
~ C o m p u t e r Graph ics , V o l u m e 23, N u m b e r 3, Ju ly 1989

Metamouse:
Specifying Graphical Procedures by Example

David L. Maulsby, lan H. Witten, Kenneth A. Kittlitz

Knowledge Sciences Laboratory, Department o f Computer Science
The Univers i ty o f Calgary, 2500 Univers i ty Drive N W

Calgary, Canada T2N lN4

Abst rac t
Metamouse is a device enabling the user of a drawing program to
specify graphical procedures by supplying example execution
traces. The user manipulates objects directly on the screen,
creating graphical tools where necessary to help make constraints
explicit; the system records the sequence of actions and induces a
procedure. Generalization is used both to identify the key
features of individual program steps, disregarding coincidental
events; and to connect the steps into a program graph, creating
loops and conditional branches as appropriate. Metamouse
operates within a 2D click-and-drag drafting package, and
incorporates a strong model of the relative imporlance of
different types of graphical constraint. Close attention is paid to
user interface aspects, and Metamouse helps the user by
predicting and performing actions, thus reducing the tedium of
repetitive graphical editing tasks.

OR Categories
1,2.2 [Artificial Intelligence[Automatic Programming - program
synthesis; 1.2.6 Learning - knowledge acquisition; 1.3.6
[Computer Graphics] Methodology - interaction techniques.

Other Keywords and Phrases
Geometric constraints, apprenticeship learning.

1 Introduction
Aesthetically pleasing, visually coherent, meaningful pictures are
characterized by the spatial relationships that join components,
suggest relative importance, lead the eye through a visual
nazTative, and reveal subtle connections. These relationships are
called "constraints." Often they compete with each other and
must be considered as a group, called a "constraint system."
With or without the help of a computer, a graphic artist must
manage constraints that may be complex and require compromise
or careful ordering to be resolved. A drawing evolves as new
objects and constraints are added and as some attributes and
constraints change while others remain in force, These elements
often interact; for example, changing a text font may require
enlarging and re-positioning boxes in a flowchart. Despite the
features provided by interactive graphics editors to automate
constraints, editing still involves repetitive manual work that
requires precision and planning.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

pC S

a. Input parameters:
spandrel S, capital C,
pier P.

o cp s]
b. Center C on top of P,

move S onto C and
measure overhang, O.

O

c. Move O to right end
of S; put copies of C
and P at O.

d. Construct triangle
LRB inside S.

S

L __-~"~"~--__ R

H
e. Remove S and O.

A

i /
f. Copy capitals to

base of piers.

Figure 1. Constructing an arch from a rough sketch.

This paper describes a system that induces picture-editing
procedures from execution traces. It observes the user at work,
performs a localized analysis of changes in spatial relations to
isolate constraints, and matches action sequences to build a state
graph that contains conditional branches and loops. Moreover, it
induces variables for objects and distinguishes constants from
non-deterministic (ie. run-time input) parameters. The system
includes a constraint solver to perform the actions it has learned.

127

© 1 9 8 9 ACM-0-89791-312-4/89/007/0127 $00.75

';(~SIGG RAPH '89, Boston, 31 July-4 August, 1989

I ' l l
a. Initial placement.

T
c. User moves stove

to new position.

b. Draw line to show
relation of hood to
stove.

[
d. Move hood to touch

end of line as in b.

e. Stretch stovepipe
to touch hood.

e o Q 11o I

I
f. Hide line.

Figure 2. Maintaining constraints amongst objects.

A key component of the system is its metaphorical apprentice,
Metamouse, an icon that follows the user 's actions and represents
the focus of attention. The metaphor embodies the sys tem's
limited model of spatial relations: Metamouse is near-sighted but
touch sensitive. The user understands that relations at a distance
must be constructed, for example by using a line to demonstrate
alignment.

Section 2 describes some example editing tasks that can be taught
to Metamouse. Section 3 discusses research issues and related
work. Section 4 describes the current implementation. This is
followed, in Section 5, by an evaluation of its performance on
the sample tasks.

2 Applications
Several types of graphical task are appr~opriate for automation by
a system such as Metamouse. Primary problems for users are 1)
ach iev ing precis ion, 2) main ta in ing integri ty of constraints

throughout the editing process, and 3) coping with the tedium of
repetition, Examples of each type of task are described in detail
below.

Figure 1 illustrates the construction of an arch from a sketch of its
main components. Initially the artist draws one of the piers, a
capital, and the spandrel ' s extents box. The capital is then
centered over the pier and the spandrel box is moved down onto
it with the desired lateral overhang. After measur ing the
overhang, the artist duplicates the pier and capitat at the other end
of the arch. A triangular spandrel is then constructed inside the
box. Finally, plinths are added to the base of the piers. This
editing sequence specifies a procedure for constructing a type of
arch from four graphical inputs: pier, capital, spandrel box, and
overhang. The construction requires precision but need only be
done once.

