
Translating Keyword Commands into Executable Code

Greg Little & Robert C. Miller
MIT CSAIL
32 Vassar St

Cambridge, MA 02139 USA
{glittle,rcm}@mit.edu

ABSTRACT
Modern applications provide interfaces for scripting, but many
users do not know how to write script commands. However,
many users are familiar with the idea of entering keywords
into a web search engine. Hence, if a user is familiar with
the vocabulary of an application domain, we anticipate that
they could write a set of keywords expressing a command
in that domain. For instance, in the web browsing domain,
a user might enterclick search button. We call expressions
of this formkeyword commands, and we present a novel ap-
proach for translating keyword commands directly into exe-
cutable code. Our prototype of this system in the web brows-
ing domain translatesclick search buttoninto the Chicken-
foot codeclick(findButton(“search”)). This code is then ex-
ecuted in the context of a web browser to carry out the ef-
fect. We also present an implementation of this system in the
domain of Microsoft Word. A user study revealed that end-
users could use keyword commands to successfully complete
90% of the web browsing tasks in our study without instruc-
tions or training. Conversely, we would expect end-users to
complete close to 0% of the tasks if they had to guess the un-
derlying Javascript commands with no instructions or train-
ing.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures; D.2.6 [Programming Environments]: Interactive envi-
ronments; H.5.2 [User Interfaces]: User-centered design.

General Terms Algorithms, Design, Experimentation, Hu-
man Factors, Standardization, Languages

KEYWORDS: End-user programming, Command languages,
Natural Language Processing, Web automation

INTRODUCTION
Many modern applications have scripting interfaces. These
interfaces are powerful tools, both for automating tasks within
applications and for coordinating tasks between applications.
Unfortunately, the learning curve for writing scripts is pro-
hibitive for many users. Three factors contribute to this learn-

Figure 1: Illustration of keyword command translation.

ing curve. First, users must learn to cope with rigid and seem-
ingly arbitrary syntax rules for formulating expressions. The
canonical example is the semi-colon required at the end of
each expression in C, but even modern scripting languages
like Python and Javascript have similar arbitrary syntax re-
quirements. Second, users must often learn several differ-
ent scripting languages and be able to switch between them.
This is necessary because of the wide variety of languages
in use by applications, and it is difficult because the script-
ing languages can be very similar, but different enough to
cause problems. Finally, users must learn the Application
Programmer Interface (API) for the application they want to
script, but API’s can be quite large and it can be difficult to
isolate the portion of the API relevant to the current task.

Much end-user programming research has focused on this
problem. Two notable approaches include programming-by-
demonstration (PBD) [6, 8] and structured editors [7, 11].
The basic idea behind PBD is to infer a program from man-
ual actions taken by the user, like a macro recorder. This
approach can be a good first step toward creating a script, but
it is often easier to correct problems and generalize the script
using a script editor. Structured editors can be a good ap-
proach for end users to write and edit scripts, since they force
the script to retain a syntactically correct form. They also of-
ten provide menu systems so the user can recognize, rather
than recall, various commands. However, structured editors
tend to require the user to think in a certain order, which can
be counter-intuitive. Also, structured editors sacrifice some
of the benefits inherent to purely textual environments.

The benefits of purely textual environments are too great
to dismiss outright, even for end-user programming. Con-
sider that text is ubiquitous in computer interfaces. Facilities
for easily viewing, editing, copying, pasting, and exchang-



ing text are available in virtually every user interface toolkit
and application. Plain text is very amenable to editing—it is
less brittle than structured solutions. Also, text can be easily
shared with other people through a variety of communica-
tion media, including web pages, paper documents, instant
messages, and e-mail. It can even be spoken over the phone.
Tools for managing text are very mature. The benefits of
textual languages for programming are well-understood by
professional programmers, which is one reason why profes-
sional programming languages continue to use primarily tex-
tual representations.

The primary hurdle for end-users has been creating textual
expressions that the computer will understand. Previous ef-
forts in this regard have focused on natural language pro-
gramming. Sammet advocated the use of English (or any nat-
ural language) as a programming language as early as 1966
[15]. However, interpreting arbitrary English expressions as
executable code has proven to be a real challenge. A study
by Miller [10] outlines some of these challenges, including
the variety of styles humans use to express ideas.

Because of this, many natural language programming sys-
tems are built around grammars or templates which impose
some constraints on input expressions. Grammar based sys-
tems like NLC [1] use formal languages that read like En-
glish. The problem with these systems is that they do not
permit grammatical errors or extraneous words. Template
based systems like NaturalJava [14] try to overcome these
problems by searching for recognizable language constructs
within an expression. However, these systems still require
the user to incorporate recognizable constructs into their ex-
pressions.

