
iStuff: A Physical User Interface Toolkit
for Ubiquitous Computing Environments

Rafael Ballagas, Meredith Ringel, Maureen Stone1, Jan Borchers
Computer Science Department

Stanford University
Stanford, CA 94305, USA

ballagas@stanford.edu, {merrie, borchers}@cs.stanford.edu, stone@stonesc.com

1 StoneSoup Consulting, 191 Pine Lane, Los Altos, CA 94022

ABSTRACT

The iStuff toolkit of physical devices, and the flexible
software infrastructure to support it, were designed to sim-
plify the exploration of novel interaction techniques in the
post-desktop era of multiple users, devices, systems and
applications collaborating in an interactive environment.
The toolkit leverages an existing interactive workspace in-
frastructure, making it lightweight and platform independ-
ent. The supporting software framework includes a dynami-
cally configurable intermediary to simplify the mapping of
devices to applications. We describe the iStuff architecture
and provide several examples of iStuff, organized into a
design space of ubiquitous computing interaction
components. The main contribution is a physical toolkit
for distributed, heterogeneous environments with run-time
retargetable device data flow. We conclude with some in-
sights and experiences derived from using this toolkit and
framework to prototype experimental interaction techniques
for ubiquitous computing environments.

Keywords: User interface toolkits, ubiquitous comput-
ing, tangible user interfaces, input and interaction tech-
nologies, wireless devices, development tools, prototyping,
programming environments, intermediation.

INTRODUCTION

While the mouse and keyboard have emerged as the pre-
dominant input devices for desktop computers, user input
in ubiquitous computing (ubicomp) environments [19]
presents a different set of challenges. A desktop environ-
ment is targeted for one user, one set of hardware, and a
single point of focus. In a post-desktop, ubicomp environ-
ment, complexity is added in every direction; there are
multiple displays, multiple input devices, multiple sys-
tems, multiple applications, and multiple concurrent users.
The iStuff toolkit was designed to support user interface
prototyping in ubiquitous computing environments. Our
domain is explicit interaction [1] with a room-sized envi-
ronment consisting of displays of many sizes, plus support
for wireless technology of various types, integrated using a
common middleware. Our goal is to allow multiple, co-

located users to fluidly interact with any of the displays
and applications in augmented environments such as the
Stanford iRoom, using for input and output any devices
conveniently at hand.

The toolkit was designed on top of iROS, a TCP- and Java-
based middleware that allows multiple machines and appli-
cations to exchange information [11]. iROS supports
communication through the Event Heap, a central server
process that receives events from client applications in the
room and redistributes them to the appropriate recipients.

The machines in the iRoom run standard operating systems
and applications, rather than custom systems designed ex-
clusively for the environment. Applications developed for
the iRoom typically consist of suites of programs that
combine their own UIs with interaction linked through the
iROS. This approach allows for incremental deployment of
complex systems, such as those developed for construction
management [6]. However, it exposes a fundamental as-
sumption of such operating systems—that each display
comes with its own dedicated pointing device and key-
board.

The iStuff toolkit combines lightweight wireless input and
output devices, such as buttons, sliders, wands, speakers,
buzzers, microphones, etc., with their respective software
proxies running on a machine in the iRoom in order to
create iStuff components. Each component can be dynami-
cally mapped to different applications running in the
iRoom through a software intermediary called the Patch-
Panel.

This framework allows HCI researchers to quickly proto-
type a non-standard physical user interface and run experi-
ments using it without having to run wires, solder up
components, or write yet another serial device driver. Event
communication takes only a few lines of platform-inde-
pendent Java code, making it easy for applications to be-
come iStuff-enabled.

It should be emphasized that this paper discusses a physical
toolkit, aimed at rapidly prototyping and building physical
devices. This is fundamentally different from a GUI
toolkit, which is aimed at rapidly prototyping and building
graphical applications. For example, GUI toolkits have a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or redistribute to lists, requires
prior specific permission and/or a fee.
CHI 2003, April 5-10, 2003, Ft. Lauderdale, Florida, USA.
Copyright 2003 ACM 1-58113-630-7/03/0004…$5.00.

well-defined display space and 2-D position, but these
characteristics are not necessarily true for a physical do-
main. Early work on graphical user interfaces by Foley et
al. [7] that has been widely accepted proposed that the set
of interaction tasks sufficient for describing interaction with
graphical interfaces are {select, position, orient, path, quan-
tify, and text}. However, this classification only applies to
graphical UI’s, not physical UI’s, or UI’s in general.

