
Fuzzy Rewriting
Soft Program Semantics for Children -

Yasunori Harada
NTT Communication Science Laboratories

NTT Corporation

haraCDacm.org

Abstract--Rewriting systems are popular in end-user prc-
gramming because complex behavior can be described with
few or no abstractions or variables. However, rewriting sys-
tems have been limited t o manipulating non-rotatable ob-
jects on a grid, such as in Agentsheets or Stageeast Creator.
Systems that allow free-form movement of objects must use
other techniques, such as the sequential programming by
demonstration in Squeak. Viseuit is a new rewriting system
that introduces fuzzy rewriting, which allows freely posi-
tioned and rotated objects t o interact using only rewriting
rules. The result is a system that allows users to specify
animations in a highly interactive way, without textual lan-
guage or menu selections.

Keyword$- Visibility, Rewriting Systems, Rule-based Vi-
sual Language

I. INTRODUCT~ON

Animations are a major part of the Internet and are
being created by more and more people. It typically re-
quires programming-like activity, which can be frustrat-
ing to non-programmers who simply want t o make their
artistic creations move as desired. Simple techniques, like
keyframe animation, can be tedious and produce static re-
sults. Rewriting systems allow one to create dynamic open-
ended animations without programming. However, current
systems are limited to animating objects on a fixed grid.
Rotation is sometimes possible, but requires the user (or
a professional) write a program. This puts many simple
animations out of the reach of many end-users.

The main problem is that removing grids and allowing
rotation gives each object a large number of possible posi-
tions and orientations. It is not practical t o have a differ-
ent rule for each orientation, so we propose a new rewrting
mechnism. fuzzy rewriting’, that combines two techniques.

1. fuzzy matching, which handles a range of relative dis-
tinces and angles: and

2. fuzzy generating, which infers a new (possibly unique)
state that stays within the bounds of user intentions.

A similarity function for object relationships is defined.
It is used during both matching and generating. The func-
tion should be designed according to end-users’ cognition.
In this paper, however, we don’t discuss the end-user a s
pect. Our function of similarity is defined artificially and
has many parameters t o widely change behavior. The fuzzy
rewriting mechanism is implemented in a system calld Vis-
cuit. which allows freely positioned and rotated objects to
interact using only rewriting rules.

‘We don’t use the word ‘fuzzy’ as a technical term

Richard Potter
Japan Science and Technology

pottereis.s.u-tokyo.ac.jp

This paper is organized a s follows. In the next section we
compare our work with others. In section 111 we describe
the behavior of fuzzy rewriting. Viscuit is introduced in
section IV and examples of its use are shown in section V.
Section VI shows precise computing for fuzzy rewriting.

11. RELATED WORKS

Agentsheet [3] is an if-then rule-based visual language.
It is suitible for simulation. In the condition part, several
primitives, visual coditions or nonvisual conditions, can be
used. The user can express object arrangements to express
conditions in a functional programming manner. An object
is located on a grid, so visual expressions are restricted.
Kidsim (Cocoa, Stagecast Creator)[P] is a rewriting visual
langauge for objects on a grid. An object has several ap-
pearances, which can be used for expressing an object’s di-
rection, state, and so on. A rule rewrites arrangements of
objects with its appearance. Flash and Director, by Macro-
media. enable animation of objects that can be rotated, p o
sitioned, and scaled. Motion is directed by keyframes and
is scripted exactly. An animation is tightly controled by
keyframes or algorithmically by scripting. so it is too diffi-
cult for our target end-users. BITPICT[S] and Visulan[7]
are rewriting languages for bitmaps. They find bitmap
patterns that are matched by a before-pattern of a rule
and replace them with the after-patterns of the rules. Vi-
sulan has built-in patterns that express the mouse-button
status. When the system knows the mouse-button status
has changed, it changes the pattern into the corresponding
built-in pattern. To write a program that interacts with
a mouse, the user creates a normal rule that simply looks
for the built-in pattern. BITPICT and Visulan use only
bitmaps for data and programs. There is no hiding of in-
formation. Scott Kim defined this property as “visibility”.
His demonstration system. VIEWPOINT [9], combines a
font editor, a word processer, and a keyboard layout man-
ager. When a user types a key, the system copies a font
pattern from the corresponding key on the keyboard lay-
out into the cursor. Using this technique plus a few special
rules, VIEWPOINT can function as a word processor with
word wrap. ChemTrains[l] is a graph-rewriting visual lan-
guage. When the system finds a graph pattern matching
the before-pattern of a rule. it replaces it with the after-
pattern of the rule. It is a powerful language because of
the high flexibility and expressiveness of the graph repre
sentation.

