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Abst rac t  
Metamouse is a device enabling the user of a drawing program to 
specify graphical procedures by supplying example execution 
traces. The user manipulates objects directly on the screen, 
creating graphical tools where necessary to help make constraints 
explicit; the system records the sequence of actions and induces a 
procedure. Generalization is used both to identify the key 
features of individual program steps, disregarding coincidental 
events; and to connect the steps into a program graph, creating 
loops and conditional branches as appropriate. Metamouse 
operates within a 2D click-and-drag drafting package, and 
incorporates a strong model of  the relative imporlance of  
different types of graphical constraint. Close attention is paid to 
user interface aspects, and Metamouse helps the user by 
predicting and performing actions, thus reducing the tedium of 
repetitive graphical editing tasks. 

OR Categories 
1,2.2 [Artificial Intelligence[ Automatic Programming - program 
synthesis; 1.2.6 Learning - knowledge acquisition; 1.3.6 
[Computer Graphics] Methodology - interaction techniques. 

Other Keywords and Phrases 
Geometric constraints, apprenticeship learning. 

1 Introduction 
Aesthetically pleasing, visually coherent, meaningful pictures are 
characterized by the spatial relationships that join components, 
suggest relative importance, lead the eye through a visual 
nazTative, and reveal subtle connections. These relationships are 
called "constraints." Often they compete with each other and 
must be considered as a group, called a "constraint system." 
With or without the help of a computer, a graphic artist must 
manage constraints that may be complex and require compromise 
or careful ordering to be resolved. A drawing evolves as new 
objects and constraints are added and as some attributes and 
constraints change while others remain in force, These elements 
often interact; for example, changing a text font may require 
enlarging and re-positioning boxes in a flowchart. Despite the 
features provided by interactive graphics editors to automate 
constraints, editing still involves repetitive manual work that 
requires precision and planning. 
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a. Input parameters: 
spandrel S, capital C, 
pier P. 

o cp s ] 
b. Center C on top of P, 

move S onto C and 
measure overhang, O. 

O 

c. Move O to right end 
of S; put copies of C 
and P at O. 

d. Construct triangle 
LRB inside S. 

S 

L __-~"~"~--__ R 

H 
e. Remove S and O. 

A 

i /  
f. Copy capitals to 

base of piers. 

Figure 1. Constructing an arch from a rough sketch. 

This paper describes a system that induces picture-editing 
procedures from execution traces. It observes the user at work, 
performs a localized analysis of changes in spatial relations to 
isolate constraints, and matches action sequences to build a state 
graph that contains conditional branches and loops. Moreover, it 
induces variables for objects and distinguishes constants from 
non-deterministic (ie. run-time input) parameters. The system 
includes a constraint solver to perform the actions it has learned. 
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I ' l l 
a. Initial placement. 

T 
c. User moves stove 

to new position. 

b. Draw line to show 
relation of hood to 
stove. 

[ 
d. Move hood to touch 

end of line as in b. 

e. Stretch stovepipe 
to touch hood. 

e o Q  11o I 

I 
f. Hide line. 

Figure 2. Maintaining constraints amongst objects. 

A key component  of  the system is its metaphorical  apprentice, 
Metamouse, an icon that follows the user 's  actions and represents 
the focus of  attention. The metaphor  embodies  the sys tem's  
limited model of spatial relations: Metamouse is near-sighted but 
touch sensitive. The user understands that relations at a distance 
must be constructed, for example by using a line to demonstrate 
alignment. 

Section 2 describes some example editing tasks that can be taught 
to Metamouse.  Section 3 discusses research issues and related 
work. Section 4 describes the current implementation.  This is 
followed, in Section 5, by an evaluation of  its performance on 
the sample tasks. 

2 Applications 
Several types of  graphical task are appr~opriate for automation by 
a system such as Metamouse.  Primary problems for users are 1) 
ach iev ing  precis ion,  2) main ta in ing  integri ty of  constraints  

throughout the editing process, and 3) coping with the tedium of 
repetition, Examples of  each type of  task are described in detail 
below. 