This paper describes the iStuff toolkit, and several exam-
ples of iStuff organized into a design space of ubicomp
interaction components. We conclude with some examples
that illustrate how using iStuff facilitates prototyping ex-
perimental user interfaces in the iRoom, and how it
prompts us to think about new modes and issues in post-
desktop user interfaces.

RELATED WORK
Ishii and Ullmer’s innovative work on Tangible Interfaces
[9] used physical props to interact with computers. Their
phicons (physical icons) were often specialized for particu-
lar applications, and did not provide a generic model or
toolkit for building these physical interfaces. Greenberg and
Fitchett’s Phidgets (physical widgets) [8] represent a gene-
ral toolkit of physical user interface components. Both iS-
tuff and Phidgets provide a set of physical components that
can be used to build more complex physical interfaces, and
they each provide a software interface that allows de-
velopers to integrate the components into their applica-
tions. However, the iStuff toolkit and accompanying soft-
ware interface are designed to be particularly suitable for a
ubiquitous computing environment where computers of
heterogeneous sizes and types are both plentiful and subtle,
allowing computation to blend invisibly into daily activi-
ties [19]. iStuff implicitly includes a software infrastruc-
ture, a programming model, and software engineering con-
cepts that maximize flexibility for a toolkit deployed in
multi-user, multi-application, multi-computer scenarios.

Abowd et al. proposed that interaction in ubiquitous com-
puting settings can be divided into two subsections: impli-
cit and explicit [1]. Work such as that of Salber et al. [17]
explored the space of implicit interactions by creating con-
text widgets that aided in the prototyping and development
of “context-aware” ubiquitous computing applications. iS-
tuff is targeted towards exploring explicit interaction in
cooperative, multi-device settings.

Myers [13] demonstrated that abstracting device input away
from application level code is useful in the Garnet project
using Interactors. However, he did not provide solutions
for prototyping devices, distributed environments, or hand-
ling output. Olsen et al. [15] pointed out the need to de-
couple user interfaces from services in interactive rooms
and similar environments, and proposed XWeb, a web-
based architecture to interact with services using a wide
variety of input modalities. Myers and Kosbie [14] show
how hierarchical event structures can provide higher-grain
code reuse, and how to abstract low-level events to applica-
tion-level events. These concepts are reapplied in iStuff
with the addition of run-time retargetable event flow.

Taylor et al. [18] developed C2, a message-based software
architecture , and applied it to GUI software for larger-grain
reuse and flexible system composition. Taylor introduced
the concept of domain translation in which messages from
components are translated to address mismatches in mes-
sage names and parameters. iStuff differs from the C2 ar-
chitecture by providing a generic software model for I/O
including a centralized domain translator known as the
PatchPanel. The PatchPanel adds a higher level of flexibili-
ty than C2 through run-time translation specification.

Bleser’s Toto [3], a GUI toolkit, realized the importance of
the type of flexibility our PatchPanel intermediary pro-
vides—it included several “candidate technique actions” for
a variety of tasks. Beaudouin-Lafon’s concept of “Degree of
Integration” [2] discussed the mapping of devices to tasks
that require a different number of dimensions than the de-
vice offers (for instance, when mapping a 2-D device like a
wireless mouse to provide control for a 1-D slider). Our
intermediary software allows for dynamic re-mappings of
devices to events, and handles the transformations and
normalizations to address dimension mismatches.

Classification schemes for input devices have been pro-
posed earlier by Buxton [4] and Card et al. [5], classifying
such devices by the axes they moved along (either linear or
rotary), whether they reported position/rotation, changes in
position/rotation, force/torque, and/or changes in
force/torque, and the range of values they provided (from a
single value to an infinite range). However, we found this
scheme too narrow for describing iStuff, as it does not
classify devices of varying modalities (such as speech), nor
provide for the classification of output devices.

ISTUFF ARCHITECTURE
To create a convenient toolkit for physical UI prototyping
in the iRoom, we developed the following requirements:

• Flexible, lightweight devices.
• Platform independence and cross-platform capabilities.
• Wireless protocol independence.
• Ease of integration with existing applications.
• Support for multiple simultaneous users.

To meet these requirements, we created the iStuff architec-
ture, which consists of iStuff components that provide the
physical toolkit of wireless input and output devices, asyn-
chronous communication based on iROS Events, and the
PatchPanel intermediary to dynamically re-map events to
applications. This architecture is summarized in Figure 1.
Each element is described in further detail below.