0-7803-8225-0103/$17.00 0 2003 IEEE 39

http://haraCDacm.org
http://pottereis.s.u-tokyo.ac.jp

All the above systems except VIEWPOINT have two
system modes: editing and running. Typically, using these
systems involves writing programs, setting the initial state,
runing, and stopping. On the other hand, Vispatch[lO]
does not distinguisli between these modes.

Vispatch is a graph rewriting visual language. Each rule
has an event object in a before-pattern and zero or more
event objects in an after-pattern. When a user clicks on or
drags on an object, rewriting is started. If an event object
exists in the after-pattern of a fired rule, the system gener-
ates a new event that starts the next rewriting. Vispatch
successfully achieves interactive rewriting. A rule in Vis-
patch is constructed as an object that can be rewritten by
another Vispatch rule. This enables interactive reflection
and makes a self-extensible graphics editor possible.

There has been much work on a motion generation. In
IS], for example, motion is generated from examples.

111. Fuzzy REWRITING
Fuzzy rewriting is a new rewriting mechanism. Let's look

at some examples. Fig. 1 is a simple rewriting rule. The
horizontal arrow is a rule object that separates an object
group into a before-pattern and an after-pattern. The left
side of a rule object is a before-pattern (called the rule
head), and the right side is an after-pattern (called the rule
body). A explosion mark in a rule head expresses a mouse
click event. The rule head in Fig. 1 includes two objects,
a sun and a star, and one event. The rule body has the
same two objects. only sligbt,ly rotated. This rule means
that, when the sun is clicked, the sun and star rotate.

Fig. 1. Two objects of fuzzy rewriting

target - result

Fig. 2. Executions of Fig. 1

Fig. 2 shows three examples of rewriting with this rule.

When the sun in the targd-column is clicked, objects in
the corresponding result-column replace objects in the cor-
responding target-column. In A, the arrangement of target-
column objects is almost the same as rule-head objects, so
the resulting arrangement is almost the same as the rule-
body. In B, the star is lower than the sun, so the star in
the result is also lower. In C, there is a deformation of
arrangement, so the result is deformed.

Fig. 3 shows two objects whose positions are swapped
so that they are opposite from those in the rule in Fig.
1. There are two possible results? E preserves local con-
straints of the rule that keep rotation directions for each
kind of object, so the star rotates clockwise and the sun
counter-clockwise. F preserves the global constraints of
the rule that decides rotation direction based on a relative
position (not its kind), so a left-hand-side object rotates
counter-clockwise and a right-hand-side object clockwise.

before - after

Fig, 3. Possible results of Fig. 1

Choosing the behaviour raises difficult problems. The
preferences of end-users and the attractiveness of the result
are important. The system needs consistency.

We give priority to local constraints, because our expe-
rience is that this produces more attractive results. They
are also the easiest to implement. Our system therefore
works like E (not F).

Let's compare a traditional rewriting system and a fuzzy
rewriting one. Fig. 4 shows a data space to be rewritten
and several rewritings on it, where a is a rewriting by a rule
that has no variables, b is one by a rule that has variables,
and c represents fuzzy rewriting. In a, a certain point (an
input) is translated into another point (an output). In b. a
certain area is translated into another certain area, and the
correspondence between the input and the output area is
defined by the rule. In c, like a, the rule has no variables.
Points surrounding an input point are translated into other
points surrounding an output point. Unlike b, input and
output are= have no clear border.