F igure 2 i l lustrates const ra in ts that must be ma in ta ined
throughout the long-term editing of a picture. If the stove is
moved, the venti lat ion hood must be re-posi t ioned above the
burners, and the s tove-pipe must be stretched or shortened to
reach the hood from the wall exit. The edi t ing sequence
proceeds as follows. First, the user expresses the constraint
between burners and hood by drawing a tie-line between them.
The user then moves the s tove to its new posit ion. The
constraints are re-established as follows. The tie is moved to
touch the burner as before. The hood is moved to contact the tie,
and the stove-pipe is stretched to the hood. Finally, the tie-line
is r emoved (or hidden). This task illustrates the use of an
auxi l iary objec t (the tie) to express a constraint . Other
constraints stem from the role that touches play in terminating
actions. This procedure could be invoked manually whenever the
stove is moved, but it would be desirable to "at tach" it to the
operation of moving the stove, which would automatically trigger
it.

Figure 3 illustrates a repetitive editing operation or an animation
sequence. A teapot moves up and down rows of cups laid out on
a buffet, f i l l ing them with tea, and then returns to its initial
position. Since cups are not perfectly aligned, a row is defined
by a line passing through the center of one cup and touching the
others. A procedure looping on rows and cups would allow us to
change these numbers wi thout re-scr ipt ing. Moreove r , a
constraint-oriented description of the teapot ' s path (eg. " m o v e
r ightward to next cup" rather than " m o v e to (x, y)") would
tolerate adjustments to the layout. A program for this task is
shown in Figure 4.

The teapot 's initial position is marked with a slash and the pot
moves to the table 's nearest corner. For each iteration of the
main loop, the row-line advances upwards to the center of some
cup - - a sweep-select ion method [19]. The pot moves to the
row- l ine ' s near end. For each cycle of the inner loop, the pot
advances to meet the fol lowing constraints: i) the spout is at the
center of some cup, C; ii) C is touching the row-line; and iii) C
was not already visited. At the end of a row, some of these
constraints fail. Note that the constraints ensure that the pot
moves in opposite directions in successive rows. The main loop
ends when no cups remain in the row-l ine ' s upward path. The
teapot then returns to its initial position marker via the buffet ' s
perimeter and, finally, the marker is removed.

128

@* Computer Graphics, Volume 23, Number 3, July 1989

a. The scene is set.

e. Move row-line R
up to first row.

b. Planned path.

8 f. Move teapot up
to near end of R.

0 i. R up to next row;
pot up to R.

/ j. Scan leftwards
along 2nd row.

/ m . End of row 0 n. No more rows;
remove R.

-
c . A l te rna t ive pa th .

/ g. Move pot to first
cup; pour .

-
d. Constructions for

procedure.

000
L!LEL0 0

/ h. Move potto near
end of row- l ine.

k. Row finished; pot
to near end of R.

/ I. R, pot to 3rd row.

@ o. Return pot to
marker.

p. Remove marker.

Figure 3. The tea-party animation procedure.

The power of a system like Metamouse lies in its ability to isolate
constraints and predict actions. The user performs only a few
steps of the tea-party task. Once Metamouse detects repetition, it
predicts subsequent actions until it cannot meet the constraints or
until the user objects. It observes the teapot move to the second
cup and predicts all actions for the rest of row 1. When it fails to
find a fourth cup, it asks the user to take over. The user moves
the row-line; Metamouse recognizes this action and hence
predicts the move-and-pour sequences for the second and third
rows .

3 Background and Related Work
Automation of graphical editing tasks has followed two streams
of development: interactive tools to help users with constraints;
and graphics-oriented programming systems. Interactive help
began with Sketchpad [22], which used iterative numerical
relaxation to resolve several types of constraint among object
parameters. A similar approach is adopted in [27], which lets
users compose constraints based on least-squares relaxation.
Recent research has also produced a system that automatically
selects and applies appropriate construction tools [4]. These
systems offer simple, appealing interfaces to a restricted set of
constraint-satisfaction methods.

End-user programming is one way to support repetitive,
customized editing operations and the invention of arbitrary
constraint systems. Given that most users are non-programmers,
research has focussed on graphical methods, often based on
geometric construction [5, 7, 8, 171. With their graphical
interfaces and use of examples, these systems greatly simplify
program construction, but users must still work with abstractions.
When programming with L.E.G.O. or a macro facility such as
[24], the user declares loops and conditional branches, albeit by
menu selection. Users of ThingLab must conceive an algebraic
model of constraints in order to produce equational networks that
define them [5].

