
not simulation.

The pixel rewrite process at the core of a PRS amounts to a
kind of graphical search and replace capability – each rule
“searches” for a match to its left-hand side and “replaces”
the match with the rule’s indicated right-hand side.
Understood this way, it is useful to compare a PRS to the
powerful graphical search and replace capability
Kurlander&Bier [8] developed for interactive graphical
editing. Users could make global changes to graphical
objects, such as changing all red rectangles to green ovals.
This differs in two important ways from the work here.
First, they focused on changing attributes of “draw”-type
vector graphical objects (like red rectangles). We are
interested in complex manipulation of raster shapes, so we
work directly with the pixels of the raster array. Second, in
their system a single pass of the search and replace
operation was conceived of as the user’s desired unit task.
(“Go make that one type of change and get back to me.”) In

contrast, here we use whole sets of rules, pre-authored by
an application designer, that run in complicated sequences
to perform graphical computations. The complex graphical
manipulations that result are the unit task for the user (“Go
analyze or transform this configuration [which happens to
be accomplished with tens or thousands of diverse pixel
rewrites] and then get back to me.”) Kurlander and Bier
mentioned that they could work with pixels, and even
could do recursive calling, to create fractals, for example,
but the rich pixel computation for shape manipulation was
not the focus of their exploration.

Finally, viewers often find the grid computations of a PRS
reminiscent of the computation seen in Cellular Automata
(CA)[2]. In a CA, cells in a grid change state as a function
of the states of their neighbors, causing a starting
configuration of cells to evolve over time. Such systems
help scientists explore the emergent consequences of
various neighborhood-dependent transition rules. Classical
CAs are, however, often considered hard to program to
achieve desired (as opposed to explore emergent) results – a
critical handicap if the goal is to provide some particular
useful shape manipulation capability to a user. Since the
patterns in rules of PRSs are often explicitly relevant to the
desired resulting functionality, we find them easier to
program than CAs, and therefore well suited for giving
users specific shape-interaction capabilities.

USER INTERACTION 1 – NEW END-USER-
APPLICATION FUNCTIONALITY
The most basic, important impact of the new PRS
algorithms for shape manipulation is that the new
functionality can be made available, in a straightforward
way, to end users. For example, it has not been possible
before for users to draw freehand scribbles and then fix
them up without having to erase and redraw. Simply by
invoking the algorithms on an indicated input, users can
smooth portions of their scribbles, or globally shorten
(“tighten up”) their pixel-curves.

The algorithms of [5] and [6] easily suggest end-usable
functionality for manipulation of shape. Other algorithms
allow the interactive analysis of shapes as well. For
example, imagine a species of exotic snail has invaded a
watershed in the Lake District (Figure 3). An ecologist
assessing the threat wants to know which other water
system is nearest. Working directly with a pixel map of
the area, she clicks on the infected lake, launching a process
that basically floods out from the original infected lake-
system to find the first uninfected one it hits. Rewrites first
“flood” the original water system from her seed click-point
(turning it red). Then a second, “search”-flood (yellow)
begins from the boundary of the infected lake, spreading
until it first touches another water-colored pixel. The touch
is identified by a high priority rule, which then marks the
location of the touch (reddish orange). The mark acts as a
seed for another flood which recolors the touched
watershed. The recolored watershed is thereby visually
identified as “nearest.” The mark also seeds a high priority
reverse flood (light brown) to overwrite and terminate the
search-flood, so it will not go on and mark other
watersheds.

Ft. Lauderdale, Florida, USA • April 5-10, 2003 Paper: Techniques for On-screen Shapes, Text and Handwriting

Volume No. 5, Issue No. 1 371

Suppose she now wishes to know how many lakes are in
the threatened system (perhaps lakes are a special breeding
ground for the snail). The pixel level algorithm she
launches to do the count is complex, and shown only
briefly in Figure 3(h-k). Basically it uses a second, scratch
pixel layer below the first where it hollows the lakes to
become loops and nibbles away the rivers. Each loop is
then broken, with one of its broken ends marked. The
marks are contracted together for local counting, and the
result displayed to the user back on the original surface.
Operations like finding the closest among complex and
inter-digitating pixel-shapes, and analyzing certain
topological features of those shapes, require computation to
work very closely with the pixel representations. Pixel
rewrite systems are well suited for providing this kind of
end-user functionality.

This “setup, launch and wait” style of interaction is a
straightforward way to bring the new shape algorithms to
the user – basically at the “unit task level”. A more “live”
feel to the interaction is possible when the underlying pixel
computation is fast and simple, and can keep up with the
user’s continuous actions. A basic example is shown in
Figure 4. If two of the simple rules from Figure 1 are
active during the drawing process, the user automatically
draws, in real time, purely-8-connected, haloed curves - a
capability we will use later. The active rules essentially
force a kind of constrained drawing.