Event Heap

PatchPanel Proxy

iStuff Device

Transceiver

iS
tu

ff
 c

om
po

ne
nt

Application

Wireless connection

iStuff Architecture

Figure 1: iStuff architecture diagram.

iStuff Components

iStuff components consist of wireless devices paired with a
machine connected to the Event Heap that has a transceiver
and related software and serves as a proxy to the room.
Both device and proxy are required for an iStuff compo-
nent, although multiple iStuff devices can share a proxy.
This design isolates most of the “smarts” in the proxy,
allowing the physical devices to be very simple and light-
weight. For example, most of our custom-built iStuff is
based on a simple RF transmitter/receiver connected
through a USB port to a PC proxy. The iStuff devices con-
tain inexpensive chips that match the transmitter/receiver
plus simple input and output hardware such as buttons,
sliders, buzzers and lights.

All that is necessary for a physical device to become an
iStuff component is a proxy that encapsulates data into an
event (or extracts data from it), making iStuff independent
of any particular wireless protocol or technology. This ar-
chitecture also made it easy to assimilate off-the-shelf
hardware technologies like X10 (www.x10.com), the Anoto
Pen (www.anoto.com), or even a wireless mouse into the
iStuff family.

This division into device and proxy makes iStuff easy to
construct and reproduce, lightweight, inexpensive, and ex-
tensible to a wide variety of protocols and technologies.

Event Communication

iStuff components communicate with applications using
events, as supported by the iROS infrastructure. Conceptu-
ally, an event is a message or a tuple that contains a type
and an optional number of fields containing key-value
pairs. Producers post events to the Event Heap, and con-
sumers register to receive events, specifying the event type
and, optionally, other criteria based on matching the con-
tent of specific fields. This creates a communications
mechanism that extends the notion of an event queue to an
entire interactive room, with multiple machines and users.
It is designed specifically to be robust against failure, and
to support easy restarting of arbitrary parts of the system
(including the central Event Heap itself). The iROS im-
plementation is primarily in Java, to make it platform-in-
dependent, and is available in Open Source distribution
from http://iros.sourceforge.net/.

An iStuff component is associated with an iStuff event.
However, rather than working directly with iStuff compo-
nent events, application programmers are encouraged to
create their own abstracted event types that make sense in
their application, and to use the PatchPanel to translate
between iStuff events and application-specific events. For
example, instead of expecting input such as “GetMouse-
Position,” an iStuff application may expect a “NewPosi-
tionEvent.” This event can be supplied by a mouse, a touch
panel, a slider, or a set of wireless wands, depending upon
the current PatchPanel configuration. Similarly, an applica-
tion can provide feedback with a “FeedbackEvent.” This
can be translated into an event that creates a sound, a light
or even graphical feedback on some display. iROS and its
Event Heap were designed to efficiently support such in-

termediation, making them an ideal platform for the iStuff
toolkit.

PatchPanel

The original version of iStuff did not include a PatchPanel,
but we quickly found that this is a critical component for
flexible prototyping. A layer of abstraction is necessary for
toolkit flexibility and reuse as demonstrated in [13,14,18].
For example, we created an application called iPong, mod-
eled after the original arcade game Pong, but designed to
span multiple displays and machines. It listened for device-
level mouse input so its paddles could be moved with a
mouse or a touch panel. To map an iSlider to a paddle re-
quired changing iPong to listen for iSlider events. To make
it listen instead to a wand would require another change.
To solve this problem, iPong was rewritten to listen for a
“MovePaddle” event. The PatchPanel is then used to map
suitable iStuff events to MovePaddle events. The abstrac-
tion allows for devices and applications to evolve inde-
pendently, allowing new devices to be seamlessly intro-
duced.

A more critical component than abstraction for physical
UI’s is dynamic flow control or run-time retargetability that
the PatchPanel provides. This allows for users to change
the “focus” of input or output. In a modern desktop envi-
ronment, the floating cursor is used to bring windows and
objects into focus to direct user keyboard input. This
model does not extend to a distributed physical space
where a GUI doesn’t necessarily exist. The PatchPanel en-
ables the same redirected I/O functionality.

The PatchPanel consists of an intermediary application that
implements event mapping, and one or more GUIs that
provide a user-accessible way to configure events.

PatchPanel Intermediary
The PatchPanel intermediary exists as an Event Heap client
that non-destructively translates events from one type to
another. It listens for all events, translating those that
match its event-mapping configuration. The configuration
itself is updated by sending Event Heap events to the in-
termediary, which allows any program to dynamically re-
configure event mappings. To create a mapping through the
intermediary, the user must generate an event of type In-
termediaryConfigEvent with the appropriate fields that re-
present the event to translate and its mapping. When the
intermediary receives a new IntermediaryConfigEvent, it
updates its internal translation look-up structure.

The simplest event mapping matches only the event type,
generating one complete event from another. Another
common mapping matches both the EventType and a
unique ID field, to discriminate, for example, one iButton
from another.