An alternative is to observe the user at work and infer loops and
branches, constants and variables. A number of systems for
programming by demonstration have been produced [2, 9, I 1,
16, 211. Programs are constructed incrementally from several
execution traces. Only Noddy, a robot teaching system, relies
completely on automatic generalization [2], but it performs an
exponentially complex induction of functions and is incapable of
coping with errors. SmallStar [9] operates in a very general
desktop domain but requires the user to identify variables and
their type and value range. Peridot [16] infers value ranges and
certain spatial relations (such as “centered within box”), but not
loops or branches.

129

(~ S I G G R A P H

)

)

f

J

J

J

J

'89, Boston, 31 July-4 August, 1989

() -@
()
(

(

(
J

+
,)

¢

5~ 11 fails

1. move to touch (Table.bottom.left)

2. draw-line R to touch (Table.bottom.right)

3. move to touch (Pot.top.right)

4. draw-line M to touch (Pot.bottom.left)

5. move to grasp (Pot.center)

6. drag Pot to touch (Pot.center : Table.bottom.left)

7. move to grasp (R.midpt)

8. drag R upwards to touch (R.line : F.center),

where F is first cup found by scanning upwards

9. move to grasp (Pot.center)

10. drag Pot upwards to touch (Pot.center : R.endpt)

11. drag Pot horizontally to touch (Pot.center : C.center),

where C is first cup found by scanning horizontally

12. move to touch (C.top.right)

13. draw-line to touch (C.bottom.left) ; ie. pour tea!

14. move to grasp (Pot.center)

15. drag Pot to touch (Pot.center : R.endpt)

16. delete R

17. move to grasp (Pot.center)

18. drag Pot to touch (Pot.center : Table.bottom)

19. drag Pot to touch (Pot.center : M.midpt)

20. move to grasp (M.midpt)

21. delete M

Figure 4. Procedure learned for tea-party animation.

Inferring a program is not easy, but induction of complex picture
transformations from examples of input and output is intractable
[3]. Moreover , systems of equat ions to represent these
transformations would be numerically unstable and difficult to
solve. Thus, it is better to induce a sequence of simpler
t ransformations. Drawing is inherently procedural , often
systematically ordered with each step governed by very few
constraints [26]. Nonetheless, it is hard to induce procedures
even from simple steps. Typical users do not always construct
(or know how to construct) the relevant measurements and
relations, but work instead by visual inspection. In effect, their
drawings include invisible objects, as illustrated in Figure 5.
Curve-matching methods such as those employed in graphical
search and replace [10] are not sufficient for inducing patterns in
traces that contain invisible objects. On the other hand,
examining the screen for implicit spatial relations clearly involves
an enormous amount of search and vastly expands the space of
hypotheses for generalization. Therefore the system should
isolate a small neighborhood of attention, and restrict itself to
explicit relations of touch. It follows that user must specify these
constructively.

To worsen matters, a prel iminary study of MacDraw users
performing a set of graphical tasks [13] revealed that execution
traces are riddled with extraneous and erroneous actions. Users
not only made mistakes, but were observed per forming
experiments or simply fidgeting. The order of actions varied
greatly within the first several iterations of loops.

D[3
I I

a. Initial position.

D
D I I
b. Final position.

D
c. Explanation.

Figure 5. An invisible object as a constraint.

130

@ ~ Computer Graphics, Volume 23, Number 3, July 1989

Teacher

Graphical
Action

I Solve ~ 1
Constraints

only by the presence of the Metamouse icon: there are no special
programming commands except to start and stop Metamouse.
The flow of data through the system is sketched in Figure 6.
When the teacher performs a drawing operation, the system
records it and augments it with explanatory features, matching
objects with variables and identifying probable constraints on the

Observe ~ cursor's new position. Metamouse moves to the point at which
Touches, etc. ~ the action terminated and highlights object parts involved in

constraints. The augmented action is then matched with program
~¢ previously learned. If a match is found, the learning steps

module may conjecture a loop or joining of branches. It then
Induce predicts subsequent actions to confirm this. Predicted actions are

Variables performed by a constraint solver. Metamouse autonomously
~¢ moves and highlights objects, and continues to do so until the

teacher rejects a prediction or the constraint solver fails.

Induce
Constraints The next two subsections give brief accounts of the graphics

_ application and the Metamouse interface. Following that we
¢ examine individual modules of the learning system.

Match
Action

Form Loop,
Branch or
Sequence~l ¢

Predict
Action

a. Near edge of box. b. Near vertex of two lines.

Figure 6. Main components and data flow of system. Figure 7. Highlighting distinguished points near cursor
(arrowhead) while rubber-banding a line.

These elicitation problems are well-known in human-human
communication, and rules of interaction between human teachers
and pupils have been formulated as "felicity conditions" [25],
four of which apply when inducing graphical procedures:
correctness, show-work (demonstrate execution rather than just
input and output), no-invisible-objects (express constraints by
graphical construction), and focus-activity (eliminate extraneous
actions).