In a more complex example, we can allows users to
manipulate a shape on the screen as if it were a blob of
clay. To do this we couple user interaction to an area
preserving deformation algorithm [5] allowing a user to
massage a blob of pixels into a desired shape without
altering its total area, creating a kind of interactive “pixel-
clay” (Figure 5). The user interacts by either clicking near
the blob, generating a little “explosion” to deform the
“clay”, or by sweeping a whole pixel curve creating a wave-
front to deform the “clay.”

Several aspects of this particular application are
noteworthy. First, area preservation (or its 3D version

using “voxel” rewrites instead of pixel rewrites – a
capability the system can support) is a useful capability.
Designers are not infrequently given constraints on total
area, volume or weight. A landscape architect may be given
a budget for a 10m2 garden, and would like to be able to
manipulate its shape to some pleasing, even complexly
“organic” looking one, knowing the area will always meet
the requirement. Agricultural land-use planners of the
future may want to transform a hilly terrain in southern
China to terrain-following, “organically” sculpted rice
terraces. In this 3D shape deformation task, the planners
cannot come up with a new landscape that will require
bringing in or removing billions of tons of earth; their
planned deformations must be volume preserving. Second,
such area- (or volume-) preserving properties are difficult to
implement in algebraic representations of shapes. Most
algebraic representations focus on the position of features of
the bounding curve (or surface). Other properties, like the
enclosed area are difficult to compute, and hence to preserve
under deformation. In pixel rewrites, one must simply
ensure that individual rules neither create nor destroy clay-
pixels, and start-to-finish area preservation is guaranteed.
This illustrates one of the basic points of the underlying
research program – that these new sorts of computation

(a)

(b)

(c)

(d)

(e)

Figure 4. Live-drawing. (a) Simple draw - dropping pixels
with no rules active. (b) Making the 8-Conn rule active
results in (c) 8-connected real-time drawing. Adding (d)
halo-rule, an all-rotations version of the EdgeMark rule
from Figure 1(c), yields (e) 8-connected, haloed real-time
drawing.

(a)

(g)

(b) (c) (d) (e) (f)

(l) (h) (i) (j) (k)

Layer 2 Layer 2 Layer 2 Layer 2
Figure 3. User analysis of exotic species invasion threat. (a) The “Lake District.” (b) Infected watershed. (c) Pixel “search”-
flood has expanded to find nearest neighbor. (d,e) Nearest, once touched is re-colored. (f) Reverse-flood stops the search, with
result (g). To count nearest’s lakes, (h) they are copied to a second layer, and hollowed. (i) Branches are nibbled, (j) cycles
identified with a blue flood, and cut, each leaving one marked tip. (k) Marked tips are contracted and, when finally clustered
locally, are easily counted. (l) The result, “3”, is displayed on the top layer for the user. (See Color Plates.)

Paper: Techniques for On-screen Shapes, Text and Handwriting CHI 2003: NEW HORIZONS

372 Volume No. 5, Issue No. 1

make different aspects of problems available to algorithms,
and to human interaction. Plus, there is the added benefit
that they all work with any shapes that can be expressed in
bitmaps.

USER INTERACTION 2 – NEW WAYS T O
CONTROL FUNCTIONALITY
A core goal of our research is to support shape-rich activity
using the computational power of rewriting bitmaps - we
are always seeking “to bring shape into the picture”
metaphorically and literally. This has led, not just to new
end-user application functionality, but to new spatially rich
ways to control that functionality appropriately.

Such capabilities are often discovered using a “convert and
vary” strategy. We take some conventional capability and
convert it – re-implementing it using only pixel-rewrites.
The mechanisms for the new, pixel version often have a
completely different set of natural variants and extensions,
compared to the standard version, often ones that indeed
“bring shape into the picture”.

Consider the conventional capability provided in a GUI
interface by a radio button widget. It allows a user to
switch between two different application functionalities,
e.g., the user clicks Button-1 for pencil-draw or Button-2
for spray-paint. A similar need, of course, arises in pixel
rewrite interactions. For example, a graphic designer using
the “radar”-based auto-positioning algorithms might want
to switch between the auto-converge and auto-disperse
functionality.

Following the “convert and vary” strategy, we begin by
creating a pixel-rewrite version of the basic “radio button”
functionality. Because the later “vary” part of the strategy
depends on the internals of the pixel implementation, we
go through it in some detail.