To support coordinate system translation, the intermediary
allows the specification of simple arithmetic expressions
(affine transformations) to convert fields from an incoming
event to values in an outgoing event. For example, the
iStuff slider event has a field that specifies its current
value, which must be rescaled to map to the correct loca-
tion in an iPong MovePaddle event.

PatchPanel GUI
The PatchPanel GUI presents the user with a graphical tool
for creating event mappings. After the user specifies a parti-
cular event translation, the PatchPanel GUI posts an Inter-
mediaryConfigEvent to update the Intermediary. This inter-
face allows an experimenter to combine existing iStuff
components to prototype a new physical device and to map
that device to an existing application without writing any
code.

Because of the intermediary’s event-based API, the Patch-
Panel GUI is completely independent from the intermediary
and may be running on a separate machine connected to the
same Event Heap. Often, it is convenient to make the GUI
web-based, for easy access. The GUI can be general, or cus-
tomized for a specific application, as described in the mee-
ting capture scenario in the “Examples Of Use” section
later.

PatchPanel Example
The Super Slider is a device that is built from a combina-
tion of multiple iStuff components: an iSlider based on RF
technology and a pair of iButtons based on X10 technolo-
gy. We want to configure these to create a slider that alter-
nately drives the left and right paddles of iPong. The but-
tons are used to dynamically select which paddle is being
driven by the iSlider.

The iSlider and iButton both produce events of type
“iStuffInputEvent” with some common fields including
“DeviceType” and an “ID” field that is a unique device
identifier. The iSlider device also has the fields “Value”,
“Max”, and “Min” which correspond to the current, maxi-
mum, and minimum value respectively for the particular
hardware being used.

The iPong application developer has defined a set of events
of type “iPongEvent,” one of which has the subtype field
“MovePaddle.” This event also contains the fields: “Side,”
a string that specifies left or right paddle, and “Yloc,” an
integer specifying the location on the Y-axis within a fixed
range of 0–700.

The basic translation that maps an iSlider to a MovePaddle
event first matches any iStuffInputEvent whose Device is
Slider. It then creates an iPongEvent whose subtype is
MovePaddle. The Yloc field is defined as an expression,
(Value–Min)*700/(Max–Min), where Value, Min and Max
are all fields of the iStuffInputEvent.

The translation can be expressed as a string that is included
as a field in an event of type “IntermediaryConfigEvent”
which is sent to the PatchPanel intermediary to update the
configuration.

To have the iButtons dynamically map the iSlider to the
left or right paddles, the iButton events are mapped to In-
termediaryConfigEvents that express the above mapping
and place the desired side in the “Side” field of the transla-
ted MovePaddle Event. The end user can then alternately
manipulate the left and right paddles with the iSlider by
pushing the corresponding iButton. Note that this dynamic
reconfiguration of the PatchPanel requires an architecture
that allows rerouting events at runtime, something the

iStuff framework supports in contrast to toolkits such as
[13,14,18].

ISTUFF COMPONENTS AND DESIGN SPACE
Several different iStuff components have been implemented
in our lab using both homemade devices and off-the-shelf
devices, as shown in Figure 2. For interested parties, our
designs are freely available from our website
(http://istuff.stanford.edu/). In this section, we will briefly
describe a subset of iStuff components, then arrange them
into a general design space for ubicomp interaction devices.
While preliminary, this design space provides a better un-
derstanding of the breadth of iStuff and indicates areas left
unexplored so far.

iButtons

iStylus

iMouse

iMike

iDog

iSlider

X10

iPen

RF

iSpeaker iLight

iBuzzer

Figure 2: Examples of iStuff input/output components

iButton: This is the most basic binary input component
and an essential building block for many different physical
user interfaces. One style of iButton has been implemented
using homemade circuitry and a garage-door-opener style
radio frequency (RF) transmitter. Another style of iButton
has been implemented using commercially available X10
keychain remotes.

iSlider and iKnob: These are one-dimensional input com-
ponents that report absolute (iSlider) or relative (iKnob)
position over a fixed axis. They have been implemented
using homemade circuitry coupled with an RF transmitter.

iMouse: The iMouse is a standard off-the-shelf Logitech
wireless mouse. Its iStuff proxy converts mouse motion
into iStuff events sent to the Event Heap. Any application
connected to the Event Heap can therefore receive input
from the mouse. We have extended the system with events
to allow passing the mouse cursor between multiple dis-
plays, making the iMouse a room-wide pointing device
similar to [12]. This also allows single applications to lis-
ten to the iMouse in addition to other input device streams,
removing the barrier of "one user with one set of input de-

vices" that is engrained in desktop computing hardware,
operating systems, and applications.