20f course, there is another possibility: the rules don't fire for
different posit.ions ofobjects like this. We can control this by changing
the threshold for matching. This is discussed later.

40

.. -- -.. ~

.......

Fig. 4. Several Rewritings

IV. VISCUIT

Viscuit is a new visual langauge that rewrites objects us-
ing the fuzzy techniques described in the previous section.
In this section, we discuss how programs are written and
run with Viscuit.

Viscuit is composed of paper and objects. A user can
place several objects with free position and rotation (but
no scaling) on a piece of paper. Three objects have special
use: A d e object has two sets of objects, the head set and
body set. A rule head includes one event object and a rule
body includes zero or more event objects. An event object
indicates where a click event is expected (in rule heads) or
will be generated (in rule bodies). A pointer object refers
t o another piece of paper.

When a user clicks on a piece of paper, the system traces
pointer objects on the paper recursively, and collects all
rules from the traversed paper. Using the position of a click
and the arrangement of objects on the clicked paper, the
system selects the rule and the most similar arrangement
of target objects. Afterthat the system rewrites objects
according to the selected rule.

rp 5

head body

.... + **d bop
dcaQ

@
Fig. 5. Create a rule

Figs. 5-8 show user views. There is an object palette in
the left of Fig. 5. To create a new object, a user drags the
desired object from a palette and drops it into the target
paper directly. A rule object captures its neighbor objects
as rule head's or body's. After preparing a rule, and setting

event object

4 t

ICk

Fig. 6. Execute a program

Fig. 7. Continuous rewriting

up an object to rewrite, the user clicks the object t o see
the rewriting result. In Fig. 6, the rule says when a car
is clicked it moves forward, so this car (showing middle of
the figure) moves forward by a user click.

When a rule fires, an event object in a rule body
genarates a click event and enqueues it into the event
queue, where it behaves like an actual user click. When
there is no user interaction, the system dequeues a posted
event and tries t o rewrite. In Fig. 7, the rule body has
an event object. By clicking the target car, it moves up-
ward continuously and disappears. A continuous rewriting

Fig. 8. Rotating a car

41

behaves a thread. Therefore, if there are several cars and
they are each clicked by the user, then they move simulta-
neously.

Viscuit lets the user modify rules anytime. In Fig. 8:
the user rotates the car in the rule body while the target
car moves straight. After modifying the rule, the target
car turns. The user can drive the car by modifying rules.

V. EXECUTION EXAMPLES

L

Fig. 9. Rules for driving (A)

Figs. 9 and 10 are two sets of rules that describe how a
car should turn for a certain steering-wheel position. The
difference between them is whether each rule includes a
stand or not. In Fig. 9, the car wants to move to the
same absolute direction as the steering wheel. When the
car heads upward and the steering wheel is turned toward
the right, the car turns right because rule R is fired. Now
that both the car and the steering wheel are pointing In the
same direction, rule S will fire and the car will go straight
(Fig. 11, line A).

On the other hand, when the rules in Fig. 10 are applied
to the target in Fig. 11, rule R in Fig. 10 is always fired,
So the car turns always (Fig. 11, line B). If the steering
wheel turns left, the car always turns left by rule L. If the
steering wheel is straightened out, rule S would always fire
and the car would always go straight.

The difference in these actions depends on the impor-
tance assigned to each relationship. In Fig. 9, there is

L

R

Fig. 10. Rules for driving with a stand (B)

only one relationship, which is the relative angle between
the steering-wheel heading and the car heading. The car
direction therefore affects the rule selection every time, On
the other hand, in Fig. 10: the stand overlaps the steer-
ing wheel. Ovarlapped objects' relationships make higher
similarity. Their relationships are assigned a higher impor-
tance than the car/steering-wheel relationship. Therefore,
the rule is selected based on the relative angle between
steering-wheel and stand.