Figure 1 illustrates the construction of an arch from a sketch of  its 
main components.  Initially the artist draws one of  the piers, a 
capital,  and the spandrel ' s  extents box. The capital is then 
centered over  the pier and the spandrel box is moved down onto 
it with the desired lateral overhang.  After  measur ing  the 
overhang, the artist duplicates the pier and capitat at the other end 
of  the arch. A triangular spandrel is then constructed inside the 
box. Finally,  plinths are added to the base of  the piers. This 
editing sequence specifies a procedure for constructing a type of  
arch from four graphical inputs: pier, capital, spandrel box, and 
overhang. The construction requires precision but need only be 
done once. 

F igure  2 i l lustrates  const ra in ts  that must  be ma in ta ined  
throughout the long-term editing of  a picture. If the stove is 
moved,  the venti lat ion hood must be re-posi t ioned above the 
burners, and the s tove-pipe must  be stretched or shortened to 
reach the hood from the wall exit.  The  edi t ing sequence  
proceeds as follows. First, the user expresses  the constraint  
between burners and hood by drawing a tie-line between them. 
The user then moves  the s tove to its new posit ion.  The 
constraints are re-established as follows. The tie is moved  to 
touch the burner as before. The hood is moved to contact the tie, 
and the stove-pipe is stretched to the hood. Finally, the tie-line 
is r emoved  (or hidden).  This  task illustrates the use of  an 
auxi l iary  objec t  (the tie) to express  a constraint .  Other  
constraints stem from the role that touches play in terminating 
actions. This procedure could be invoked manually whenever  the 
stove is moved,  but it would be desirable to "at tach" it to the 
operation of  moving  the stove, which would automatically trigger 
it. 

Figure 3 illustrates a repetitive editing operation or an animation 
sequence. A teapot moves up and down rows of  cups laid out on 
a buffet,  f i l l ing them with tea, and then returns to its initial 
position. Since cups are not perfectly aligned, a row is defined 
by a line passing through the center of one cup and touching the 
others. A procedure looping on rows and cups would allow us to 
change these numbers  wi thout  re-scr ipt ing.  Moreove r ,  a 
constraint-oriented description of  the teapot ' s  path (eg. " m o v e  
r ightward to next cup" rather than " m o v e  to (x, y)")  would  
tolerate adjustments to the layout. A program for this task is 
shown in Figure 4. 

The teapot 's  initial position is marked with a slash and the pot 
moves  to the table 's  nearest corner. For each iteration of  the 
main loop, the row-line advances upwards to the center of  some 
cup - -  a sweep-select ion method [19]. The pot moves  to the 
row- l ine ' s  near end. For each cycle of  the inner loop, the pot  
advances to meet the fol lowing constraints: i) the spout is at the 
center of some cup, C; ii) C is touching the row-line; and iii) C 
was not already visited. At the end of  a row, some of  these 
constraints fail. Note that the constraints ensure that the pot 
moves  in opposite directions in successive rows. The main loop 
ends when no cups remain in the row-l ine ' s  upward path. The 
teapot then returns to its initial position marker via the buffet ' s  
perimeter and, finally, the marker is removed.  
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a. The scene is set.

e. Move row-line R
up to first row.

b. Planned path.

8  f. Move teapot up
to near  end of  R.

0 i. R up to next row;
pot  up to  R.

/ j. Scan leftwards
along 2nd row.

/ m . End of row 0 n. No more rows;
remove R.

-
c .  A l te rna t ive  pa th .

/ g. Move pot to first
cup;  pour .

-
d. Constructions for

procedure.

000
L!LEL0 0

/ h. Move potto  near
end of  row- l ine.

k. Row finished; pot
to near  end of  R.

/ I. R, pot to 3rd row.

@ o. Return pot to
marker.

p.  Remove marker.

Figure 3. The tea-party animation procedure.

The power of a system like Metamouse lies in its ability to isolate
constraints and predict actions. The user performs only a few
steps of the tea-party task. Once Metamouse detects repetition, it
predicts subsequent actions until it cannot meet the constraints or
until the user objects. It observes the teapot move to the second
cup and predicts all actions for the rest of row 1. When it fails to
find a fourth cup, it asks the user to take over. The user moves
the row-line; Metamouse recognizes this action and hence
predicts the move-and-pour sequences for the second and third
rows .

3 Background and Related Work
Automation of graphical editing tasks has followed two streams
of development: interactive tools to help users with constraints;
and graphics-oriented programming systems. Interactive help
began with Sketchpad [22],  which used iterative numerical
relaxation to resolve several types of constraint among object
parameters. A similar approach is adopted in [27],  which lets
users compose constraints based on least-squares relaxation.
Recent research has also produced a system that automatically
selects and applies appropriate construction tools [4].  These
systems offer simple, appealing interfaces to a restricted set of
constraint-satisfaction methods.