Our approach goes one step further by eliminating the need
for language constructs all together, and focuses on the pres-
ence of keywords in a command expression. We call such
expressionskeyword commands. Consider the keyword com-
mandleft margin 2 inchesin the context of Microsoft Word.
To a human reader, this suggests the command to make the
left margin of the current document 2 inches wide. Such a
command can be expressed in the formal language of Visual
Basic asActiveDocument.PageSetup.LeftMargin = Inches-
ToPoints(2). A prototype of our system can make this trans-
lation automatically from the original keyword command
(see Figure 1).

Several key points to note are: First, the user did not need
to worry about strict requirements for punctuation and gram-
mar in their expression. For instance, they could have said
something more verbose, likeset the left margin to 2 inches,
or they could have expressed themselves in a different order
with 2 inches, margin left. Second, the user did not need
to know the syntactic conventions for method invocation and
assignment in Visual Basic. The same keyword command
would work regardless of the underlying scripting language.
Finally, the user did not have to search through the API to
find the exact name for the property they wanted to access.
They also didn’t need to know thatLeftMargin was a prop-
erty of thePageSetupobject, or that this needed to be ac-
cessed via theActiveDocument.

One advantage of this approach over PBD is that it allows
users to create scripts that access functionality they may not
know how to access manually. For instance, assume a user
wants to create 3 columns in their Word document as part
of a script, but they do not know which dialog affords this
change. They would need to discover the proper dialog be-
fore they could demonstrate the command to a PBD system.
However, our approach would allow them to guess a key-
word command like3 columns, and the system would do the
work of searching through the API to construct an expression
likely to achieve this goal.

This example also illustrates a key drawback of structured
editors. If the user wants to express the command3 columns
in a structured editor, they need to begin by filling in the first
slot in an expression builder, and this slot is unlikely to ac-
cept the number 3. In fact, they may not know whether to
begin with an assignment template or a function template,
depending on how this particular property is set in the API.
The main point here is that Structured Editors require some
planning on the part of the user toward building their expres-
sion, even if they can pick out the pieces with menu systems.
Our approach relaxes this restriction.

Another advantage of keyword commands over programming-
by-demonstration and structured editors is that it accommo-
datespure text. This affords all the benefits cited above,
and also allows these expressions to serve as meta-URLs for
bookmarking application states. One virtue of the URL is
that it’s a short piece of text—a command—that directs a
web browser to a particular place. Because they are text,
URLs are easy to share and store. Keyword commands offer
the same ability for arbitrary applications—you can store or
share a small set of keyword commands that will put an appli-
cation into a particular state. On the web, this could be used
for bookmarkinganypage, even if it requires a sequence of
browsing actions. It could be used to give your assistant the
specifications for a computer you want to buy, with a set of
keyword commands that fill out forms on the vendor’s site
in the same way you did. In a word processor, it could be
used to describe a conference paper template in a way that is
independent of the word processor used (e.g.Arial 10 point
font, 2 columns, left margin 0.5 inches).

To test our idea, we have implemented two prototypes. One
prototype operates in the web browsing domain, and trans-
lates keyword commands into Chickenfoot [4] commands.
These commands allow users to navigate to web pages and
interact with web forms. The other prototype operates in
the domain of Microsoft Word, and translates keyword com-
mands into Visual Basic commands. These commands can
be used to access document properties and issue commands
like Save and Print.

We also conducted a formative user study of the web domain
prototype to gauge the ability of end users to form keyword
commands on their own, without instructions or training. We
chose the web domain because end users were likely to be
familiar with the capabilities of a web browser—though this
is not likely to be the target domain for such a system.

We found that users were able to generate successful key-



word commands for 90% of the tasks, and that their first at-
tempt succeeded 73% of the time.

The next section addresses related work. This is followed by
a description of the user interface for keyword commands.
After that, we discuss the implementation of the two key-
word command prototypes. Next, we present the user study.
Finally, we end with future work and concluding remarks.

RELATED WORK
Interest innatural programmingwas renewed recently by
the work of Myers, Pane, and Ko [12], who have done a
range of studies exploring how both non-programmers and
programmers express ideas to computers. These seminal
studies drove the design of the HANDS system, a program-
ming environment for children that uses event-driven pro-
gramming, a novel card-playing metaphor, and rich, built-in
query and aggregation operators to better match the way non-
programmers describe their problems. Event handling code
in HANDS must still be written in a formal syntax, though it
resembles natural language.

Bruckman’s MooseCrossing [2] is another programming sys-
tem aimed at children that uses formal syntax resembling nat-
ural language. In this case, the goal of the research was to
study the ways that children help each other learn to program
in a cooperative environment. Bruckman found that almost
half of errors made by users were syntax errors, despite the
similarity of the formal language to English [3].

More recently, Liu and Lieberman have used the seminal
Pane & Myers studies of nonprogrammers to reexamine the
possibilities of using natural language for programming, re-
sulting in the Metafor system [9]. This system integrates nat-
ural language processing with a common-sense knowledge
base, in order to generate “scaffolding” which can be used
as a starting point for programming. Keyword commands
likewise rely on a knowledge base, but representing just the
application domain, rather than global common sense.