Fig. 12 shows a single rule that animates soccer players
kicking a hall. Its meaning is that when a soccer ball gets
near the soccer player's foot, the ball should be moved out
and in front of the player's head. In Fig. 13, for each
click by a user or the system on the ball. the soccer player
nearest the ball is selected, and the ball moves close to the
foot of the next soccer player. In the resulting animation,
the hall rotates clockwise like a soccer pass.

Fig. 14 only has one soccer player, but still produces a
continuious animation because after the rule fires, the ball
is still close enough to the soccer players foot to make t,he
rule fire again. When a user clicks, the ball bounces around
the player's head. This is good because the system never
gets in a state totally unlike any of the body patterns.
Therefore, while the system is unpredictable at the fine-
grain level, its overall behaviour can be predicted from the
rules.

Fig. 15 is a rule that shows a pass between two players.

42

Fig. 11. Execution of driving

Fig. 14. Single play

cp Q

Q

Fig. 12. Rule of soccer's pass Fig. 15. Rule of soccer play

For each click on some player A: another player B is selected
by object arrangement and the rule fires. This makes the
ball move to B, and the system clicks B. Both A and B also
move a small distance because they are shifted in the rule
body pattern. The result is that players move about and
seem to be passing the ball. Fig. 16 shows a snapsnot of
the game in mid-play.

VI. MATCHING AND GENERATING OBJECTS

In implementing Viscuit, our strategy is as follows:
1. Define a function rel2 that computes the arrangement

similarity between a pair of objects and another pair
of objects.

2. Use re@ to define a function rel that computes the

arrangement similarity between one group of objects
and another group of objects.

3. Select the rule and its mapping between head objects
and target objects that maximize the value of rel.

4. Fire the rule if normarized rel is higher than the
threshold .

5. Remove and generate objects whose arrangement
maximizes the value of rel.

We define an object as having four attributes: kind, z,
y, and direction, where kind is the kind of object, z and
y are real numbers that express a center position of the
object, and direction is a real number between -180 and
180 that expresses the screen direction of the object.

The distance between the center of an object P and the
center of an object Q is IPQl, the relative direction from P
to Q is rdir(P, Q), and the difference between the heading
of P and the heading of Q is angle(P, Q) (See Fig. 17).

The function relZ(A, B , X , Y) , which computes the sim-
ilarity between relationship A and B and relationship X
and Y is defined as

r e l 2 (A , B , X , Y) = C ~ c 5 (~ A B ~ J X Y / ~ W ~)
+<C16(rdir(A:B), rdir(X, Y), W ,)
+<CzS(rdir(B>A), r d i r (Y , X) , W2)
+C36(angle(A, B) , ang le (X , Y) , W3)

where difference 6 and weight < are

Fig. 13. Animation of soccer's pass 6 (X , y, W) = ,-(x--Vr/w

43

'._ '.

Fig. 16. Animation of soccer play

cg -
= 1 - e (l A B I + I X Y l + r P

(1)

The S(Xl Y, !A') becomes 1 if X and Y are the same! other-
wise it is close to 0. < becomes 0 if A and B have the same
position and X and Y have the same position, otherwise
it is close to 1. Parameters Cj and are constants for
tuning the system behavior.

The first term of re@ is a value showing how close dis-
tance JAB1 is to distance / X Y I . The second term is one
showing how close the relative direction rdZr(A, B) is to
the relative direction rdir(X, U) . The third term is one
showing how close the relative direction rdir(B,A) is to
the relative direction d i r (Y , X). rdZr(A, B) is unstable if
.4 and B are very close. Weight 6 is therefore multiplied in
the second and third terms to stabilize rei2 behavior. The
fourth term is a value showing how close angle(A, B) is to
angle(X, Y) .