End-user programming is one way to support repetitive,
customized editing operations and the invention of arbitrary
constraint systems. Given that most users are non-programmers,
research has focussed on graphical methods, often based on
geometric construction [5,  7, 8, 171. With their graphical
interfaces and use of examples, these systems greatly simplify
program construction, but users must still work with abstractions.
When programming with L.E.G.O. or a macro facility such as
[24],  the user declares loops and conditional branches, albeit by
menu selection. Users of ThingLab must conceive an algebraic
model of constraints in order to produce equational networks that
define them [5].

An alternative is to observe the user at work and infer loops and
branches, constants and variables. A number of systems for
programming by demonstration have been produced [2, 9, I 1,
16, 211. Programs are constructed incrementally from several
execution traces. Only Noddy, a robot teaching system, relies
completely on automatic generalization [2],  but it performs an
exponentially complex induction of functions and is incapable of
coping with errors. SmallStar  [9] operates in a very general
desktop domain but requires the user to identify variables and
their type and value range. Peridot [16]  infers value ranges and
certain spatial relations (such as “centered within box”), but not
loops or branches.
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1. move to touch (Table.bottom.left) 

2. draw-line R to touch (Table.bottom.right) 

3. move to touch (Pot.top.right) 

4. draw-line M to touch (Pot.bottom.left) 

5. move to grasp (Pot.center) 

6. drag Pot to touch (Pot.center : Table.bottom.left) 

7. move to grasp (R.midpt) 

8. drag R upwards to touch (R.line : F.center), 

where F is first cup found by scanning upwards 

9. move to grasp (Pot.center) 

10. drag Pot upwards to touch (Pot.center : R.endpt) 

11. drag Pot horizontally to touch (Pot.center : C.center), 

where C is first cup found by scanning horizontally 

12. move to touch (C.top.right) 

13. draw-line to touch (C.bottom.left) ; ie. pour tea! 

14. move to grasp (Pot.center) 

15. drag Pot to touch (Pot.center : R.endpt) 

16. delete R 

17. move to grasp (Pot.center) 

18. drag Pot to touch (Pot.center : Table.bottom) 

19. drag Pot to touch (Pot.center : M.midpt) 

20. move to grasp (M.midpt) 

21. delete M 

Figure 4. Procedure learned for tea-party animation. 

Inferring a program is not easy, but induction of  complex picture 
transformations from examples of input and output is intractable 
[3]. Moreover ,  systems of  equat ions to represent  these 
transformations would be numerically unstable and difficult to 
solve. Thus, it is better to induce a sequence of  simpler 
t ransformations.  Drawing is inherently procedural ,  often 
systematically ordered with each step governed by very few 
constraints [26]. Nonetheless, it is hard to induce procedures 
even from simple steps. Typical users do not always construct 
(or know how to construct) the relevant measurements  and 
relations, but work instead by visual inspection. In effect, their 
drawings include invisible objects, as illustrated in Figure 5. 
Curve-matching methods such as those employed in graphical 
search and replace [10] are not sufficient for inducing patterns in 
traces that contain invisible  objects.  On the other hand, 
examining the screen for implicit spatial relations clearly involves 
an enormous amount of search and vastly expands the space of  
hypotheses for generalization. Therefore the system should 
isolate a small neighborhood of  attention, and restrict itself to 
explicit relations of  touch. It follows that user must specify these 
constructively. 

To worsen matters, a prel iminary study of  MacDraw users 
performing a set of  graphical tasks [13] revealed that execution 
traces are riddled with extraneous and erroneous actions. Users 
not  only made mistakes,  but were observed  per forming 
experiments or simply fidgeting. The order of  actions varied 
greatly within the first several iterations of loops. 

D[3 
I I 

a. Initial position. 

D 
D I  I 
b. Final position. 

D 
c. Explanation. 