These conditions are difficult for untrained teachers to satisfy.
The Metamouse system uses a metaphorical apprentice, intensive
interaction, and generalizat ion to help the teacher. The
Metamouse is the system's focus of attention; only touch
relations involving it or an object it is grasping are examined.
The system tries possible generalizations and predicts actions as
early as possible during a teaching session, to eliminate free
variation and extraneous actions and also to reduce errors. It can
learn alternative actions and re-order their precedence in order to
overcome errors. It has an internal model of graphical constraints
and asks for explanation when an action seems arbitrary, ie.
insufficiently constrained. The metaphor encourages the teacher
to demonstrate constraints and adopt an intentional stance toward
the system [6] rather than understand the details of its constraint
and generalization models. Whether or not the metaphor
succeeds is an experimental question; some pilot tests have
yielded encouraging results [14].

4 The Metamouse System
Our learning system works within an interactive 2D graphics
editor. "Teaching mode" is distinguished from normal editing

4.1 A.Sq
Constraints are easier to identify and resolve if primitive
operations have few degrees of freedom. Thus a drawing
program with a point-and-click user interface, like MacDraw
[12], is suitable. Our drawing program, A.Sq (after the
protagonist of Flatland [1]), emulates MacDraw but at present
includes only box and line primitives. The user draws and
transforms primitive objects by moving iconic handles (as in
MacDraw). These handles delimit parts of objects distinguished
by the learning system. They appear whenever the cursor (or
Metamouse) approaches them, as illustrated in Figure 7.

The choice of primitives and operators has a great impact on the
user 's expression of constraints. Languages such as L.E.G.O.
[8] and the primitives of [17] provide a basis for traditional
"ruler-and-compass" methods of construction. A.Sq's primitive
object types P, auxiliary objects A, modes of operation M, user-
interface commands U, and internal operators 1, are summarized
in Table 1 below.

At present, the drawing program is relatively simple yet rich
enough to study programming-by-example issues. No conceptual
difficulties are envisaged in extending the learning system to
cope with new primitives such as points, polygons, ellipses, and
splines, since only an object ' s distinguished parts have any
significance. We also expect to be able to accommodate new
operations such as rotation, grouping, and coloring.

131

' L ~ , ~ [~ S I G G R A P H '89, B o s t o n , 31 J u l y - 4 A u g u s t , 1 9 8 9

p •

A :

M :

U :

I :

box (bottom-left, top-right)
line (endptl, endpt2)
point (x, y)
action (operator, startpt, endpt, object)

CurrentPoint : point
PreviousPoint : point
CurrentObject : { box, line }
DisplayList : list of {box, line}
ActionList : list of actions

create-lines
create-boxes
transform-objects

set-mode (mode e M)
set-point (PreviousPoint, CurrentPoint, x, y)
delete-object (CurrentObject)
undo (ActionList)

create-line (CurrentObject, PreviousPoint,
CurrentPoint, DisplayList)

create-box (CurrentObject, PreviousPoint,
CurrentPoint, DisplayList)

translate-handle-of-object-to-point (handle,
CurrentObject, CurrentPoint)

Table l. Elements of the A.Sq drawing program.

4.2 Metamouse
The focus of the teacher 's attention is the Metamouse, Basil, a
graphical turtle in the tradition of [18]. Prior to working with
Basil, teachers skim a bio-sheet, excerpted in Figure 8. When
the user of A.Sq senses an opportunity to automate a task, she
calls Basil f rom his den. Rather than fo l low the cursor
continuously, the turtle icon moves to CurrentPoint at the closure

of each A.Sq operation. If the system finds no tactile constraint,
Basil asks the user whether posi t ion or distance are inputs,
constants, or should have been constructed. Should the teacher
suspend recording temporarily, Basil withdraws into his shell. In
all other respects the A.Sq commands operate as usual.

4.3 Touch Relations
Metamouse is described as near-sighted but touch-sensit ive; the
teacher understands that only touch relations involving Basil or
an object in his grasp are analyzed for constraints. The system
highlights relevant parts of objects, as illustrated in Figure 9.
Touches considered important (see Sect ion 4.5 below) are
colored red, others yel low. Associated with each touch is a
triangular button; selecting this toggles it from red to yel low or
vice versa, so the teacher can override the system's decision.

A touch re la t ion is def ined as touch (O b j e c t l . P a r t I :
Object2.Part2), where Part i indicates some part of Object i.
Distinguished parts are handles vertices, mid-points) and the line
segments between them.

4.4 Var iables
The use of variables al lows dif ferent objects to assume a
particular role in success ive tterations of actions [20]. The
learning system substi tutes var iables for objects in touch
relations. Variables are defined as variable-definition (Name,
Type, Value) structures maintained in a global symbol table.
Type is one of {box, line}.