USER INTERFACE
The heart of the user interface is keyword command gener-
ation. The user needs to conjure some command that the
computer is likely to understand. Toward this end, the user
must have some idea of the capabilities of the system, along
with the conventional vocabulary used to describe these ca-
pabilities (e.g. the white-space surrounding a document is
called the “margin”).

Beyond this, our hope is that the system is natural and intu-
itive. That is, a user should not have to read the following
sections in order tousethe keyword command language.

Functions
The user can invoke a function by including keywords in
their command which are present in the name of the func-
tion. For instance, in the exampleleft margin 2 inches, the
word inchesappears in the functionInchesToPoints. A sin-
gle word is sufficient to identify a function, even if the word
appears in other functions, so long as only one function fits
well into an interpretation of the entire command. The frame-
work also allows functions to have synonyms, giving the user
some slack in remembering the exact name of a function.

The user can also invoke a function without naming it, merely
by including its arguments. This is a sufficient suggestion in
those cases where there is only one function which is likely to
take the given arguments. For instance, considerUIST 2006
into the search textbox. This suggests entering “UIST 2006”
into the textbox labeled “search”, even though we didn’t ex-
plicitly say enter. Our web domain prototype understands
this expression because it has only one command that accepts
a string and a textbox (namelyenter).

Basic Data Types
Like functions, the user can also create basic data types by
including keywords in their command which represent these
types. For instance, the user can create the integer 2 with any
of the keywords2, two, 2nd, second, etc... depending on how
many variations the interpreter has in its database.

Strings themselves are basic data types, and can be created
by just including the words of the string in the command.
However, a sequence of words is considered more likely to
be a string if the user places quotes around it. We discuss this
more below when we talk about resolving ambiguity.

The exact set of basic data types depends on the domain of
the interpreter. Our web domain prototype includes types for
integers, strings, booleans, URLs, and keyword-lists (which
identify objects in the webpage).

Identifying Arguments
If a command takes multiple arguments of the same type,
then the user may need to supply words in their expression to
identify the arguments.

One method is to name the arguments. Argument names can
appear immediately before or after the words used to express
the argument. Another method is to include the arguments
in the correct order. For instance, if we had aclick(integer
x, integer y)command, then the system would translate both
click 300 y 200 xand200 300 clickinto click(200, 300).

Prepositions can serve as intuitive names for some argu-
ments. For instance, the commandcopy(path toDestination,
path fromSource)allows for expressions likecopy A:\my -
paper.doc to C:\my backup. In this case, the arguments are
out of order, but the system picks up on the wordto, which is
part of the name for thetoDestinationargument. In practice,
we include many synonyms for these prepositions to support
variations likecopy A:\my paper.doc into C:\my backup.

It is also possible for the system to disambiguate arguments
of the same type based on domain specific heuristics. Con-
tinuing the example above, we could sayA:\my paper.doc
C:\my backup copy, where the arguments are out of order,
but we do not provide a preposition. In this case, the sys-
tem can disambiguate the arguments using the heuristic that
if only one argument is a directory, then it is likely to be the
destination.

Nested Functions
The system supports nested functions. For instance,pick the
4GB RAM listitem translates intopick(findListitem(“4GB
RAM”)) . Note the nested invocation offindListitem.



The one restriction regarding nested functions is that a nested
function can only be formed from a contiguous portion of the
keyword command. This example obeys this restriction be-
cause4GB RAM listitem is a contiguous string within the
command. We could have also exchanged the order to get
listitem 4GB RAM, but we could not split up the subexpres-
sion to getlistitem pick 4GB RAM.

In some cases, the system may make the correct translation,
even if the subexpression is split. In the case oflistitem pick
4GB RAM, the system fails to find a use forfindListitem()
as a nested function with no arguments, and so it favors an
interpretation involving just the keywordspick 4GB RAM.
The interpreter then introduces the unnamed functionfind-
Listitem, since the user supplied arguments suggesting this
command, namely4GB RAM.

Even without this fallback mechanism, this restriction does
not appear to be prohibitive. No users in our study formed
expressions violating this rule (and users correctly formed
31 expressions which could have violated the rule). There
is also an intuitive argument for why users are unlikely to
generate expressions violating this rule. That is, context-free
grammars have been used to achieve good approximations
of English grammar, and a context-free grammar would en-
sure the sort of contiguous nesting of subexpressions that our
system requires.

Resolving Ambiguity
Sometimes an expression needs to use words in an ambigu-
ous way. The most common example is trying to quote text,
when the text itself contains words with other likely interpre-
tations. Considerenter binary search textbox. Do we want
to enter the word “binary” into the “search” textbox, or do
we want to enter “binary search” into the only textbox on
the page? The system supports a couple of techniques for
resolving such ambiguities.

Quotes: The first technique is to include quotes. When the
system considers the possibility that a sequence of words
represents a string (or keyword-list), it gives this possibil-
ity more weight if the user includes quotes on either side of
the sequence. We could therefore sayenter “binary” search
textbox, and the system would favor an interpretation where
“binary” was treated as a string separate fromsearch.