First we need a basic control capability, a way to have only
one subset of rules firing at a time (e.g., only the “auto-
converge” rules and not the “auto-disperse” ones) even
though both are nominally active in the system. Whether
an active rule fires or not depends on whether its pattern
matches somewhere in the field. Thus to effectively turn

Layer 2(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Layer 2

Layer 2

Layer 2

Figure 5. Pixel Clay. (a) Brown clay, black obstacles. (b) Mouse-click. (c) Explosion touches one pixel. (d) Copied to
Layer 2, (e) Distance field grows beneath clay. (f) Empty spot found. (g) Clay pixel moved. (h) New click. (i) Explosion,
and (j) pixels moved. (k) After more clicks, (l) user sweeps vertical curve. (m) More complexly shaped explosion. (n)
Relocation work done in Layer 2. (o) Result, which has same area as original. (See [6] for details of the underlying area-
preserving deformation algorithm.) (See Color Plates.)

Ft. Lauderdale, Florida, USA • April 5-10, 2003 Paper: Techniques for On-screen Shapes, Text and Handwriting

Volume No. 5, Issue No. 1 373

off an active rule we must somehow make sure its pattern
never occurs, and do so without tampering with the pixel
field of the application. To resolve this seeming paradox,
we create a “control” layer, a second pixel layer beneath the
application layer. The patterns in all rules are augmented to
require a specific color match in the local pixels of this
control layer (e.g., red in the control layer pixels beneath
all the “auto-disperse” rules’ patterns, and green beneath
those of the “auto-converge” rules). If the control layer is of
the wrong color for a given rule, the rule cannot fire. In this
way, subsets can be turned on and off simply by flooding
the control layer with the appropriate color.

Providing interactive control of which suite of rules is
active is then just a matter of writing pixel rules for
selectively coloring the control layer in response to user
mouse-clicks. We simply set up pixel “buttons”, where
each, when “selected,” colors the control layer
correspondingly. Details are shown in Figure 6. The initial
state in (a), at time t0, shows the “widget” to the left of the
black bar. The “controlled area,” normally a whole separate
layer, is here shown as the region to the right. In this case,
the three colored pixels are the “buttons”. In (b), at time t1,
the user clicks white by the desired color “button”. Rule (c)
recognizes this pattern and, at time t2, places a color seed
(d) in the controlled area. A simple flood rule operating in
(e) and (f) (at times t26, and “later”) then fills the controlled
area with the desired color. If this were a true control layer,
the overlying application functionality layer would then
start running its “red” rules.

Finally, to create a real pixel radio-button widget, we need
some control logic to provide the XOR functionality,
turning off the old button, before turning on the new one.
Again because the pixel rewrites are local, the mechanism
must work within the basic spatial structure of the pixel
array. The implementation (Figure 7) basically involves a
vertical-only “flood” that “searches” up and down in space
for the old selection. When it finds it, it turns it off and
erases its color before flooding the control region with the
newly selected color.

Putting all these parts together yields a fully functional
radio button capability, where different rulesets, coded by

red, by green or by yellow in their control layer, can be
selected by the user’s mouse-click next to the
corresponding pixel-button.

Although perhaps interesting in its own right, what we
have really gained by converting this standard functionality
to the pixel domain is the ability to make totally new
variations. Specifically, the spatial nature of the
implementation mechanism allows natural extensions that
“bring shape (represented with bitmaps) into the picture.”

 (a) (b) (c)

(d) (e) (f)

t0

Later t26

t1

t2

Figure 6. Part of a primitive widget to flood the control
region. (a) Initial state. (b) User clicks white by the red
“button”. Rule (c) then seeds (d) a red flood in (e) and (f),
filling the control region. (The “times” in the lower right
corners are measured in rule execution counts. I.e., t26

means after the 26th rule firing.) (See Color Plates.)

(a) (b)

Figure 8. Functionality Maps. “Buttons” can be made
beside other parts of the control area, to change the
color in different regions. (a) Yellow flood begins for one
control area. (b) Two areas, colored for different
functionality. (See Color Plates.)

t0 t1 t4 t7

t8 t13 t15 t18

t29 Later1 Later1+23 Later2

Later3Later2+24

Figure 7. Radio Button Widget implemented in pixel
rewrites. Time (t0) shows the initial state. (t1) User clicks
pink to provisionally assert a new selection. (t4)XOR
vertical SearchFlood goes up & down. (t7) Finds old
selection. (t8) Marks it and begins FloodBack. (t13)
FloodBack completed, stopping search. (t15) EraseFlood
seeded and newclick confirmed, turned white. (t18) XOR
flood cleaned up. (t29) EraseFlood continues, then (Later1)
complete. (Later1+23) NeutralFlood in progress, and
(Later2) complete. (The NeutralFlood is needed for
technical reasons, to avoid race conditions.) (Later2+24)
Finally the new ColorFlood begins and then (Later3) is
complete. (See Color Plates)