References to variables in touch relations are defined as variable-
reference (Variable, Valuation-flag) tuples, where Variable points
to the defini t ion, and Valuat ion-f lag indicates whether the
constraint solver should use the variable 's current value or try to
assign a new one. The variable inducer looks back through
recent steps of the example action trace for previous occurrences
of the object; if none is found, the Valuat ion-f lag is set to
indicate that the solver must search for it.

My name is Basil and as you can see I'm a turtle. If I have to find, say a box, I set off in the general direction you've
You teach me repetitive and finicky tasks. I learn taught me (up, down, left, right) until I bump into one. But if you
by acting as your apprentice - - I follow you want me to be more selective, give me a tool to carry and teach
around till I think I know what you'll do next, then me to move until it touches.
I do it for you.

I can't learn directly hew things should nottouch - - I mean how
If I guessed wrong HI undo it and wait for you to show me what's they should be separated. Instead you should give me tools to
right. I only predict after I see you do something you've already separate them.

taught me. When you want to teach me, choose "Time for a lesson!" from the
I can draw lines and boxes and carry them by their iconic Basil menu. If you want to interrupt the lesson say "Take a nap."
handles (grasping with my jaws). When you don't agree with what I do, tap me and HI undo it.

When I don't know what to do I'll ask you to show me.
Although I have a good memory, I don't see too well, Instead I
work mainly by feel. I remember which parts - - handles and So in general you teach me by doing the task yourself, using
line segments - - are connected, some extra tools to help me see patterns by feel.

I'm touch-sensitive only at my snout but I can sense contact Hope you enjoy teaching me!
between what I'm grasping and anything else.

~i ~ ~i :i ~! ::i :: ;: i~.:i ~:: :!; ~ :? !: ~! ! : '= ~':: ~: i i :i :(:~ ::i :i ,i~ ~.:i i ~: :::: ~: ~ ~.: :~ ! :: :!:. i!~: ':!; i :: ~ i iii ::. i: i~:i :i: ?.:~i::,~i :i ~," ~: i: : :!: ::: :i :~Yi': ,~, :' ~ i =.i' :': !!'~ i ':~ ~i i i ~; ::: i ~ i; :::: ,i~ ~i ::.i if: 751 i: :~ :! i ~ :: ~ ~: :;: ~ :: ! ~:. ~ ~ :: ~! ! :: 'iii~i ':: :,': i j '!' :i: ~! ~i ::i: :~ :i i i :! :::i i::: ::i :: :::~ ~: =: :; i::i :;~ :?i ;~, ::~ :i ?, ~; ~; ~ ~i :i ~: ::: :~: ':' :~i:' :;i ':! !'~; ! !i ::: ;: ::i ::: ,~ ::: =.~ i i !:.: :i :i: ~; ?.::i i ~, i: :,i ~: ~;~i~ ~:: ~: :~: :=. ::~i ~, :: ': ~:, :~' i:: ~ !'~: :~ ~ii:: ~-::i :ii '~ :,i :.i ,i~ :::. :i :: :. :i)~ :,i~;~ :~: :,; ~:, :~ ::. i~ :i ~:: :.~i i!? ~: :: :: :i ::, :: ~, :: :~ ~ '!'~ :~!!'~ ~ i! ~i :;: i:: ! :::~!: ::::iii ::.! i i i ~ ~! ::: ::~ !:.i :,i ?, ::i ii ? :i ii i:, ,~ ;~ :, ~ ::.: ~ :: ::. :; ::, ':' ~ :~ ':: i ::! '~ ~-:i ':i ~ i ~ '! i;i:: !~ i l i 'i ill :.:, ~i ~ i:.: :.i ,i ~, i: :i ii ~:

132

Figure 8. Excerpts from description of Metamouse given to teachers.

@ ~ Computer Graphics, Volume 23, Number 3, July 1989
u l i ul •

B

grasp (B.mid.left)

Legend

[] vertex or mid-point 4

B

grasp (L.midpt)
touch (L.midpt : B.left)
touch (L.endpt : B.top.mid)

important touch '.!ii:::~::~:i:!i~i;= irrelevant touch

C

grasp (C.left)
touch (C.bottom.right : Q.endpt)

Note: contact between Q and R
is not sensed

Figure 9. Feedback from Metamouse, highlighting touch relations.

4.5 Constraints
Isolating relevant constraints from the great many that hold in any
given situation is, of necessity, a heuristic procedure. When
searching for and transforming objects, the constraint solver is
governed by touch relations and Basil 's path of movement. The
constraint inducer examines touch feedback obtained after each
step of the trace. It weeds out trivial or irrelevant touches; the
survivors comprise the postcondition of a program step.

Although all A.Sq drawing and transformation operators are
based on translating CurrentPoint in 2-D display space, user
actions occur in a model space containing objects with numerous
parts, and in the "act ivi ty space" in which several alternative
actions may be possible at any given time. Thus Basil operates
with multiple degrees of freedom (and hence constraint) in the
selection of actions and their parameters. Touch relations have 6
degrees of freedom, 3 on each item: selection of object, part,
and position within part.

