
KIDSBM: Programming Agents Without a 
Programming Language 

oftware agents are our besf 
hope during the 1990s for obtain- 
ing more power and utility from 
personal computers. Agents have 
the potential to partiti$xzte nrtively 
in accomplishing tasks, rather 
than serving as passive tools as 
do today’s applications. However, 
people do not want generic 

agents-they want help with lhtir 
jobs, their tasks, their goals. Agents 
must be flexible enough to be 
tailored to each individual. The 
most flexible way to tailor a soft- 
ware entity is to program it. The 
problem is that programming is 
too difficult for most people today. 
Consider: 

l How can ordinary people program 
agents? Most people today would say 
they cannot. 
l How can ordinary people under- 
stand what agents are doing? Will 

they turn dozens or hundreds of 
agents loose in their computers if 
they cannot? Or even one? 

Unless these problems are solved, 
agents will not be widely used. 

The End-User Programming 
Problem 
How can people tell agents what to 
do? More generally, how can ordi- 
nary people, who are not professional 
programmers, program computers? 
This problem-the “end-user pro- 
gramming problem”-is an unsolved 
one in computer science. In spite of 

many previous attempts to develop 
languages for end users, today only a 
small percentage of people are able to 
program. Why are most people un- 
able to do it, in spite of all the at- 
tempts to empower them? Is pro- 
gramming inherently too difficult? 
Or does the fault lie with computer 
scientists? Have we developed lan- 
guages and approaches best suited to 

the skilled practitioner, languages 
that take months or years to master? 
The authors take the latter view: 

computer scienuata have not made 
programming easy enough. Consider 
the following evidence: 

First, observe that most people can 
follow a recipe, give directions, make 
up stories, imagine situations, plan 
trips-mental activities similar to 
those involved in programming. It 
seems well within the capacity of 

humans to construct and understand 
concepts like sequences (first add 
rice, then add salt), conditionals (if 
the water boils too fast, turn down the 
heat), and variables (double each 
quantity to serve eight). 

Can we make programing as easy 
as giving directions? 

Second, notice that most people 

can use personal computers. Today, 
over 100 million people use them to 
write letters and reports, draw pic- 
tures, keep budgets, maintain ad- 
dress lists, access databases, experi- 
ment with financial models, play 
games, and so forth. Children as 
young as two years old can use a 
mouse and paint with programs like 
KidPix (a child’s painting program, at 

one time the world’s best selling ap- 
plication) or explore worlds like “The 
PlayRoom” (a child’s adventure 
game). So computers are not inher- 
ently unusable. The key observation 
is that most of these applications are 
edilors: with them, users produce an 
artifact by invoking a sequence of ac- 

tions and examining their effects. 
When the artifact is the way they want 
it, they stop. 

Can we make programming as 
easy as editing? 

Let us define the term “end users” 
to mean people who use computers 
but who are not professional pro- 
grammers. Such people are typically 
skilled in some job function, but most 
have never taken a computer course. 
They use programs (“applications”) 

written by other people. They cannot 
modify these programs unless the 
designer explicitly built in such modi- 
fication, and then the modification ia 


