Paper: Techniques for On-screen Shapes, Text and Handwriting CHI 2003: NEW HORIZONS

374 Volume No. 5, Issue No. 1

It is, for example, trivial now for application functionality
to have spatial scope. To get the conventional basic
control of rule subsets we had to make the appropriate
control color available beneath every locale of the
application field. Having done so, however, we are now
free to make locales differ. If different regions of the control
layer have different color, they enable correspondingly
different functionality over each. The control layer becomes
what we call a functionality map. As shown in Figure 8,
the radio button mechanism can easily control these
arbitrarily shaped regions. One need only draw boundaries
to block the propagation of the flooding functionality
colors, and make sure the regions have their own radio
buttons -- trivially possible by putting sections of the
control colors (they need not be single dot-sized “buttons”)
along the border of the widget region adjacent to the region
to be controlled.

These controllable functionality maps, for example, would
allow a military General working with a digital map of a
mountainous region to indicate that troops in some
Regions 1 and 2 should be dispersing as indicated (e.g., as
computed by the radar disperse algorithm) while those in
Region 3 should be gathering together (e.g., as computed
by the radar converge algorithm). This is a kind of
upgraded version of bitmasks used in, for example,
Photoshop®, to control where some image processing
operator will work. Here several regions can be “live” at a
time, their boundaries changing interactively by the user in
real time, or even computed by other pixel processes
working directly with the control layer. And of course, the
regions control the arbitrary pixel computations of the
application, instead of just photoshop operations. By

converting to a pixel implementation, we can vary it easily
to provide spatially scoped functionality, a capability quite
alien to the conventional widget.

A second variation comes from the fact that the control-
logic was implemented in a spatial structure, so that the
controllers themselves can be richer in shape, more
organically incorporated into the regions they control.
Standard rectangular radio-button widgets would typically
either obscure the application canvas, or be set off to the
side possibly confusing their correspondence to the regions
controlled. Here the commanding General working over his
map (or the ecologist analyzing her lake district, or an artist
working on a canvas) could have the kind of spatially
scoped control of functionality described above, but with
convenient spatially-local controls – built “organically”
right into their arbitrarily shaped boundaries. In Figure 9,
the General draws boundaries, perhaps following landscape
features (not shown) around various regions containing
yellow dots representing troops. Active rules from Figure
4, keep the curves cleanly 8-connected and surrounded by a
purple halo, while other simple rules copy those curves
down to control layers below. The halo, with its shape
following the arbitrary boundaries, serves as the substrate
for the radio button internal mechanisms. The XOR
“search” flood propagates along the curves halos in Layer 2
(not shown), instead of propagating vertically as in Figure
7. The General simply picks up control colors from a
palette at the bottom of the field and places samples of
them as radio buttons in any convenient place in the halo
of the border of any region to be controlled. Placing a
selection dot in any of those “buttons” triggers the
underlying region coloring, and turns on the corresponding

(b1)

(c) (d) (e)

(b2) Layer 3 (a)

Figure 9. “Organic” radio button widget. (a) The user partitions field of yellow dots by arbitrary boundary curves, then (b1)
places red and green pixels in the halos along curve boundaries to serve as “radio buttons”, and selects some of them. A
second layer (not shown) runs the XOR mechanisms. (b2) Layer3 shows the resulting, correspondingly colored functionality
maps. (c) Over the green region a greenish radar-converge pulse spreads out, looking for other yellow dots or obstacles. (d)
Over a red region, a reddish radar-disperse pulse spreads out. (e) After time, dots are clumped and spread out respectively.
(See Color Plates.)

Ft. Lauderdale, Florida, USA • April 5-10, 2003 Paper: Techniques for On-screen Shapes, Text and Handwriting

Volume No. 5, Issue No. 1 375

functionality in that region. In the figure, green starts the
radar-converge computation (“troops come together!”), and
red starts the radar-disperse computation (“troops spread
out!”).

DISCUSSION
In this paper, pixel level computations have enriched users’
ability to work with any arbitrary shapes in several ways.
First, new application functionalities can work with
bitmap-shapes, including smoothing curves, pixel clay, and
radar auto-positioned shapes. Second, functionality maps,
dictated by arbitrary bitmaps, allow different regions to
behave differently. Finally, organic widgets, implemented
in the pixels, can be integrated closely with the spatial
structure of the user’s activity. The almost “raw” spatial
nature of the computation increases the spatial richness of
the user’s interactions.