Figure 5. An invisible object as a constraint. 
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Teacher 

Graphical 
Action 

I Solve ~ 1  
Constraints 

only by the presence of the Metamouse icon: there are no special 
programming commands except to start and stop Metamouse. 
The flow of data through the system is sketched in Figure 6. 
When the teacher performs a drawing operation, the system 
records it and augments it with explanatory features, matching 
objects with variables and identifying probable constraints on the 

Observe ~ cursor's new position. Metamouse moves to the point at which 
Touches, etc. ~ the action terminated and highlights object parts involved in 

constraints. The augmented action is then matched with program 
~¢ previously learned. If a match is found, the learning steps 

module may conjecture a loop or joining of branches. It then 
Induce predicts subsequent actions to confirm this. Predicted actions are 

Variables performed by a constraint solver. Metamouse autonomously 
~¢ moves and highlights objects, and continues to do so until the 

teacher rejects a prediction or the constraint solver fails. 

Induce 
Constraints The next two subsections give brief accounts of the graphics 

_ application and the Metamouse interface. Following that we 
¢ examine individual modules of the learning system. 

Match 
Action 

Form Loop, 
Branch or 
Sequence~l ¢ 

Predict 
Action 

a. Near edge of box. b. Near vertex of two lines. 

Figure 6. Main components and data flow of system. Figure 7. Highlighting distinguished points near cursor 
(arrowhead) while rubber-banding a line. 

These elicitation problems are well-known in human-human 
communication, and rules of interaction between human teachers 
and pupils have been formulated as "felicity conditions" [25], 
four of which apply when inducing graphical procedures: 
correctness, show-work (demonstrate execution rather than just 
input and output), no-invisible-objects (express constraints by 
graphical construction), and focus-activity (eliminate extraneous 
actions). 

These conditions are difficult for untrained teachers to satisfy. 
The Metamouse system uses a metaphorical apprentice, intensive 
interaction, and generalizat ion to help the teacher. The 
Metamouse is the system's  focus of attention; only touch 
relations involving it or an object it is grasping are examined. 
The system tries possible generalizations and predicts actions as 
early as possible during a teaching session, to eliminate free 
variation and extraneous actions and also to reduce errors. It can 
learn alternative actions and re-order their precedence in order to 
overcome errors. It has an internal model of graphical constraints 
and asks for explanation when an action seems arbitrary, ie. 
insufficiently constrained. The metaphor encourages the teacher 
to demonstrate constraints and adopt an intentional stance toward 
the system [6] rather than understand the details of its constraint 
and generalization models. Whether or not the metaphor 
succeeds is an experimental question; some pilot tests have 
yielded encouraging results [ 14]. 

4 The Metamouse System 
Our learning system works within an interactive 2D graphics 
editor. "Teaching mode" is distinguished from normal editing 

4.1 A.Sq 
Constraints are easier to identify and resolve if primitive 
operations have few degrees of freedom. Thus a drawing 
program with a point-and-click user interface, like MacDraw 
[12], is suitable. Our drawing program, A.Sq (after the 
protagonist of Flatland [1]), emulates MacDraw but at present 
includes only box and line primitives. The user draws and 
transforms primitive objects by moving iconic handles (as in 
MacDraw). These handles delimit parts of objects distinguished 
by the learning system. They appear whenever the cursor (or 
Metamouse) approaches them, as illustrated in Figure 7. 

The choice of primitives and operators has a great impact on the 
user 's expression of constraints. Languages such as L.E.G.O. 
[8] and the primitives of [17] provide a basis for traditional 
"ruler-and-compass" methods of construction. A.Sq's  primitive 
object types P, auxiliary objects A, modes of operation M, user- 
interface commands U, and internal operators 1, are summarized 
in Table 1 below. 

At present, the drawing program is relatively simple yet rich 
enough to study programming-by-example issues. No conceptual 
difficulties are envisaged in extending the learning system to 
cope with new primitives such as points, polygons, ellipses, and 
splines, since only an object ' s  distinguished parts have any 
significance. We also expect to be able to accommodate new 
operations such as rotation, grouping, and coloring. 
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A :  

M :  

U :  

I :  

box (bottom-left, top-right) 
line (endptl,  endpt2) 
point (x, y) 
action (operator, startpt, endpt, object) 

CurrentPoint : point 
PreviousPoint : point 
CurrentObject : { box, line } 
DisplayList : list of  {box, line} 
ActionList : list of actions 

create-lines 
create-boxes 
transform-objects 

set-mode (mode e M) 
set-point (PreviousPoint, CurrentPoint, x, y) 
delete-object (CurrentObject) 
undo (ActionList) 

create-line (CurrentObject, PreviousPoint, 
CurrentPoint, DisplayList) 

create-box (CurrentObject, PreviousPoint, 
CurrentPoint, DisplayList) 

translate-handle-of-object-to-point (handle, 
CurrentObject, CurrentPoint) 

Table l. Elements of  the A.Sq drawing program. 