When using quotes, it is not necessary to place escape char-
acters in front of quote symbols which are embedded within a
quote. The system will resolve this ambiguity based on how
many string arguments it requires to form a valid interpre-
tation for the whole command. For instance, the expression
enter′′history of ′′foo bar′′′′ into the search textboxresolves
to enter(“history of \“foo bar\””, findTextbox(“search”)) ,
despite the nested quotes in the original expression.

Argument Names: Another technique is to include argu-
ment names to identify an argument, as discussed earlier.
Using this technique we could sayenter binary into search
textbox, and the system would favor an interpretation where
the subexpressioninto search textboxwas treated as theinto
argument of theentercommand.

Selecting From List: When both of these techniques fail (or
the user fails to employ them), the system is left with an am-
biguous expression. In such a case, it can present the most
likely candidates to the user for inspection. This is discussed
more in theFeedbackandGraphical User Interfacesections
below.

Extraneous Words
We explained that the system recognizes certain stop words
in certain situations (e.g.to, into), but it doesn’t recognize
all stop words. Also, the user might include other extraneous
words in their expressions. Considerplease enter “search”
into the textbox. What is the system supposed to do with the
word “please”? It ignores it. If no interpretation of the ex-
pression has a good explanation for a word, then the system
considers interpretations which simply overlook that word.

Feedback
It useful to let the user know what action the computer has
taken in response to a command. One method is to supply a
graphical indication. For instance, when a user clicks a link
in a webpage using a textual command, our web prototype
animates a green semi-transparent box over the link. This
provides the user with assurance that the correct link was
chosen.

In some cases, it is not feasible to supply a graphical indica-
tor. In these cases, it is useful to provide textual feedback.
This feedback can come in the form of displaying the result-
ing code generated from the command.

Our framework also provides a mechanism for generating
pseudo-natural language representations for commands, which
end-users may find easier to read. These interpretations
may also act as guides for future expressions since they are
themselves interpretable by the system. For instance, if the
user enters the command300GB Hard Drive, and the sys-
tem translates this toselect(findRadioButton(“300GB Hard
Drive”)) , then the pseudo-natural language feedback would
look likeselect the “300GB Hard Drive” radiobutton, which
is also an expression understood by the system.

Textual feedback is also useful when the user enters an am-
biguous command, and the system wants to afford the selec-
tion of an interpretation from a list. In these cases, it may
be easier to represent the alternatives with text, rather than a
graphical indication.

Graphical User Interface
Our web browser prototype consists of a textbox affording
input, and an adjacent horizontal bar allocated for textual
feedback. The system also generates an animated acknowl-
edgement in the web page around the html object affected by
a command (see Figure 2).

We plan to extend this system with a dropdown menu to
present a list of likely interpretations for ambiguous com-
mands (the current prototype makes an arbitrary choice in
such cases).

We also envision incorporating the system into a script editor
as a form of auto-completion. For instance, if a user types a
line of text in the Chickenfoot script editor that doesn’t parse



Figure 2: a) command box, b) feedback bar, c) ani-
mated acknowledgement

as Javascript, the system could present valid Javascript in-
terpretations of the expression in an auto-completion style
popup menu.

IMPLEMENTATION

This section describes how keyword commands are trans-
lated into executable code.

Functions

Functions are the building blocks in the system. Basic data
types are represented as functions that that take no argu-
ments. Each function returns a single value of a certain type,
and accepts a fixed number of arguments of certain types.
Optional arguments are also permitted.

Functions can have many names. For instance, theenter
command in the web prototype has names liketype, write,
insert, set, and the= symbol. Functions for basic data types
have names corresponding to their textual representations.
These names are matched programatically with regular ex-
pressions. For instance, integers are matched using the ex-
pression “[0-9]+”.

Arguments can also have many names. These usually include
prepositions naming the gramatical role of the argument.

Translation Algorithm

The translation algorithm needs to convert an input expres-
sion into a likely function tree. One way to do this is to enu-
merate all possible function trees (to some depth), and then
evaluate the likelihood that each tree matches the expression.

Unfortunately this search space is very large for a couple of
reasons. First, the number of possible trees is large (growing
exponentially with the addition of new functions). Second,
the evaluation of the likelihood that a tree matches an expres-
sion is itself an exponentially large problem in the number of
functions in the tree. Part of the contribution of this work
is coming up with an algorithm for quickly finding function
trees which correspond to a given expression.

We describe the algorithm in two steps.

Step 1: Tokenize Input
Each sequence of contiguous letters forms a token, as does
each each sequence of contiguous digits. All other symbols
(excluding white space) form single character tokens.

Letter sequences are further subdivided on word boundaries
using several techniques. First, the presence of a lower-case
letter followed by an upper-case letter is assumed to mark
a word boundary. For instance,LeftMargin is divided be-
tween thet and theM. Second, words are passed through a
spell checker, and common compound expressions are de-
tected and split. For instance,login is split into log in.