iWand: This is an input component that reports absolute
position over a fixed 2-D space. The iWand is implemented
using off-the-shelf infrared MIDI wands.

iPen: The iPen is a component that supports handwriting
input. This is implemented using the Anoto pen, a com-
mercially available Bluetooth device.

iMike: This is a voice input component, implemented us-
ing a wireless microphone coupled with a proxy containing
the IBM WebSphere Voice Server [20] speech recognition
engine that supports VoiceXML menu definitions. As
voice commands are recognized, events are generated and
posted to the Event Heap.

iLight, iBuzzer and iVibe: These are binary output compo-
nents, implemented using homemade circuitry and an RF
transmitter. They provide visual (iLight), audio (iBuzzer)
and haptic (iVibe) output.

iSpeaker: This is a continuous audio output component.
The PC proxy runs a daemon that accepts both text strings
for text-to-speech translation, and links to audio files to
play. The daemon then sends the audio signal to the sound
card of the proxy, which is connected to a commercially
available FM transmitter. The wireless speaker itself is
simply an off-the-shelf portable FM radio tuned to the ap-
propriate frequency. Despite this low-tech construction, the
iSpeaker appears to applications as a mobile speaker.

Design Space
By classifying iStuff into several categories (Figure 3), our
goal is to define a design space for ubicomp interfaces.
Using this taxonomy, we are able to pinpoint gaps in the
breadth of our toolkit and mark them as areas for future
development. This format builds upon earlier work in de-
vice design spaces and classification mentioned in [4,5].

We propose a five-part space for ubicomp interaction com-
ponents such as iStuff: direction, modality used/sense ad-
dressed, resolution, dimensions, and relative vs. absolute.
We describe each of these dimensions in more detail in the
remainder of this section.

Direction
This attribute indicates whether a device is used to provide
input, output, or both.

Sense Addressed / Modality Used
For input devices, this attribute describes the modalities
used to operate an input device—manual (e.g., mouse or
stylus), visual (e.g., eye-tracking input), acoustic (e.g.,
sound or speech input), thermal (heat sensors), etc. For
output components, this describes the sense(s) which per-
ceive the output—visual (LEDs, displays), auditory (noise
or speech output), haptic (force, temperature changes), etc.

Resolution
For an input device, resolution is analogous to Card et al.’s
property that classifies the domain provided by the device

(1) iButton

(2) iSlider

(3) iMike

(4) iWand

(5) iPen

(6) iVibe

(7) iBuzzer

(8) iLight

(9) iSpeaker

(10) iKnob

(11) iMouse

= manual

= auditory

= haptic

= visual

Sense/Modality

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t

0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

1

6

7

8

2 3

9

10

4 5

11

(1) iButton

(2) iSlider

(3) iMike

(4) iWand

(5) iPen

(6) iVibe

(7) iBuzzer

(8) iLight

(9) iSpeaker

(10) iKnob

(11) iMouse

=

=

=

=

Sense/Modality

=

=

=

=

=

=

=

=

iStuff Device

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t

0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

1

6

7

8

2 3

9

10

4 5

11

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t

0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

1

6

7

8

2 3

9

10

4 5

11

R
el

at
iv

e
A

bs
ol

ut
e In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t

0D 1D 2D 3D

Binary Fixed
Range

Infinite Binary Binary BinaryFixed
Range

Fixed
Range

Fixed
Range

Infinite Infinite Infinite

1

6

7

8

2 3

9

10

4 5

11

D
ir

ec
tio

n

Resolution

Dimensions

Figure 3 classifies the iStuff devices we have implemented thus far. Inspection of the diagram yields directions for
future work—for instance, developing more non-manual input devices and higher-resolution output components.

as ranging from a single, binary value to an infinite range
of values. For output devices, the interpretation of resolu-
tion varies depending on the sense addressed. For visual
output, resolution means number of pixels, levels of
brightness, and/or number of colors. Resolution of auditory
devices can range from one-bit (as in a buzzer) to near-infi-
nite (as in a speaker). For haptic feedback, resolution de-
scribes whether a binary value (presence/absence of feed-
back) or a range of values can be provided.

Dimensions
For manual input and visual output devices, the familiar
concepts of 0, 1, 2, and 3D are applicable. Upon inspec-
tion, such concepts apply to other modalities as well—for
instance, sound output could provide 3D information if
high-quality “surround sound” speakers were used to pro-
vide a sense of location to the sound. Similarly, vocal in-
put could carry with it dimensional information if triangu-
lation techniques were used to pinpoint the location of the
speaker.

