
Programming Model Based on Concurrent

Objects for the AIBO Robot

Francisco Mart́ın Rico, Rafaela González-Careaga, Jose Maŕıa Cañas Plaza,

Vicente Matellán Olivera

Grupo de Sistemas y Comunicaciones, ESCET, Universidad Rey Juan Carlos,
C. Tulipn S/N CP. 28933 Mstoles (Madrid), Espaa.

{fmartin,rafaela,jmplaza,vmo}@gsyc.escet.urjc.es

Abstract. This paper presents the object-oriented programing envir-

onment for the AIBO robot, focusing in its concurrency model. Con-

currency problems arise when programming a robot due to the various

sensors and actuators that the programmers must manage. As this man-

agement has some aspects of real time and communication, involves some

coplexity. In order to deal with this complexity Sony has developed a

framework for programming the AIBO Robot. The description of this

API called OPEN-R is presented. Also we will discuss how the under-

lying operating system, APERTOS, hides almost all the complexity of

implement applications compounded of concurrent objects intercommu-

nicated.

1 Introduction

Robotics is a research area that has gained increasing attention in recent years.

Its main goal is to build machines capable of carrying out task, with the flexibil-

ity, robustness and performance exhibited by humans. The robots are primarily

intended to dangerous, dull, dirty, or difficult scenarios. Wielding and painting

in car factories, space rovers, or nuclear plant cleaning are only some samples of

their real application scope.

One of the main issues in robotics research is the autonomy, that is, the

generation of autonomous behaviors in robots. Growing in robot autonomy opens

the door to new applications like service or entertainment robotics. Remarkable

advances in such direction are the robotic vacuum cleaner from iRobot and the

AIBO dog from Sony, a best-seller robotic pet.

Mobile robots are no more than platforms where sensors, actuators and com-

puters are combined. The software that runs in such computers determines the

robot behavior, and provides its autonomy steadily deciding how to act. Gener-

ating autonomous behaviors lies in writing programs for the robot computers.

From that programming standpoint the robots, like general purpose computers,

are endowed with some operating system which provides an API for basic access

to hardware resources like sensors and actuator devices.

Besides such basic access, the programming environment may provide some

features to make easier the software development of robot applications. For in-

stance, robot programs usually have to take care of many tasks at the same

368 Programming Model Based on Concurrent Objects for the AIBO Robot

time: reading sensor measurements, sending motor commands, deciding what
to do next, planning what to do in the future, displaying and receiving events
from some graphical interface, etc.. To support such parallel nature the de-
velopment environment has to provide a model for concurrent programming.
Multi-threading also allows for distribution in the robot applications.

Another desirable feature of robot software is modularity in order to ease
reusing of its components. This results specially useful in robotics as long as new
behaviors can be achieved modulating or combining the existing ones. In such a
way, new software environments have appeared in last years which offer Object
Oriented Programming for several robot platforms: ARIA, for Pioneer robots
(from Activmedia), Mobility for B21 robots (from iRobot) and even OPEN-R
software for AIBO dog (from Sony).

In this paper we are going to explore in depth the concurrent object oriented
programming model for the AIBO robot. This robot is very popular and has
become an exciting benchmark for Artificial Intelligence and Robotics research
(RoboCup [7]). Surprisingly we have detected a lack of detailed documentation
about its programming. The already existing one is scarce and fragmented.

The API, build on top of C++, runs on APERTOS and it is provided by
Sony as the OPEN-R SDK (figure 3). With OPEN-R SDK API, features as,
make AIBO’s joints move, get information from sensors, get image from camera,
use wireless LAN(TCP/IP) can be achieved easily.

The Sony AIBO ERS7 (figure 1 and 2) robot is a completely autonomous
robot which incorporates an embedded MIPS processor running at a clock fre-
quency of 576MHz, and 64MB of main memory. It gets information from the en-
vironment through various hardware components including: a 350K-pixel color
camera, 2 infrared sensors to detect distance and edges, an acceleration sensor, a
vibration sensor, a stereo microphone, paw sensors in the feet to detect whether
a leg is or not on the ground, and tactile sensors in the head, chin and back.
AIBO moves and interacts with its environment through various actuators in-
cluding: a speaker, and 20 motors to move each of the three joints of its four
legs, each of the three joint of its head, its mouth, its ears, and both joints in
the tail. AIBO also incorporates a IEEE 802.11b Wireless LAN card.