One potential problem with this technique is that a user might
know the full name of a property in an API and choose to
represent it with all lower-case letters. For instance, a user
could typeleftmargin to refer to theLeftMargin property. In
this case, the system would not know to splitleftmargin into
left margin to match the tokens generated fromLeftMargin.

To deal with this problem, the system adds all camel-case se-
quences that it encounters to the spelling dictionary before
splitting them. In this example, the system would addLeft-
Margin to the spelling dictionary. Now when the user en-
ters leftmargin, the spell checker corrects it toLeftMargin,
which is then split intoLeft Margin.

After spelling correction and word subdivision, tokens are
converted to all lower-case, and then passed through a com-
mon stemming algorithm [13].

Step 2: Recursive Algorithm
The input to the recursive algorithm is a token sequence and
a desired return type. The result is a tree of function calls
derived from the sequence that returns the desired type.

This algorithm is called initially with the entire input se-
quence, and the desired return typevoid, since we want the
command todo something as opposed to returning some-
thing.

The algorithm begins by considering every function that re-
turns the desired type. For each function, it tries to find a
subsequence of tokens that matches the name of the function.
For every such match, it considers how many arguments the
function requires. If it requiresn arguments, then it enumer-
ates all possible ways of dividing the remaining tokens inton
contiguous subsequences (including subsequences of length
0, to account for optional arguments). Then, for each set
of n subsequences, it considers every possible matching of
the subsequences to then arguments. Now for each match-
ing, it takes each subsequence/argument pair and calls this
algorithm recursively, passing in the subsequence as the new
sequence, and the argument type as the new desired return
type.

The resulting function trees from these recursive calls are
grafted as branches to a new tree with the current function
as the root. The system then evaluates how well this new tree
explains the token sequence (seeExplanatory Powerbelow).
The system keeps track of the best tree it finds throughout
this process, and returns it as the result.



The system also handles a couple of special-case situations:

Extraneous Tokens: If a function takes no arguments, but
there are subsequences left over after extracting the function
name, then these subsequences are ignored. However, they
do subtract some explanatory power from the resulting func-
tion tree.

Inferring Functions: If no tokens match any functions that
return the proper type, then the system tries all of these func-
tions again. This time, it does not try to find subsequences
of tokens matching the function names. Instead, it skips di-
rectly to the process of searching for the arguments for each
function.

Of course, if a function returns the same type that it accepts
as an argument, then this process can result in infinite recur-
sion. Therefor, the system will not infer commands after a
certain depth in the recursion.

Explanatory Power
Function trees are evaluated in terms of how well they ex-
plain the tokens in the sequence from which they are derived.
Tokens are explained in various ways. For instance, a token
matched with a function name is explained as invoking that
function, and a token matched as part of a string is explained
as helping create that string.

Different explainations are given different weights. For in-
stance, a function name explaination for a token is given 1
point, whereas a string explaination is given 0 points (since
strings can be created from any token). This is slightly better
than tokens which are not explained at all—these subtract a
small amount of explanatory power. Also, inferred functions
subtract some explanatory power, depending on how com-
mon they are. Inferring common functions costs less than
inferring uncommon functions.

Web Prototype
The functions in the web prototype map to commands in
Chickenfoot [4]. We include 18 functions, with an average
of 6.4 names for each function.

Many functions share some of the same names. For instance,
makeis a name for thepick function and theenter function.
These ambiguities are resolved based on argument types.

Word Prototype
The prototype of the system in the domain of Microsoft Word
presented some challenges which were not present in the web
prototype. First, we were faced with a much larger command
set. Chickenfoot has less than 20 commands, whereas the
Word API has over two thousand. This meant we could not
create all the functions by hand. Instead, we mined Word’s
type libraries, and converted its properties and methods into
functions automatically. However, we were not able to pop-
ulate the system with function synonyms.

We also had to turn off the ability of the system to infer
commands which were not named in the expression if these
commands required additional arguments, since this dramat-
ically increased the search space. However, we were able

to acheive some of the same benefits of inferring commands
with a few modifications to the algorithm.

First, we wanted to be able to infer commands which re-
turned useful objects in the system likeActiveDocument.-
PageSetup, which holds properties for margin sizes. We no-
ticed that most of these objects were accessible as descen-
dants of eitherActiveDocumentor ThisApplication; hence,
we implemented an algorithm to enumerate all such descen-
dants, and store them in a list. We then allowed the system
to infer commands in this list as if they took no arguments
(since we knew which arguments were required to access
these objects).

The next modification is best introduced with an example.
Consider the expressioncolumns 2. The desired interpreta-
tion isActiveDocument.PageSetup.TextColumns.SetCount-
(2), but this requires inferring the commandSetCountsince
no words from this command appear in the original expres-
sion. However, we note thatSetCounthas an argument
namedNumColumns, and the wordColumns doesappear
in the expression. Hence, in such cases, we mitigate the need
to infer a command by including function argument names
as synonyms for function names.