Future work will in part focus on the underlying shape
computation: exploring multi-resolution, non-rectangular
and 3D grids, and accumulating more shape manipulation
and analysis algorithms. As the work here shows, changes
in the computational capabilities lead to changes in
opportunities for users’ interaction. Another important
direction involves exploring how users might best bring
this new power to bear. Will there be commonly desired
nuggets of pre-programmed pixel functionality, to populate
the pixel-rewrite tool palettes of the future? Or will end-
user customization and programming be required, with its
consequent complexities? Yet another direction we wish to
explore is “shape-based” input. The simple mouse-clicks
used as input here, seeding a cascade of rewrites from a
single point do not have much “shape”. One could go
much further using video input. Users could use the shapes
of their hands to interact directly with the pixel rewrites to
further the efforts to bring shape into the picture -
interactively.

ACKNOWLEDGEMENTS
This work was supported by grants from NSF (IIS-
9877170) and the Intel Corporation. The authors would
also like to thank Maria Slowiaczek for her many insightful
comments on early drafts, Greg Peters for his programming
efforts, Sanjeev Shrivastava and Nikhil Sharma for their
varied assistance, and the helpful comments of the
reviewers.

REFERENCES
1. Bell, B. & Lewis, C. (1993) ChemTrains: A Language

for Creating Behaving Pictures. In 1993 IEEE
Workshop on Visual Languages, 1993, 188-195.

2. Codd, E. F., Cellular automata, New York: Academic
Press, 1968.

3. Davis, R. & King, J. An overview of production
systems. Rep. STAN-CS-75-524, Computer Science
Dept., Stanford Univ., Stanford, CA, 1975.

4. Furnas, G.W. (1991) New Graphical Reasoning Models
for Understanding Graphical Interfaces. Proc. of CHI
'91 Conf. on Hum. Factors in Comp. Sys. 1991, 71-78.

5. Furnas, George W. and Qu, Yan (2002) Shape
Manipulation using Pixel Rewrites. At Workshop on
Visual Computation 2002, in Proceedings of the
Distributed Multimedia Systems 2002, San Francisco,
CA, Sept 26-29, 630-639.

6. Furnas, G.W., Qu, Y., Shrivastava, S., and Peters, G,
(2000) The use of intermediate graphical constructions
in problem solving with dynamic, pixel-level diagrams.
In M.Anderson, P.Cheng, V.Harslev (Eds.) Theory and
Application of Diagrams, Lecture Notes in A. I. #1889,
Springer Verlag.

7. Furnas, G., Qu, Y., Shrivastava, S., and Peters, G.
(2001) Richer Graphical Interaction using Interactive
Pixel Rewrite Systems. Extended Abstract (demo) In
Proc. of CHI 2001 Conf. on Hum. Factors in Comp.
Sys., 9-10.

8. Kurlander, D & Bier, Eric A. (1988) Graphical search
and replace. Computer Graphics, 22(4), 113-120.

9. Lindenmayer, A. (1968) Mathematical models for
cellular interaction in development, Parts I and II.
Journal of Theoretical Biology, 18, 280-315.

10. Repenning, A. & Fahlen, L.E. (1993) Agentsheets: A
Tool for Building Domain-Oriented Visual
Programming Environments. Proc. of ACM
INTERCHI'93 Conf. on Human Factors in Comp. Sys.,
142-143.

11. Russ, John C. (1998) The Image Processing Handbook
3rd Ed, Boca Raton, FL: CRC Press.

12. Serra, Jean (1982) Image Analysis and Mathematical
Morphology, New York: Academic Press.

13. Siromoney, G., Siromoney, R, Krithivasan, K. (1973)
Picture Languages with Array Rewriting Rules.
Information and Control, 22. Academic Press, 447-
470.

14. Smith, D.C., Cypher, A. & Spohrer, J. (1994)
KidSim: Programming Agents Without a Programming
Language. Comm of the ACM, 37(7), 54-67

15. Stiny, G, (1980) Introduction to shape and shape
grammars. Environment And Planning B - Planning &
Design, 7 (3): 343-351.

16. Yamamoto, Kakuya (1996). Visulan: A Visual
Programming Language for Self-Changing Bitmap.
Proc. of International Conference on Visual
Information Systems, Victoria Univ. of Tech.
cooperation with IEEE (Melbourne, Australia), 88-89.

Paper: Techniques for On-screen Shapes, Text and Handwriting CHI 2003: NEW HORIZONS

376 Volume No. 5, Issue No. 1