4.2 Metamouse 
The focus of  the teacher 's  attention is the Metamouse,  Basil, a 
graphical turtle in the tradition of  [18]. Prior to working with 
Basil, teachers skim a bio-sheet,  excerpted in Figure 8. When 
the user of  A.Sq senses an opportunity to automate a task, she 
calls  Basil  f rom his den. Rather  than fo l low the cursor  
continuously, the turtle icon moves  to CurrentPoint at the closure 

of  each A.Sq operation. If the system finds no tactile constraint, 
Basil asks the user whether  posi t ion or distance are inputs, 
constants, or should have been constructed. Should the teacher 
suspend recording temporarily, Basil withdraws into his shell. In 
all other respects the A.Sq commands operate as usual. 

4.3 Touch Relations 
Metamouse is described as near-sighted but touch-sensit ive; the 
teacher understands that only touch relations involving Basil or 
an object in his grasp are analyzed for constraints. The system 
highlights relevant parts of  objects, as illustrated in Figure 9. 
Touches  considered important  (see Sect ion 4.5 below) are 
colored red, others yel low.  Associated with each touch is a 
triangular button; selecting this toggles it from red to yel low or 
vice versa, so the teacher can override the system's  decision. 

A touch re la t ion is def ined as touch ( O b j e c t l . P a r t  I : 
Object2.Part2),  where Part i indicates some part of  Object i. 
Distinguished parts are handles vertices, mid-points) and the line 
segments between them. 

4.4 Var iables 
The use of  variables  al lows dif ferent  objects  to assume a 
particular role in success ive  tterations of  actions [20]. The 
learning system substi tutes var iables  for objects  in touch 
relations. Variables are defined as variable-definition (Name, 
Type, Value) structures maintained in a global  symbol  table. 
Type is one of {box, line}. 

References to variables in touch relations are defined as variable- 
reference (Variable, Valuation-flag) tuples, where Variable points 
to the defini t ion,  and Valuat ion-f lag  indicates whether  the 
constraint solver should use the variable 's  current value or try to 
assign a new one. The variable inducer  looks back through 
recent steps of  the example action trace for previous occurrences 
of  the object;  if none is found, the Valuat ion-f lag  is set to 
indicate that the solver must search for it. 

My name is Basil and as you can see I'm a turtle. If I have to find, say a box, I set off in the general direction you've 
You teach me repetitive and finicky tasks. I learn taught me (up, down, left, right) until I bump into one. But if you 
by acting as your apprentice - -  I follow you want me to be more selective, give me a tool to carry and teach 
around till I think I know what you'll do next, then me to move until it touches. 
I do it for you. 

I can't learn directly hew things should nottouch - -  I mean how 
If I guessed wrong HI undo it and wait for you to show me what's they should be separated. Instead you should give me tools to 
right. I only predict after I see you do something you've already separate them. 

taught me. When you want to teach me, choose "Time for a lesson!" from the 
I can draw lines and boxes and carry them by their iconic Basil menu. If you want to interrupt the lesson say "Take a nap." 
handles (grasping with my jaws). When you don't agree with what I do, tap me and HI undo it. 

When I don't know what to do I'll ask you to show me. 
Although I have a good memory, I don't see too well, Instead I 
work mainly by feel. I remember which parts - -  handles and So in general you teach me by doing the task yourself, using 
line segments - -  are connected, some extra tools to help me see patterns by feel. 

I'm touch-sensitive only at my snout but I can sense contact Hope you enjoy teaching me! 
between what I'm grasping and anything else. 