The final modification is also motivated by an example. Con-
sider the expressionA4, which we want to translate toActive-
Document.PageSetup.PaperSize = wdPaperA4. In this case,
we need to infer the commandPaperSize. The way we get
around this is to allow the system to search for commands
with any return type, instead of just commands returning
void. Then, if the return is notvoid, we try to fit the return
value into some other function that does returnvoid.

In our example, the system returns the functionwdPaperA4,
which has the return typeWdPaperSize. The system then
searches for a function which takes something of typeWd-
PaperSizeas an argument. Remarkably enough, there is only
one such function, namelyPaperSize. This function also re-
quires an argument of typePageSetup, but we allow the sys-
tem to fill in such requirements using the list we built earlier,
which supplies the functionActiveDocument. PageSetup.

Speed
We implemented the translation algorithm for each prototype
in Java. The following running times provide a rough feel for
the speed of this algorithm.

In the web prototype, a sample 4 word expression takes 70
milliseconds to translate (on an AMD Athlon 4200+ proces-
sor). Increasing this to 8 words takes 270 milliseconds, and
increasing it to 12 words takes 800 milliseconds.

The Word prototype translates many short expressions (4
words or less) in less than a second, however the running
time increases significantly for longer expressions. This is
also very dependant on the words used. Including multiple
words which appear in many commands can dramatically in-
crease the translation time. For instance, the expressionleft
left takes 4 seconds. This already suggests some room for
optimization in the algorithm. For instance, we could make
common words likeleft insufficient by themselves to invoke
any commands.



Our overall conclusion is that the current algorithm is suffi-
cient for small command sets (under 20 commands) where
the user is unlikely to enter large expressions (over 8 words).
However, we believe the algorithm already generates some
very useful results in larger domains, and we want to explore
this potential in future work.

USER STUDY
We believed that our command language was intuitive, and
could be used without instructions, provided that the user
was familiar with the domain. We therefore chose the web
domain (which many end users are familiar with) and imple-
mented a command interface to test how well users could use
the system to automate common web browsing tasks.

Participants
Our study involved 9 users, solicited from a public mail-
ing list at a college campus. Seven were between 20 and
30 years old, while the other two were 49 and 56. We had
three females and six males. Five were students (4 of these
were computer science majors). The other four subjects had
a range of occupations. All subjects were compensated for
their time.

The subjects were also all experienced web users, and could
type reasonably well. Almost every subject claimed to use
the web almost every day (except one, who claimed to use
the web a few times a week). Every subject had also been to
the majority of the web sites involved in the study. Finally,
each subject used typing-centered programs (like Word or an
Instant Messenger) almost every day (again except for one,
but even this user felt reasonably comfortable typing).

Programming experience amongst the users was divided into
two groups. Four users had never written a program, or had
only written a program for a class. Each of the remaining five
users had written multiple programs on their own, and was
familiar with a number of different programming languages.

Setup
Each subject sat at a computer loaded with the web domain
prototype. We then handed them a set of instructions to read
and tasks to complete.

Instructions: The instructions indicated that they should use
only the command box (Figure 2a) to do each task, and not
click or type directly into the web page. We also indicated
that it was up to them to decide what to type into the com-
mand box. We did not offer any suggestions about what to
type (except for two users, seeModifications to Studybelow).

Tasks: Each of the 36 tasks consisted of a red circle drawn
on a screen shot of the web browser, indicating what to do
(see Figure 3). For instance, if we wanted the user to navigate
to a certain URL, we would circle a screen shot of a location
bar loaded with that URL. We did this in order to minimize
external hints about how the user should communicate with
the system.

Even still, the circled text itself acted as a hint for many tasks,
especially for following links and clicking buttons. In these
cases, entering the text on the link or button itself was suffi-
cient to click it. However, we did not tell the subjects that this

Figure 3: Examples of tasks in the user study. The
user had to write a keyword command that would click
or set the control circled in red. The red number is the
task number from Figure 4.

was the case, and in fact, users often provided unnecessary
words for these tasks (like the word “click”).

We also included some more difficult tasks that required
words not present in the red circle to complete. However, ev-
ery task could be accomplished with a single keyword com-
mand.

Modifications to Study: After running 6 users through the
study, we noticed that people didn’t use many verbs. For
instance, subjects tended to enter text into form fields with
expressions likewithout “nothing” rather thanenter “noth-
ing” into the without textbox.

We wondered what effect it would have if we introduced a
single initial suggestion of a command involving a verb. We
decided to provide a hint for a task that every user had suc-
ceeded at (one of the easier tasks). We felt that this wouldn’t
overly contaminate the study, while giving us a small hint to
satisfy our curiosity.

We therefore suggested to 2 users that they do the first task
with go to google.com. One user responded with “who needs
verbs?”, and proceded to do this task with justgoogle.com.
The other user took the suggestion, and used a verb in 10
tasks that no other user used a verb for, which may be cause
to investigate this further.