This paper is organized as follows: in section 2 we will discuss the main ideas
of APERTOS, we will also show the advantages that OPEN-R, a framework
for programming at the top of APERTOS, gives to the robot programmer. We
will illustrate the OPEN-R SDK API with an example application in section 2,
in which we will see how the concurrency problems are solved in a transparent
way by the system. In section 3 an application of this will be shown. Finally, in
section 4, some remarks are made.

2 OPEN-R

The OPEN-R SDK is a framework that offers a transparent way to program
the Sony AIBO Robot. OPEN-R is the interface that Sony promotes to expand
the capabilities of entertainment robots. This interface is layered and optimized

F. Mart́ın, R. González-Careaga, J.M. Cañas, V. Matellán 369

Fig. 1. Sony AIBO ERS7. Front

Fig. 2. Sony AIBO ERS7. Back

to let the programmers develop efficient software for AIBO. OPEN-R is built
on top of APERTOS operating system. In next sections we will describe both
elements making emphasis in OPEN-R.

2.1 APERTOS

APERTOS is an object-oriented embedded operating system based on meta-
level architecture[1][2]. Many of the APERTOS’ design concepts have a heavy
weight in the way AIBO is programmed with OPEN-R.

Everything in APERTOS is an object. Each object encapsulates the state,
methods which access such state, and a virtual processor which executes its
methods.

The communication inter-objects is made by message passing and the object
execution is guided by events. After the initialization, an object uses to be idle.
When an object wants to communicate with others, it sends a message, writing
the data in shared memory and sending an event to the destination object, which
will eventually be activated, it will read the data and handle it depending on
the message type has arrived. These events has some assigned priority so that

370 Programming Model Based on Concurrent Objects for the AIBO Robot

APERTOS

Sensors Communications Actuators

OPENR: System Layer

OPENR: Application

Fig. 3. Software/Hardware Architecture

it can be distinguished between an ordinary event from a hardware interruption
or other events.

When an object is performing an operation (a method typically) it will not
be interrupted by a event or interruption until the operation is finished to avoid
race conditions. It will achieve this by interruption masking. The message that
can’t be immediately managed is stored in a message buffer allocated in shared
memory. Although all the objects share the same memory space, no object can
overwrite any data belonging to other object. The only exception is in message
buffer case. The message delivered to other object is allocated in a shared re-
gion in memory. APERTOS does not provide a transparent way to protect this
memory. It only provides a counter for references to a memory region.

The objects uses a meta-hierarchy of meta-objects to define its behavior. The
set of meta-object that a object uses is called meta-space. If a object, for example,
wants TCP/IP communication and its meta-space do not support this, the object
can migrate to other meta-space that support this kind of communication.

APERTOS is used in the AIBO robot and in DST-MS9, the Set Top Box
for CS satellite broadcasting (only in Japan). We have no further information
about others devices works with APERTOS.

2.2 OPEN-R basis

The features of OPEN-R software are:

– Modularized Software and inter-object communication. OPEN-R
inherits the properties of its underlying operating system and simplifies it.
In the inter-object communication process OPEN-R does not make use of
the message priorities, all messages have the same priorities.
This communications between objects are set up in an external configuration
file, which is loaded when the robot boots. Communication ports in objects

F. Mart́ın, R. González-Careaga, J.M. Cañas, V. Matellán 371

are uniquely identified by the service name, which let high modularity in
object construction. Modularity allows parallel processing, clarity of design
and an easy way of reusing pre-existing objects.

Object2 Object3

Object1

Fig. 4. OPEN-R Application Software

– Layered structure of the software and services provided by the

system layer. It is important to note a difference between the so called
“system layer” and the “application layer”. The first one contains all the
services necessary to access the robot hardware (through the special objects,
and the application layer, is the one programmed by the user and the one that
uses the system layer interface so that it can access to the robot hardware
without knowing it in detail.
The three principal objects provided by the system layer are:
1. OVirtualRobotComm: this object provides the following services to

the application layer:
- OVirtualRobotComm.Effector. This service receives joint and

LED commands from the application layer’s objects. The struc-
ture in which the data is stored is OCommandVectorData. In the
OCommandVectorData structure, different kinds of commands can
be stored at the same time, so with one single command, we can
change several LEDs and joints values.