~i ~ ~i :i ~! ::i :: ;: i~.:i ~:: :!; ~ :? !: ~! ! :  '= ~':: ~: i i :i :( :~ ::i :i ,i~ ~.:i i ~: :::: ~: ~ ~.: :~ ! :: :!:. i!~: ':!; i :: ~ i iii ::. i: i~:i :i: ?.:~i::,~i :i ~," ~: i: : :!: ::: :i :~Yi': ,~, :' ~ i =.i' :': !!'~ i ':~ ~i i i ~; ::: i ~ i; :::: ,i~ ~i ::.i if: 751 i: :~ :! i ~ :: ~ ~: :;: ~ :: ! ~:. ~ ~ :: ~! ! :: 'iii~i ':: :,': i j '!' :i: ~! ~i ::i: :~ :i i i :! :::i i::: ::i :: :::~ ~: =: :; i::i :;~ :?i ;~, ::~ :i ?, ~; ~; ~ ~i :i ~: ::: :~: ':' :~i:' :;i ':! !'~; ! !i ::: ;: ::i ::: ,~ ::: =.~ i i !:.: :i :i: ~; ?.::i i ~, i: :,i ~: ~;~i~ ~:: ~: :~: :=. ::~i ~, :: ': ~:, :~' i:: ~ !'~: :~ ~ii:: ~-::i :ii '~ :,i :.i ,i~ :::. :i :: :. :i )~ :,i~;~ :~: :,; ~:, :~ ::. i~ :i ~:: :.~i i!? ~: :: :: :i ::, :: ~, :: :~ ~ '!'~ :~!!'~ ~ i! ~i :;: i:: ! :::~!: ::::iii ::.! i i i ~ ~! ::: ::~ !:.i :,i ?, ::i ii ? :i ii i:, ,~ ;~ :, ~ ::.: ~ :: ::. :; ::, ':' ~ :~ ':: i ::! '~ ~-:i ':i ~ i ~ '! i;i:: !~ i l i 'i ill :.:, ~i ~ i:.: :.i ,i ~, i: :i ii ~: 
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B 

grasp (B.mid.left) 

Legend 

[ ]  vertex or mid-point 4 

B 

grasp (L.midpt) 
touch (L.midpt : B.left) 
touch (L.endpt : B.top.mid) 

important touch ..... '.!ii:::~::~:i:!i~i;= irrelevant touch 

C 

grasp (C.left) 
touch (C.bottom.right : Q.endpt) 

Note: contact between Q and R 
is not sensed 

Figure 9. Feedback from Metamouse, highlighting touch relations. 

4.5 Constraints 
Isolating relevant constraints from the great many that hold in any 
given situation is, of  necessity,  a heuristic procedure.  When 
searching for and transforming objects, the constraint solver is 
governed by touch relations and Basil 's  path of  movement.  The 
constraint inducer examines touch feedback obtained after each 
step of the trace. It weeds out trivial or irrelevant touches; the 
survivors comprise the postcondition of  a program step. 

Although all A.Sq drawing and transformation operators are 
based on translating CurrentPoint in 2-D display space, user 
actions occur in a model space containing objects with numerous 
parts, and in the "act ivi ty space" in which several alternative 
actions may be possible at any given time. Thus Basil operates 
with multiple degrees of freedom (and hence constraint) in the 
selection of  actions and their parameters. Touch relations have 6 
degrees of freedom, 3 on each item: selection of object, part, 
and position within part. 

T 
:4::; 

a. Contact T ignored b. Use of T to detect a 
as overdetermined, square. 

Figure 10. A useful overdetermined constraint. 

A constraint is expressed as constraint (Data, Class, Used), 
where Data is a touch relation, path, etc., Class is a degree of 
constraint, and Used is a flag indicating whether this constraint is 
deemed relevant.  The constraint inducer assigns each touch 
relation to one of  four classes. "Determining" constraints select a 
specific object, part and posit ion within it for each item of a 
touch relation. For example, in Figure 3, contact between Basil 's  
snout (a point) and the teapot 's  center handle is determining.  
"Strong"  constraints leave one choice free, as in touch(teapot- 
spout.endpt 2 : C.center), where C is a cup found by scanning 
along the row. "Weak"  relations leave more degrees of freedom. 

freedom. "Trivia l"  touches, like grasping the end-point of  the 
row-line after it is drawn, fol low from the definit ion of  A.Sq 
operators and afford no constraint whatsoever. 

If the classifier finds a determining constraint, it marks other 
touch relations as " 'overdetermined;"  they are not needed to 
derive a new position for CurrentPoint. Such touches may help 
select an action. They can dis t inguish o therwise  s imilar  
situations, as shown in Figure 10. Here, the touch between point 
T and the rectangle seems irrelevant,  since contact  be tween 
Box.bottom.left and Metamouse ' s  snout determines the move.  
But touch (Line.endpt : Box.top)versus touch (Line.endpt : 
Box.top.right) distinguishes a rectangle from a square. The 
teacher clicks on the relation icon to change its status. 