Fig. 17. Similarity between two pairs

Using relZ(A, B , X , Y) , we define function rel, which
computes the similarity between an object group A and

another object group that is defined by mapping function
map as

rel(A,map) = w(i,j)relz(Z,j,map(i),mc~p(j))
i E A . i G A

.#,

where w (i , j) is a weight whose value changes according to
whether object i and object j overlap or not. If they do,
w has a higher value. This means ovarlapped objects get
priority over other relationships.

Fig. 18 shows an example of a fuzzy rewriting. There is
a rule that includes head objects (a, b, c), body objects (A,
B, C), and ail event object 011 object a of the head. When
a user clicks on object 2 , the system is activated. The
system tries to match head objects and several objects on
the target. Here: let some mapping mat be 2 = mat(a), 3 =
mat(6) and 4 = mat(c). The value of rel({a,b,c},mat),
called the matching value of the rule, is computed by

re l ({a , b,c}, mat) = w(a, b)rel2(a,6,2,3)
+w(b,c)reZZ(b,c,3,4)
+w(c,a)rel2(c,a,4,2).

The system looks for a mapping that maxmizes the match-
ing value of this rule. Let this matching value be the max-
mun matching value (MMV) of the rule and this mapping
be the maxmun mapping of the rule. For each available
rule, the system selects one rule that has the maxmun
MMV. Whether the selected rule is fired or not depends
on how similar the relationships are. MMV is normalized
by percentage. A normalized MMV of 100% means the
rule and the target have the same relationship exactly. If
the normalized MMV of the selected rule is higher than the
predefined threshold, the rule is fired.

Fig. 18. Matching and generating

After the rule is fired, objects corresponding to rule head
objects {2,3,4} are deleted and other objects correspond-
ing to rule body objects {7,8:9} are generated. Let's de-
note the mapping gen corresponding to rule body objects
and generated objects as 8 = gen(B), 9 = gen(A) and
7 = gen(C).

44

Arrangements of generated objects are computed by
maximizing the following expression:

G(H, B: mat, gen) = 1 u (i > j) r e l 2 (i , j , m a t (i) : g e n (j))
.e , ,
> E "
iii

+rel(B, yen)

This means the first term computes a value showing how
similar the relationships of head-body objects are to those
of deleted/generated objects. In this example, the first
term is

w(a,A)rel2(a:A,2, 9)
+w(b, B)re/Z(b,B, i, 8)

+w(c, C)reL?(c, C, 4,7),

The second term computes a value showing how similar
the relationships of body objects are to those of generated
objects. This is the reason for the swinging hall animation
in Fig. 14, there are opposite effects (a ball go upward or
downward) from the first and second terms.

To simplyfy computing, if all attributes of a head object
and a body are the same. The system doesn't touch it
(i.e., dowsn't delete and generate). A user interface support
exists for this. When the user modifies a rule, a body object
motion is snapped according to head objects location and
angle.

VII. CONSIDERATION

Viscuit inherits features of rewriting language, so it has
the basic mechanisms of computing. A sequence of click
events has thread behaviour, as already mentioned. Vis-
cuit also has rule inheritance because object patterns can
express inclusion relationships. For example, each rule in
Fig. 9 includes a rule in Fig. 10. If we use these rule
sets simultaneously, the rules of Fig. 10 are used when the
steering-wheel and stand overlap, and those of Fig. 9 are
used otherwise.

Fig. 19. Rewriting with several rules

Fig. 19 shows rewritings with several rules. In tradi-
tional rewriting, sometimes input areas of several rules with
variables overlap like in d. In such a case, prioritizing the
rules allows the system to control which rules should be
fired. In this way. a complement of input areas can be
expressed. On the other hand, in a fuzzy rewriting s y s
tem: only fuzzy areas are expressed for each rule, so such
a complement is difficult t o express.