Relative vs. Absolute
This concept applies not only in the familiar domain of
manual input (with a stylus providing absolute positional
information while a mouse provides the relative variety),
but to other domains/directions as well. For instance, an
audio output device could be absolute, conveying the pres-
ence or absence of a sound, or it could be relative, convey-
ing a change in pitch.

Other Attributes of Ubicomp Interaction Devices
In addition to the five aforementioned dimensions, we have
found “mount-time” and “directionality” to be additional
important traits of ubicomp interaction devices.

Mount-time refers to the effort necessary to use an interac-
tion device. Camera-based gesture recognition has no
mount-time because the user does not need to engage any
special equipment besides their hands. A mouse has a very
small mount-time since it must be grasped, and a glove
requires a much higher mount-time since it must be put on.
High mount-time is not restricted to input devices—a head-
mounted stereo display would be an example of a cumber-
some output component.

Directionality, or scope, measures whether a device is targe-
ted to one, many, or all of the users in a room. For in-
stance, an earbud-type speaker targets its output to one
user, while a large wall-mounted speaker’s output is heard
by all occupants inside a room. Input can also exhibit di-
rectionality—a keyboard used to authenticate to a system is
a one-user device, while camera-based face recognition
could capture multiple people simultaneously.

Since we are only beginning to explore the ramifications of
these two traits, we did not feel they were developed
enough to include in our design space at this time.

EXAMPLES OF USE
We tested the effectiveness of our toolkit by making it
available to other researchers in the iRoom. In addition to
the intended purpose of quickly combining components to
prototype devices, developers and researchers in the room
also used iStuff to explore various aspects of physical in-

teraction. This included experimenting with physical form
factors, as well as augmenting, and in some cases even
replacing, application GUIs.

Encapsulating Events
The iROS infrastructure itself provides several services to
the room. One of these services, known as iCrafter [16],
exposes software interfaces via the Event Heap to objects
and applications in the room. iButtons were quickly recog-
nized as a convenient interaction medium to activate these
services, such as turning on the lights, launching web
pages, or starting applications on the iRoom displays. For
example, an iButton was configured to “start the room”
which meant turning on all the lights and projectors,
launching the standard applications and opening a help
page—a good example of how the one-to-many mapping
feature of the intermediary can be used. The ease of this
configuration task should be emphasized—this button can
be configured in approximately 30 seconds using a web-
based patch panel, and requires no further coding.

Meeting Capture Software
iStuff was used to add functionality to another research
project in the iRoom. One of the developers in the room
had been working on a meeting capture program. During
user studies, participants expressed a desire to discreetly
annotate important moments in the meeting for use during
the post-meeting review. They felt a type-in window would
make it too obvious they were adding an annotation, which
might be disruptive. We were able to integrate iButtons
into this application by mapping them to an event imple-
mented by the meeting capture software.

A new PatchPanel GUI was created to specifically custo-
mize iButtons for this application. A web-based servlet was
created that contained a single user input field for the meet-
ing participants to enter a name. After submitting the
name, the web page instructed them to select and press
their personal iButton for the meeting. The servlet sub-
scribed for the next iButton event and automatically
mapped that particular iButton to the name entered just
prior to the button press. This specialized GUI made it very
easy for non-technical meeting participants who had no
background knowledge of iStuff to map event translations
in the intermediary for their particular task.

iDog
A developer incorporated an iButton into a small stuffed
dog, creating the iDog. The button switch was replaced
with a gravity switch so that every time the dog was turned
over the switch was activated. The iDog had no intended
purpose, but has been creatively configured by other room
developers through the PatchPanel to ‘bark’ by playing a
sound out the iSpeaker. The iDog is an important example
because it was created in an attempt to inspire applica-
tions—inspiring the development of novel interfaces was
one of the original goals of the iStuff project.

iClub
A rambunctious group of computer science undergraduates
decided to use the infrastructure in our interactive room to
develop their senior design project, transforming the room
into an interactive dance club. The students used iStuff to

create physical interaction mechanisms so that “clubbers”
could participate in music creation. They chose to use the
iSlider to control a high-frequency filtering mechanism for
the music playing in the room. iStuff allowed the students
to quickly and easily add a physical interface late in the
design of the iClub.

iWall
The iWall is a distributed whiteboard application we have
created that allows multiple people using different cursors
to interact with different images and other graphical objects
on multiple machines and displays. It is an experimental
application written specifically for exploring multi-user
interaction.