Results
Subjects completed 90% of the tasks successfully, with an
average of 1.7 attempts per task. 73% of the tasks were com-
pleted on the first try, with only one command. If the system



Figure 4: Number of attempts made by each subject
for each task. Green cells indicate eventual success.

understood only Javascript, and we had offered no instruc-
tions, we would have expected a completion rate around 0%.

Figure 4 shows the number of attempts each user made to ac-
complish each task. The green cells indicate tasks that were
completed successfully, while uncolored cells were not com-
pleted.

A zero indicates no attempts. These usually resulted from
a subject overlooking a task. One zero resulted from a user
entering text directly into a textbox without using the com-
mand box. The vertical strip of 0’s at the bottom of the chart
corresponds to an instance when a webpage was temporarily
unavailable.

Discussion
We learned the most from the tasks with the highest failure
rates.

Task 1.6: This is the first task with any failed attempts. The
task asked the user to enter the word “nothing” into a textbox
labeled “without the words.” Only 3 users completed this
task on their first attempt.

All of the remaining subjects expected the system to have

a notion of an input focus. They began the task by trying
to focus the computer’s attention on the appropriate textbox
with commands likego to without the words. These attempts
would usually result in text being placed elsewere. Attempts
were then be made to correct these errors, but these were not
counted toward the completion of the task. Through trial and
error, 3 of these users eventually succeeded at the task.

It worth saying something about the user with 22 attempts
toward this task: most of these attempts were of the form
nextor up, presumably in an attempt to move the attention of
the computer to the textbox next to or above the most recent
visual acknowledgement. This user appears to have mistaken
the visual acknowledgments as describing the new focus of
the system.

Task 1.7: This was really the second part of a two-part task.
The task asked the user to select “Calendar” from a listbox.
After doing so, they were meant to notice that the “Any Sec-
tion” listitem was still selected in the web page, but not se-
lected in the task illustration. At this point, they were meant
to deselect the “Any Section” listitem.

Three subjects did not make this attempt, presumably be-
cause they thought it was a bug in the instructions or the
webpage, or they did not notice it.

Three subjects used keywords which had not been added as
synonyms for the proper functions in the system. The lesson
learned here is that more synonyms need to be added, but
we are encouraged to find that we did not need to add new
functions in this case.

The final subject tried to access the listbox by focusing the
computer’s attention on it, which, as discussed previously,
did not work. However, we believe such a paradigm could be
made to work within the bounds of the command language
by adding commands likefocusOn, focusPrevious, andfo-
cusNext(along with appropriate synonyms).

Task 3.4: This task seemed simple: it asked the user to en-
ter a password into a password field. However, it exposed
a bug in our choice of weights for the function scoring sys-
tem. A brief description of this bug should prove instructive.
Consider the inputPassword bloppy. 5 users tried this in-
put, and it should have worked. Instead, the system clicked a
link with the word “password” in it. Both of these interpre-
tations needed to introduce an unnamed command, but the
enter command cost 0.2, whereas theclick command cost
only 0.1. Of course, the click interpretation had to treat the
word bloppyas an extraneous word, which cost another 0.1,
whereas theenter interpretation treatedbloppy as a string,
costing nothing. Both interpretations explained the word
passwordas a keyword-list identifying a textbox or link.

The resulting score forclick(link(“password”)) was 0.8, and
the score forenter(“bloppy”, textbox(“password”))was also
0.8. However, theclick interpretation happened to appear
first in the list, and the system went ahead with this interpre-
tation, since the prototype afforded no means of disambigua-
tion after the command was entered.

We plan to address this issue by implementing the disam-



biguation dropdown we discussed.

Task 4.4: This was probably the hardest task in the study. It
required the user to enter the address “PO Box 777” into the
second street address field, shown at the bottom of Figure 3.

People had difficulty identifying this field since it had no la-
bel of its own. 5 subjects eventually succeeded, but 4 users
did not. It is instructive to examine the potential reasons for
these failures.

One user tried the approach of first focusing the computer’s
attention, and then typing. This user enteredstreet address 2
and thenPO Box 777. It is worth noting that if these com-
mands had been entered as the single expressionstreet ad-
dress 2 PO Box 777, they would have worked. It would also
have worked if we had afocus command. This command
could accept the same arguments as theentercommand (ex-
cept for the string argument), and we could add a version of
theentercommand that accepts only a string.

Another user entered777 Home Driveinto the first textbox
successful, and then issued the commandnext. This attempt
would also have been helped with the addition offocuscom-
mands, specificallyfocusNext.

This same user also tried what turned out to be a common
approach, which was to try entering both lines with a single
command:777 Home Drive, PO Box 777 Street address. In
fact, 6 users made attempts of this sort.

This is a harder problem to solve. One solution might consist
of anentercommand with 2 string arguments. However, we
should note that all the users who attempted this approach
eventually succeeded, except for two. One would have fig-
ured out a way if the system obeyedfocuscommands as dis-
cussed before. The other would have succeeded if not for
a bug in the parser. To understand this bug, it is helpful to
know that the most common type of expression that worked
was: Street address 2 “PO Box 777”(3 people succeeded
with commands of this sort). Now the expression of the user
in question was:Street2=PO Box 777. The problem is that
this version of the tokenizer treatedStreet2 as a single to-
ken. If the user had put a space betweenStreetand2, this
command would have worked. The current prototype now
supports this command because it treats alpha and numeric
sequences as separate tokens.