The classifier can detect a lack of sufficient constraint for viable 
solutions. If all touches are only strong or weak, Basi l ' s  path is 
made a weak constraint with the caveat that the solver may have 
to relax it. In case of  a total lack of  touch constraint, Basil asks 
the user to indicate which of  a set of  standard tacit constraints, 
such as input or constant position, applies to this action. 

Determining,  strong, and weak constraints  are cons idered  
relevant;  overde te rmined ,  tr ivial  and sustained touches are 
ignored. Such heuristic rules can provide at most a best guess as 
to the teacher 's  precise intentions. As mentioned in Section 4.3 
and i l lus t ra ted  in F igure  10, the t eacher  can over r ide  
Metamouse 's  decision to ignore a touch relation. 

4.6 Act ions and Procedures 
The learning a lgor i thm takes the l inear sequence of  steps 
performed by the teacher and builds a directed graph containing 
branches and loops. It operates interactively, so that each new 
step is integrated into the graph as it is performed, If the user 's  
action matches an existing step, the system conjectures a link to 
that step. A link is verified by predicting its successors. 

Each step is a program-node (Predecessors, Action, Successors) 
structure. Its location in the graph is expressed as lists of  
Predecessors and Successors. The Action is an action-step 
(Preconditions, Operation, Postconditions) tuple. Operation is 
one of  the A.Sq operators. Pre- and Postconditions are lists of 
constraints that must hold before and after executing the action. 
Preconditions are checked by examining Basil 's  current sensory 
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state; Postcondi t ions  are instantiated and verified by the constraint 
solver. 

steps, it is attributable to excessive and inefficient garbage 
collection. 

A program step matches an action demonstrated by the teacher if 
the operator and constraints are the same. A program step can be 
generalized by dropping constraints in order to match an action. 
To avoid over-generalizing, Metamouse drops only weak 
constraints, like path, and remembers them in case they need to 
be enforced after all. 

At every opportunity the system generates the next action itself. 
It checks S u c c e s s o r s  of the current node to see if any is 
executable in the present configuration - -  that is, its relevant 
P r e c o n d i t i o n s  hold and its P o s t c o n d i t i o n s  are attainable via 
constraint satisfaction. If there is none, or if the teacher rejects 
lhe prediction, Metamouse asks for a demonstration of the next 
step and forms a branch to it. 

4.7 Constraint Solver 
Solving constraints is the process by which actions are predicted 
- -  both to test whether a step is performable and to generate 
specific parameters for the action. Since all A.Sq actions result 
from translating a single point, the solver is much simpler than 
most. It examines the list of Postcondi t ions  in order of strength. 
It generates a solution to the first and then checks that the rest 
hold. If not, it backtracks to an alternative solution for the first 
constraint. The process repeats until all constraints hold or no 
more solutions exist. Details appear in [15]. The constraint 
solver is potentially able to generalize the P o s t c o n d i t i o n s ;  at 
present, only Basil's path is generalized. 

5 Evaluation of System 
A programming by example system should be evaluated with 
respect to ease of use, real-time performance, and the correctness 
and generality of the programs it infers. Ease of use has been 
tested by measuring potential teachers' ability to predict Basil's 
behavior [ 14]. It was found that teachers quickly learned what to 
expect from their pupil, apart from the occasional surprise. 

Real-time performance is governed by the number of program 
steps and touch relations to be checked by the action matcher and 
constraint solver. The complexity of a prediction is proportional 
to the product of these numbers. The number of touch relations 
is normally quite small, due to the limited range of Basil's touch 
sense. At most, it is twice the number of object-parts, since 
every relation involves either Basil or the object in his grasp. 
The number of program steps is unbounded; hence it may be 
advisable to limit the search for a matching step. 

The current experimental implementation in Lisp on a Macintosh 
II runs rather slowly, requiring two seconds to make a prediction 
when joining sequences (subsequent predictions are somewhat 
faster). Since this delay is invariant with the number of program 

Metamouse has been tried on a number of example tasks - -  
aligning boxes to arbitrarily rotated axes, distributing boxes at 
equal spacing along a line, and re-connecting a polyline when 
one segment is moved. The system learned correct and 
sufficiently general programs for most of these simple tasks after 
just one trace. Some examples contained erroneous actions and 
bizarre coincidences, but errors in the programs were corrected 
during subsequent lessons. 