T
:4::;

a. Contact T ignored b. Use of T to detect a
as overdetermined, square.

Figure 10. A useful overdetermined constraint.

A constraint is expressed as constraint (Data, Class, Used),
where Data is a touch relation, path, etc., Class is a degree of
constraint, and Used is a flag indicating whether this constraint is
deemed relevant. The constraint inducer assigns each touch
relation to one of four classes. "Determining" constraints select a
specific object, part and posit ion within it for each item of a
touch relation. For example, in Figure 3, contact between Basil 's
snout (a point) and the teapot 's center handle is determining.
"Strong" constraints leave one choice free, as in touch(teapot-
spout.endpt 2 : C.center), where C is a cup found by scanning
along the row. "Weak" relations leave more degrees of freedom.

freedom. "Trivia l" touches, like grasping the end-point of the
row-line after it is drawn, fol low from the definit ion of A.Sq
operators and afford no constraint whatsoever.

If the classifier finds a determining constraint, it marks other
touch relations as " 'overdetermined;" they are not needed to
derive a new position for CurrentPoint. Such touches may help
select an action. They can dis t inguish o therwise s imilar
situations, as shown in Figure 10. Here, the touch between point
T and the rectangle seems irrelevant, since contact be tween
Box.bottom.left and Metamouse ' s snout determines the move.
But touch (Line.endpt : Box.top)versus touch (Line.endpt :
Box.top.right) distinguishes a rectangle from a square. The
teacher clicks on the relation icon to change its status.

The classifier can detect a lack of sufficient constraint for viable
solutions. If all touches are only strong or weak, Basi l ' s path is
made a weak constraint with the caveat that the solver may have
to relax it. In case of a total lack of touch constraint, Basil asks
the user to indicate which of a set of standard tacit constraints,
such as input or constant position, applies to this action.

Determining, strong, and weak constraints are cons idered
relevant; overde te rmined , tr ivial and sustained touches are
ignored. Such heuristic rules can provide at most a best guess as
to the teacher 's precise intentions. As mentioned in Section 4.3
and i l lus t ra ted in F igure 10, the t eacher can over r ide
Metamouse 's decision to ignore a touch relation.

4.6 Act ions and Procedures
The learning a lgor i thm takes the l inear sequence of steps
performed by the teacher and builds a directed graph containing
branches and loops. It operates interactively, so that each new
step is integrated into the graph as it is performed, If the user 's
action matches an existing step, the system conjectures a link to
that step. A link is verified by predicting its successors.

Each step is a program-node (Predecessors, Action, Successors)
structure. Its location in the graph is expressed as lists of
Predecessors and Successors. The Action is an action-step
(Preconditions, Operation, Postconditions) tuple. Operation is
one of the A.Sq operators. Pre- and Postconditions are lists of
constraints that must hold before and after executing the action.
Preconditions are checked by examining Basil 's current sensory

133

' :~SIGGRAPH '89, Boston, 31 July-4 August, 1989

state; Postcondi t ions are instantiated and verified by the constraint
solver.

steps, it is attributable to excessive and inefficient garbage
collection.

A program step matches an action demonstrated by the teacher if
the operator and constraints are the same. A program step can be
generalized by dropping constraints in order to match an action.
To avoid over-generalizing, Metamouse drops only weak
constraints, like path, and remembers them in case they need to
be enforced after all.

At every opportunity the system generates the next action itself.
It checks S u c c e s s o r s of the current node to see if any is
executable in the present configuration - - that is, its relevant
P r e c o n d i t i o n s hold and its P o s t c o n d i t i o n s are attainable via
constraint satisfaction. If there is none, or if the teacher rejects
lhe prediction, Metamouse asks for a demonstration of the next
step and forms a branch to it.

4.7 Constraint Solver
Solving constraints is the process by which actions are predicted
- - both to test whether a step is performable and to generate
specific parameters for the action. Since all A.Sq actions result
from translating a single point, the solver is much simpler than
most. It examines the list of Postcondi t ions in order of strength.
It generates a solution to the first and then checks that the rest
hold. If not, it backtracks to an alternative solution for the first
constraint. The process repeats until all constraints hold or no
more solutions exist. Details appear in [15]. The constraint
solver is potentially able to generalize the P o s t c o n d i t i o n s ; at
present, only Basil's path is generalized.

5 Evaluation of System
A programming by example system should be evaluated with
respect to ease of use, real-time performance, and the correctness
and generality of the programs it infers. Ease of use has been
tested by measuring potential teachers' ability to predict Basil's
behavior [14]. It was found that teachers quickly learned what to
expect from their pupil, apart from the occasional surprise.