To express a complicated relationship by fuzzy rewrit-
ing, several rules (pairs of point) are given, like in e. These
behave like a rule with variables (in Fig. 4b). This p r e
cess is called Programming by Example (PBE). In a PBE
system, if there are insufficient examples to generate rules
(program), the system cannot proceed. However, in a fuzzy
rewriting system, it is okay to do something, hut the result
becomes vague.

In Fig. 10, although the steering-wheel direction is
matched fuzzily, the generated car animation moves in only
one of three discrete ways: straight, curving at a set radius
to the right, or curving at a set radius to the left. On might
ask how we could have the steering-wheel control the car's
turn in fine increments. One area for future research is
to consider how to merge rules when more than one has
high similarity. This would allow linear approximations
to he expressed, which would create smooth intermediate
behaviours. This is an example of Fig. 19e.

The threshold of the fire ratio can he adjusted by the
user. The user repeatedly issues an event but no rule fires,
and the system automatically lowers the threshold until
some rule will fire. On the other hand, if many rewritings
occur whose ratio is much higher than the current thresh-
old, then the threshold is automatically raised to avoid
unwanted rewriting. An event generated by the system
doesn't affect the threshold adjustment.

An informal study of 40 children between age 6 and 10
was performed. The children were happy playing with the
system for 30 minutes. In a post study interview, over 90%
of the children said the system was interesting. They had
no trouble creating rules, and experimented with them un-
til they got the desired effect. However 25% of the children
felt that Viscuit has user interface problems. We are im-
proving the usability of the system based on this feedback.
For example, Viscuit's technique for dragging objects al-
lows both position and rotation to be changed with one
mouse drag. Some children had trouble moving the ob-
jects without causing unintended rotation. This should he
easy to fix by fine-tuning parameters that controlling such
user interface behaviours.

VIII. CONCLUSION

We develop a new visual language, Viscuit: and its execu-
tion mechanism, fuzzy rewriting. Viscuit can treat an ob-
ject as free-positioning and free-rotating. A rewriting rule
is interpreted fuzzily, so a similar arrangement of objects
can he rewritten as an appropriate arrangement. By con-
tinuous rewriting, Viscuit can express an animation whose
local behavior is controlled by rules.

Demonstrations and the beta release of Viscuit can he

45

found in h t tp : / / w w . viscuit . com .
ACKNOWLEDGEMENT

We would like to thank Dr. Fusako Kusunoki and Miss
Miyuki Kato of Tama Art University for their contribution
to the visual design of Viscuit.

REFERENCES
111 A. Baba and J . Tanaka : Eviss : a Visual System Having a

Spatial Parser Generator, IPSJ Journal Vol.39 No.05. 023.
[2] A. Cypher, and D.C. Smith : KidSim: End User Programming

of Simulations, CHI' 95.
131 A. &penning. and J.Ambach, Tactile Programming : A Unified

hlanipulation Paradigm Supporting Comprehension, Composi-
tion and Sharing. VL'96.

[4] B.Bel1, and C.Lewis : Chemlkains: A Languages for Creating
Behaving Pictures, VL' 93.

[5] G.W. Furnas : New Graphical Reasoning A4odels for Under-
standing Graphics Interfaces, CHI'95.

[6] K. Kahn: ToonTalk - An Animated Programming Enviran-
ment for Children, Journal of Visual Languages and Computing,
pp.197-217, June, 1996.

171 K. Yamamoto: 3D-Visuian: A 3D Programming Language for
3D Applications. Pacific Workshop on Distributed hlultimedia
Systems (DAlSSG), pp.199-206, 1996.
0. Arikan and D. A. Fonyth : Interactive Motion Generation
from Ezamples, Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, 2002.

[9] S . Kim : Viewpoint : Toward a Computer for Visual Thinkers,
Stanford University, 1988.

[lo] Y. Harada. K. Rliyamoto. R.Onai: VISPATCH: Graphical rule-
based language controlled by user event, VL'ST.

Ill] Stagecast Creator : http://uuu.stagecast.com/

[8]

46

http://uuu.stagecast.com