Table 2 shows performance data for the three tasks presented in 
this paper. For each execution trace, the number of actions 
correctly predicted by Metamouse is compared with the total 
number performed (whether by the user or Metamouse). Task 
competence is measured as their ratio. The number of 
predictions rejected by the teacher is also shown. The size and 
growth of the program graphs is given as the number of edges 
(ie. transitions between actions). 

The Arch task contained some repeated actions, such as asking 
the user to create three boxes and copying the two capitals to 
form two plinths. The former actions were distinguished by the 
prompt strings specified by the teacher after rejecting predicted 
prompts. The latter were differentiated because the capitals were 
known as individuals. In a second trace of Arch, the system 
correctly predicted all actions. 

The Stove-hood task was a simple sequence of actions. No 
predictions could be made during the first trace since the task 
contains no repeated actions. 

The Tea-party task is a two-dimensional iteration on cups within 
rows. Table 2 shows performance on each row during the first 
trace. The system was able to generalize direction and number 
so that covered the second and third rows. In the first row, the 
teacher moved the row-line into contact with the cups, then 
moved the teapot to the row-line's nearest end-point, and then 
rightward to the first cup. After marking the cup (that is, pouring 
the tea), the teacher advanced the pot to the next cup, which 
triggered predictions to mark it and repeat for the third. On 
attempting a fourth iteration, the constraint solver failed to find 
another cup in Metamouse's path; this failure was the loop's 
terminating condition. When the teacher advanced the row-line 
to the next row, the matcher generalized the contact constraints 
between row-line and cups, since row 2 contained only one cup. 
The system then successfully predicted that the teapot would 
advance and thus induced the outer loop. The direction of the 
teapot's movement along the row was generalized from rightward 
to horizontal in order to make subsequent predictions. The loops 
were now general enough to cover the third row. 

Task 

Trace # 

Arch 1 
2 

Stove-hood 1 
2 

Tea-party 1' 
row 1 
row 2 
r o w  3 

2 

Steps Performed in Task Edges in Program Graph 

Total Predicted Ratio Rejected Total Growth 

41 6 15% 
41 41 100 % 

12 0 0% 0 
12 12 100 % 0 

"57 34 60 % 5 
18 7 40 % 

9 8 90% 
18 18 100 % 
65 65 100 % 

42 42 
42 0 

13 13 
13 0 

24 24 
7 7 
7 0 
7 0 

25 1 
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6 Further Work 
The current implementation is unsuitable for much further 
research. It is too slow and unreliable; expansion of facilities 
will only exacerbate these problems.  Hence we are re- 
implement ing  Metamouse in C++ on Apol lo  DN4500 
workstations. When a prototype is ready, we will conduct 
studies with casual users. Graphics primitives such as circles, 
ellipses and splines are planned, as well as object rotation and 
grouping. Further desirable additions include the ordering of 
alternative predictions by generality or frequency, and a pattern- 
matching command to allow the user to specify a pattern without 
constructing a procedure. 

The nature of Metamouse raises several important questions. The 
system is designed to build a predictive model of human 
performance by conjecturing intentions behind isolated actions. 
This focus of attention should be expanded to sequences so that 
the system might identify free variation on the order of actions, 
equivalence, ineffectiveness, and so on. Metamouse also 
facilitates rich interaction. Methods of eliciting constraints from 
the teacher should be compared with respect to the trade-offs 
between inductive general izat ion and explici t  indication. 
Induction of some implicit spatial relations, such as alignment, is 
not infeasible. On the other hand, graphical gesturing, as in 
pointing to interesting touch relations, shows promise as a natural 
technique for teaching. 

7 Conclusions 
Metamouse demonstrates that it is indeed possible for users to 
create graphical procedures by direct manipulation. Applications 
range from producing complex, repetitive drawings, through 
construct ively specifying figures governed by graphical  
constraint, to generating simple animated algorithms for tasks 
such as sorting (and pouring tea). Metamouse eagerly reveals its 
predictions as soon as it can. This has three advantages. First, 
users reap early benefits when performing repetitive operations. 
Second, they can correct errors as soon as they occur. Third, 
they develop confidence in their programs without ever viewing 
any kind of listing. The principal shortcomings of the current 
system are its limited repertoire of  graphical objects and 
transformations, the lack of a formal underpinning for the 
constraint model, and our limited experience of how users react 
to the new experience of working with Metamouse. 
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