The iWall supports multiple users and cursors by associat-
ing each cursor with a unique cursor ID. The iWall expects
a cursor event that contains a field that specifies this cur-
sor’s ID. iStuff is a key enabler of this software interaction
model because it provides each user a physical interaction
device of their choice that can easily be configured to a
different cursor. One user may use a mouse, another user
may use an iWand, and yet another user may use a proto-
typed device that is a combination of two iKnobs. Each
device can be mapped to different cursors that can all co-
exist on a single display.

Light Switch Toggle Button
The PatchPanel can be used to create state machines. A
very simple state machine is demonstrated with the light
switch toggle. The lights in the iRoom can be turned on by
sending events to an X10 controller. iStuff can be used to
create a physical light button for the iRoom that maintains
as state whether the lights are on or off. The physical state
is represented by whether the button is mapped to the event
StateOnEvent or StateOffEvent. The iButton event is ini-
tialized in the PatchPanel to map to a StateOnEvent. The
latter is configured to map both to a LightsOnEvent, and to
an event to remap future events from this iButton to State-
OffEvents. The StateOffEvent is mapped to a LightsOffE-
vent, and to an event to remap the iButton event to a
StateOnEvent. When the iButton is pressed, the lights turn
on, and the toggle state is modified to turn the lights off
on the next press. In this example, the current button state
is visualized simply by the room light itself.

Composite Event Translation
Composite events can be created using state in the Patch-
Panel to establish intermediate stages using event transla-
tions. This idea is demonstrated in Figure 3. For example,
an application would like to be notified when both iBut-
ton1 and iButton2 have been pressed in any arbitrary tem-
poral order. Each button can be configured in the Patch-
Panel to establish a connection between stages as well as an
event to test the “circuit”. The composite event can then be
translated to an event that reinitializes the intermediate
stages.

DISCUSSION
The iStuff toolkit and its supporting infrastructure have
allowed us to implement a wide range of different physical

Figure 3. Composite Events via the PatchPanel

devices, and to start exploring post-desktop input meta-
phors for ubiquitous computing environments. In this sec-
tion we will discuss some of the insights we have gained
using iStuff.

A Toolkit Fosters Exploration
iStuff has provided ourselves and others with a set of
physical, post-desktop user interface components that can
be integrated into research interface prototypes without ex-
ceeding the “threshold of indignation.” This has led to
more adventurous, innovative, and outside-the-box user
interfaces in the research projects created by our group and
visiting project students than before. By providing a play-
ground to effortlessly gather experience with non-standard
interface ideas, the toolkit has also led us to think about
possibilities and challenges of distributed collocated inter-
faces and interactive rooms in a more profound and realistic
way, as exemplified by the following items.

Latency Is Inevitable
The iStuff toolkit depends on network communication, as
do all ubiquitous computing environments. Latency accept-
able for most network communication can be unacceptable
for user input.

We have done some stress-testing in our environment to
begin to understand the limitations of this issue. The most
demanding example is the iStuff implementation of Point-
Right [11]. Under normal conditions, 5–6 users can operate
PointRight simultaneously without noticeable delays,
which is sufficient for experimentation. However, simulta-
neously downloading a movie to a laptop will slow the
entire wireless network significantly, making PointRight
unusable.

The issue of latency is inevitable in ubiquitous computing
because of its distributed nature. Although latency can be
minimized, it must be tolerated at some level in ubiquitous
computing environments. We are now exploring the design
of new feedback techniques and modalities to provide the
user with a mental model of the action that is both com-
prehensible and consistent with what they may observe in
the room.

Streaming I/O
The Event Heap is not an ideal channel for streaming data.
However, the iStuff model includes streaming I/O devices.
Streaming I/O can be integrated into iStuff in two different
ways. First, the iStuff proxy can process the streaming I/O
into higher level abstractions similar to the iMike example
above. Secondly, the Event Heap can be used as a control
channel for an external stream. For example, a video came-
ra can be controlled by start and stop events, and the came-

iButton1 iButton2

iButton1
Composite

iButton2

ra proxy can return an event with a pointer (i.e. a URL) to
the streaming data.

iStuff Is Not Just For The iRoom
While iStuff requires the iROS, the iROS does not require
an iRoom to be effective. It will run quite happily on a
single machine, or perhaps more interestingly, on a collec-
tion of laptops or desktop machines. iStuff can thus be
developed outside of the iRoom, and applied to any net-
worked environments willing to run the iROS.

FUTURE WORK
We hope to continue aiding third parties in prototyping
physical user interfaces, including incorporating iStuff into
an HCI design course or a Mechanical Engineering design
course. We will also submit the Intermediary and Patch-
Panel GUI to be a part of the open source release of iROS.
We intend to use the iWall to perform user studies on how
people move information and control around in a multi-
user, multi-screen, multi-device environment. In addition
we intend to continue expanding the iStuff component fa-
mily to make the device spectrum more complete, evolving
our taxonomy into a design space. Lastly, we will continue
to explore novel interaction techniques in our interactive
workspace, using our iStuff toolkit.