Real-time performance is governed by the number of program
steps and touch relations to be checked by the action matcher and
constraint solver. The complexity of a prediction is proportional
to the product of these numbers. The number of touch relations
is normally quite small, due to the limited range of Basil's touch
sense. At most, it is twice the number of object-parts, since
every relation involves either Basil or the object in his grasp.
The number of program steps is unbounded; hence it may be
advisable to limit the search for a matching step.

The current experimental implementation in Lisp on a Macintosh
II runs rather slowly, requiring two seconds to make a prediction
when joining sequences (subsequent predictions are somewhat
faster). Since this delay is invariant with the number of program

Metamouse has been tried on a number of example tasks - -
aligning boxes to arbitrarily rotated axes, distributing boxes at
equal spacing along a line, and re-connecting a polyline when
one segment is moved. The system learned correct and
sufficiently general programs for most of these simple tasks after
just one trace. Some examples contained erroneous actions and
bizarre coincidences, but errors in the programs were corrected
during subsequent lessons.

Table 2 shows performance data for the three tasks presented in
this paper. For each execution trace, the number of actions
correctly predicted by Metamouse is compared with the total
number performed (whether by the user or Metamouse). Task
competence is measured as their ratio. The number of
predictions rejected by the teacher is also shown. The size and
growth of the program graphs is given as the number of edges
(ie. transitions between actions).

The Arch task contained some repeated actions, such as asking
the user to create three boxes and copying the two capitals to
form two plinths. The former actions were distinguished by the
prompt strings specified by the teacher after rejecting predicted
prompts. The latter were differentiated because the capitals were
known as individuals. In a second trace of Arch, the system
correctly predicted all actions.

The Stove-hood task was a simple sequence of actions. No
predictions could be made during the first trace since the task
contains no repeated actions.

The Tea-party task is a two-dimensional iteration on cups within
rows. Table 2 shows performance on each row during the first
trace. The system was able to generalize direction and number
so that covered the second and third rows. In the first row, the
teacher moved the row-line into contact with the cups, then
moved the teapot to the row-line's nearest end-point, and then
rightward to the first cup. After marking the cup (that is, pouring
the tea), the teacher advanced the pot to the next cup, which
triggered predictions to mark it and repeat for the third. On
attempting a fourth iteration, the constraint solver failed to find
another cup in Metamouse's path; this failure was the loop's
terminating condition. When the teacher advanced the row-line
to the next row, the matcher generalized the contact constraints
between row-line and cups, since row 2 contained only one cup.
The system then successfully predicted that the teapot would
advance and thus induced the outer loop. The direction of the
teapot's movement along the row was generalized from rightward
to horizontal in order to make subsequent predictions. The loops
were now general enough to cover the third row.

Task

Trace #

Arch 1
2

Stove-hood 1
2

Tea-party 1'
row 1
row 2
r o w 3

2

Steps Performed in Task Edges in Program Graph

Total Predicted Ratio Rejected Total Growth

41 6 15%
41 41 100 %

12 0 0% 0
12 12 100 % 0

"57 34 60 % 5
18 7 40 %

9 8 90%
18 18 100 %
65 65 100 %

42 42
42 0

13 13
13 0

24 24
7 7
7 0
7 0

25 1

134 Table 2. Performance of learning system on example tasks.

~ ' Computer Graphics, Volume 23, Number 3, July 1989

6 Further Work
The current implementation is unsuitable for much further
research. It is too slow and unreliable; expansion of facilities
will only exacerbate these problems. Hence we are re-
implement ing Metamouse in C++ on Apol lo DN4500
workstations. When a prototype is ready, we will conduct
studies with casual users. Graphics primitives such as circles,
ellipses and splines are planned, as well as object rotation and
grouping. Further desirable additions include the ordering of
alternative predictions by generality or frequency, and a pattern-
matching command to allow the user to specify a pattern without
constructing a procedure.

The nature of Metamouse raises several important questions. The
system is designed to build a predictive model of human
performance by conjecturing intentions behind isolated actions.
This focus of attention should be expanded to sequences so that
the system might identify free variation on the order of actions,
equivalence, ineffectiveness, and so on. Metamouse also
facilitates rich interaction. Methods of eliciting constraints from
the teacher should be compared with respect to the trade-offs
between inductive general izat ion and explici t indication.
Induction of some implicit spatial relations, such as alignment, is
not infeasible. On the other hand, graphical gesturing, as in
pointing to interesting touch relations, shows promise as a natural
technique for teaching.

7 Conclusions
Metamouse demonstrates that it is indeed possible for users to
create graphical procedures by direct manipulation. Applications
range from producing complex, repetitive drawings, through
construct ively specifying figures governed by graphical
constraint, to generating simple animated algorithms for tasks
such as sorting (and pouring tea). Metamouse eagerly reveals its
predictions as soon as it can. This has three advantages. First,
users reap early benefits when performing repetitive operations.
Second, they can correct errors as soon as they occur. Third,
they develop confidence in their programs without ever viewing
any kind of listing. The principal shortcomings of the current
system are its limited repertoire of graphical objects and
transformations, the lack of a formal underpinning for the
constraint model, and our limited experience of how users react
to the new experience of working with Metamouse.