Task 1.4: Everyone succeeded at this task, but it exposed
another important problem with the tokenizer. The task was
to click the “OpenCourseWare” link on MIT’s homepage,
which the tokenizer split into 3 tokens. However, this ver-
sion did not add “OpenCourseWare” to the spelling dictio-
nary. Hence, when users would typeopencourseware, the
system would not split the token intoopen course ware, and
it would not match the link.

In the new system, typingopencoursewareis corrected by
the spell checker intoOpenCourseWare, and the expression
is then tokenized correctly.

FUTURE WORK
We plan to continue to develop this technique in several di-
rections. First, we believe there is a lot of room for improve-
ment to the algorithm, now that we’ve convinced ourselves
that the algorithm is useful.

Also, we want to add new features to the algorithm. In par-
ticular, we would like to support variable declarations which
are referenced in the same command. This may allow for
for-loop constructs.

A top priority is to integrate the command interpreter into
the script editor of Chickenfoot, allowing end users without
Javascript experience to create simple scripts. Part of this in-
tegration will involve permitting access to variables and user
defined functions from the command interpreter.

Another goal is to integrate the Word domain prototype as a
plugin for Word. We want to explore the potential of this tool
as an alternative to navigating a large menu system. A user
study might reveal that users prefer to access some function-
ality through a command prompt.

We also believe the technique may be useful for program-
ming in Java. The Java API is extensive, and it can take a
small time to find a given function. But consider typingtime,
and having the system translate this toSystem.currentTimeMillis().
We believe such translations may be possible, and useful.

Finally, we would like to explore the potential of using the
translation system as a generic backend for a speech recog-
nition system. We believe that the general framework may
make it easy to expose core sets of functionality of various
applications to end users.

CONCLUSION
We have scratched the surface of a domain with great po-
tential: translating keyword commands into executable code.
We have described an algorithm for performing such trans-
lations in a reasonable time for small applications, and we
have demonstrated that end users can form commands that
are interpretable by the system, without any training.

ACKNOWLEDGMENTS
We would like to thank all the participants in our user study.
We also appreciate all the helpful suggestions we have re-
ceived from members of the UID group, as well as from other
friends and peers. This work was supported in part by the Na-
tional Science Foundation under award number IIS-0447800.
Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion.

REFERENCES
1. Ballard, B., and Biemann, A., Programming in Natural

Language: NLC as a Prototype,ACM/CSC-ER Annual
Conference, 228-237. 1979.

2. Bruckman, A., Community Support for Constructionist
Learning. Computer Supported Cooperative Work,Com-
puter Supported Cooperative Work, 7:47-86, 1998.



3. Bruckman, A., Edwards, E., Should we leverage natural-
language knowledge? An analysis of user errors in
a natural-language-style programming language,CHI,
Pittsburgh, PA, 1999.

4. Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.,
Automation and customization of rendered web pages,
User Interface Software and Technology, Seattle, WA,
2005.

5. Katz, B., Felshin, S., Yuret, D., Ibrahim, A., Lin, J.,
Marton, G., McFarland, A., and Temelkuran, B., Omni-
base: Uniform Access to Heterogeneous Data for Ques-
tion Answering,NLDB, 2002.

6. Cypher, A., Ed.Watch What I Do: Programming by
Demonstration.MIT Press, Cambridge, MA, 1993.

7. Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C.,
Pratt, J., and Pausch, R., Alice2: Programming without
Syntax Errors,User Interface Software and Technology,
Paris, France, 2002.

8. Lieberman, H., Ed.Your Wish is My Command: Pro-
gramming By Example.Morgan Kaufmann, San Fran-
cisco, CA, 2001.

9. Liu, H., and Lieberman, H., Programmatic Semantics for
Natural Language Interfaces.CHI, Portland, OR, 2005.

10. Miller, L., Natural Language Programming: Styles,
Strategies, and ContrastsIBM Systems Journal, 1981.

11. Myers, B., McDaniel, R., and Kosbie, D., Marquise:
Creating complete user interfaces by demonstration,IN-
TERCHI ’93: Human Factors in Computing Systems,
Amsterdam, The Netherlands, 1993.

12. Myers, B., Pane, J., and Ko, A., Natural Programming
Languages and Environments.Commun. ACM, 2004.

13. Porter, M., An algorithm for suffix stripping,Program,
14(3) pp 130-137, 1980.

14. Price, D., Riloff E., Zachary J., and Harvey B., Natural-
Java: A Natural Language Interface for Programming in
Java.ACM Intelligent User Interfaces Conference, 2000.

15. Sammet, J., The Use of English as a Programming Lan-
guage.Commun. ACM, 9(3), 228-230. 1966.