CONCLUSIONS
In summary, the iStuff toolkit has proved to be a flexible
prototyping platform for post-desktop ubiquitous compu-
ting interaction. This paper described a number of iStuff
components and their application. An important aspect of
the iStuff framework is the flexibility its PatchPanel inter-
mediary provides. We hope that the iStuff toolkit and
framework will help us and others to further explore and
systematically study interaction techniques for ubiquitous
computing environments, to help uncover what will be the
WIMP interface of the post-desktop era.

ACKNOWLEDGMENTS
We’d like to give special thanks to Joyce Ho for her work
on the iMike, Ya’ir Aizenman for his work on iWall and
general iStuff improvements, Michael Champlin for his
work on iStuff hardware, Jeff Raymakers for his work on
the Event Heap based PointRight, and Robert Brydon for
his work on iWall, iWands, the Event Heap based Point-
Right, and for feedback on revisions of this paper.

This material is based upon work supported under a Natio-
nal Science Foundation Graduate Research Fellowship and
the Wallenberg Foundation. Any opinions, findings, con-
clusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the
views of the funding agencies.

REFERENCES
1. Abowd, G., Mynatt, E., and Rodden, T. The Human

Experience. IEEE Pervasive Computing Magazine, 1(1),
January–March 2002.

2. Beaudouin-Lafon, M. Instrumental Interaction: An In-
teraction Model for Designing Post-WIMP User Inter-
faces. Proc. CHI 2000, 446–453.

3. Bleser, T. and Sibert, J. Toto: A Tool for Selecting
Interaction Techniques. Proc. UIST 1990, 135–142.

4. Buxton, W. Lexical and Pragmatic Considerations of
Input Structures. Computer Graphics, 17(1), 31–37.
1983.

5. Card, S., Mackinlay, J., and Robertson, G. The Design
Space of Input Devices. Proc. CHI 1990, 117–124.

6. Fischer, M., Stone, M., Liston, K., Kunz, J., Singhal,
V. Multi-stakeholder Collaboration: The CIFE iRoom.
Proc. CIB W78 Conference 2002: Distributing Knowl-
edge in Building, 6–13.

7. Foley, J. D., Wallace, V. L., Chan, P. The Human Fac-
tors of Computer Graphics Interaction Techniques.
IEEE Comput. Gr. Appl. 4(11), 13–48. 1984.

8. Greenberg, S. and Fitchett, C. Phidgets: Easy Devel-
opment of Physical Interfaces Through Physical Wid-
gets. Proc. UIST 2001, 209–218.

9. Ishii, H. and Ullmer, B. Tangible Bits: Towards Seam-
less Interfaces Between People, Bits and Atoms. Proc.
CHI 1997, 234–241.

10. Johanson, B. and Fox, A. The Event Heap: A Coordi-
nation Infrastructure for Interactive Workspaces. Pro-
ceedings of the 4th IEEE Workshop on Mobile Com-
puter Systems and Applications (WMCSA-2002), Calli-
coon, New York, June 2002.

11. Johanson, B., Fox, A., and Winograd, T. The Interac-
tive Workspaces Project: Experiences with Ubiquitous
Computing Rooms. IEEE Pervasive Computing Maga-
zine, 1(2), April–June 2002.

12. Johanson, B., Hutchins, G., Stone, M., and Winograd,
T. PointRight: Experience with Flexible Input Redirec-
tion in Interactive Workspaces. Proc. UIST 2002 (to
appear).

13. Myers, B. A New Model for Handling Input. ACM
Trans on Info. Sys., 8(3), 289–320. 1990.

14. Myers, B. Kosbie, D. Reusable Hierarchical Command
Objects. CHI 1996.

15. Olsen, D., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. Cross-modal interaction using XWeb.
Proc. UIST 2000, 191–200.

16. Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., and
Winograd, T. iCrafter: A Service Framework for Ubi-
quitous Computing Environments. Proceedings of
Ubiquitous Computing Conference (UBICOMP) 2001.

17. Salber, D., Dey, A., and Abowd, G. The Context
Toolkit: Aiding the Development of Context-Enabled
Applications. Proc. CHI 1999, 434–441.

18. Taylor, R., et al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transac-
tions on Software Engineering, June 1996.

19. Weiser, M. The Computer for the 21st Century. Scienti-
fic American, 265(3), September 1991, 94–104.

20. “IBM WebSphere Voice Server: An IBM White Paper,”
IBM, October 2001.