Acknowledgements
This research is supported by the Natural Sciences and
Engineering Research Council of Canada. We gratefully
acknowledge the key role Bruce MacDonald has played in
helping us to develop these ideas. We would also like to thank
the referees for their helpful suggestions.

References
1. Abbott, Edwin A. Flatland-- A Romance of Many

Dimensions. Signet Classics edition. New York. 1984.

2. Andreae, Peter. "Justified generalization: acquiring
procedures from examples.'" PhD thesis. Department of
Electrical Engineering and Computer Science, MIT.
January 1985.

3. Angluin, Dana and Smith, C. H. "Inductive inference:
theory and methods." Computing Surveys 3 (15),
pp. 237-269. September 1983.

4. Bier, Eric A. and Stone, Maureen C. "Snap-dragging."
Proc. ACM SIGGRAPH '86 (Dallas, August 18-22,
1986), in Computer Graphics 20, 4, pp. 233-240.

5. Borning, Alan. "Defining constraints graphically."
Human Factors in Computing Systems: Proc. ACM
S1GCH1 '86. Boston. April 1986.

6. Dennett, Daniel C. The Intentional Stance.
M1T Press. Cambridge MA. 1987.

7. Fuller, Norma and Prusinkiewicz, P. "L.E.G.O.--an
interactive graphics system for teaching geometry and
computer graphics." Proc. CIPS Edmonton 1986.

8. Fuller, Norma and Prusinkiewicz, P. "Geometric modeling
with Euclidean constructions," in [23], pp. 379-391.

9. Halbert, Dan. "Programming by example." Research
Report OSD-T8402. Xerox PARC. Palo Alto CA.
December 1984,

10. Kurlander, David and Bier, Eric A. "Graphical search and
replace." Proc. ACM SIGGRAPH '88 (Atlanta GA,
August 1-5, 1988), in Computer Graphics 22, 4,
pp. 113-120.

11. MacDonald, Bruce A. and Witten, Ion H. "Programming
computer controlled systems by non-experts." Proc. IEEE
Systems, Man and Cybernetics Annual Conference.
Alexandria VA. October 1987.

12. Cutter, Mark, Halpem, B., Spiegel, J. MacDraw. Apple
Computer Inc. 1985, 1987.

13. Maulsby, David. "Inducing procedures interactively."
MSc thesis. Department of Computer Science, University
of Calgary. December 1988.

14. Maulsby, David and Witten, Ian H. "Inducing procedures
in a direct-manipulation environment." Proc. ACM
SIGCHI '89 (in press).

15. Maulsby, David, Kittlitz, Ken and Witten, Ian H.
"Constraint-solving in interactive graphics--a user-friendly
approach." Proc. Computer Graphics International 1989
(in press).

16. Myers, Brad. Creating User Interfaces by Demonstration.
Academic Press. San Diego. 1988.

17. Noma, T., Kunii, T. L., Kin, N., Enomoto, H., Aso, E.
and Yamamoto, T. Y. "Drawing input through
geometrical constructions: specification and applications,"
in [23], pp. 403-415.

18. Papert, Seymour. Mindstorms. Basic Books.
New York. 1980.

19. Preparata, Franco P. and Shamos, Michael I,
Computational Geomett T. Springer-Verlag. New York.
1985.

20. Rich, Charles and Waters, Richard. "The programmer's
apprentice: a research overview." 1EEE Computer 21
(11), pp. 11-25. November 1988.

21. Smith, David C. "Pygmalion: a creative programming
environment." Report STAN-CS-75-499. Stanford U.
1975.

22. Sutherland, Ivan E. "Sketchpad: a man-machine graphical
communication system." Proc. AFIPS Spring Joint
Computer Conference, vol. 23, pp. 329-246. 1963.

135

~L~SIGGRAPH '89, Boston, 31 July-4 August, 1989

23. Magnenat-Thalmann, Nadia and Thalmann, Daniel, eds.
New Trends in Computer Graphics: Proc. CG International
'88. Geneva. June 1988.

24. Tempo. Affinity MicroSystems Ltd. Boulder CO. 1986.

25. van Lehn, Kurt. "Felicity conditions for human skill
acquisition: validating an Al-based theory." Research
Report CIS-21. Xerox PARC. Palo Alto CA. 1983.

26. van Sommers, Peter. Drawing and Cognition. Cambridge
Univ. Press. Cambridge UK. 1984.

27. White, R. M. "Applying direct manipulation to geometric
construction systems." in [23], pp. 446-455.

136