- OVirtualRobotComm.Sensor. This service sends data referred
to the sensor and joint values. The structure in which the data is
stored is OSensorFrameVectorData. Also, each OSensorFrameVectorData
might store information about several sensors at the same time.

- OVirtualRobotComm.OFbkImageSensor. This service sends im-
age data that is captured through the camera situated in the front
side of the robots head. The structure in which the camera informa-
tion is stored is OFbkImageSensor. By this structure we can access
to the image in high, medium and low quality. Too we can access by
this structure to a color based image segmentated. This is because

372 Programming Model Based on Concurrent Objects for the AIBO Robot

OPEN-R implements a fast customizable method for color segment-
ation based on color.

2. OVirtualRobotAudioComm: this object provides the following ser-
vices to the application layer:

- OVirtualRobotAudioComm.Mic. This service sends data taken
from the microphones situated in the robot’s ears. The structure in
which data is stored is OSoundVectorData. Sound data is sent every
32ms. The sound data is in the following format: PCM data, 16KHz
and 16bit stereo.

- OVirtualRobotAudioComm.Speaker. This service receives sound
data that will be emitted from the robot’s speaker. The structure in
which data is stored is OSoundVectorData.

3. ANT object: The TCP/IP comunnication service is provided by the
ANT (OPEN-R Networking Toolkit) object. We create an endpoint for
the communication, and two buffers: one for input data and other for
output data.

First of all, we must create two buffers, one for incoming packets an
another one for outgoing messages. This is performed by ANT primitives.
Once this is done, we create an endpoint for each connection we can
handle. For this two steps, this object send synchronous calls to the
ANT object. The ANT object implements IPv4 stack. Four functions
are commonly used for sending and receiving TCP/IP messages:

- receive. We send an OPEN-R message to the ANT object telling it
our intention to receive a TCP/IP packet. This is asynchronous, and
because of this, in this message we tell which is the method (let’s
say receiveCont, for example) which has to handle the packet when
ANT object receives a message.

- receiveCont. When a packet arrives to the endpoint we had set up.,
ANT activates sendCont method to handle the information that the
TCP/IP packet contains.

- send. As we did in receive, we send an OPEN-R message to the ANT
object telling it our intention of sending a TCP/IP packet and we
setup data to be sent. This is synchronous too, so we specify which
method (let’s say sendCont, for example) has to be activated when
the packet has been successfully sent, or has been an error in the
communication.

- sendCont. This method usually handles communications errors and
calls receive to get next packet.

The mentioned System Layer’s services that get data from the application layer
(Effector and Speaker), send a event indicating the object that they are ready
to receive more data once they have handled the last sent data. On the other
hand, the services that send data to the application layer (Sensor, FbkImage
and Mic), send a event indicating the object that they have actually sent the
required data.

F. Mart́ın, R. González-Careaga, J.M. Cañas, V. Matellán 373

2.3 OPEN-R objects

The concept of an object in OPEN-R is similar to the concept of a process in
UNIX, considering the following characteristics:

– Ojects are single-threaded.
– In order to solve the mutual exclusion problem in the shared memory region

exposed previously, OPEN-R provides the RCRegion Class that can access
the shared memory segment (provided by OPEN-R so that objects can place
the data they want to send to each other) and gives a reference counter which
holds the number of objects that have a pointer to a memory region allocated
and behave as a mutual exclusion lock for this memory region.

– The objects in the system communicate by message passing, we say that an
object that sends a message behaves as a subject, and an object that receives
a message has an observer. The message contains data, (any C++ type) and
an identifier (selector) that specifies which method to be executed when the
message arrives. So, an object has several entry-points, unlike usual programs
in personal computers which execution starts at main() function, in OPEN-
R not only the DoInit() method, but any of the functions or methods that
are invoked when a message is received, are also entry-points. As objects are
single-threaded, they can only handle one message at a time, so if a message
is received while another one is being handle, it is put in the message queue
and processed later. There is one message queue per object. While the body
of a message is being executed, if a new message is received, the execution
does not stop, it goes on till the method is completely executed, and then
the new entry point will be activated.
This is the flow of execution of OPEN-R objects (figure 5):

• The object is loaded when the robot boots, the textttDoInit method is
invoked

• The object waits for a message to arrive.
• When a message arrives, the method corresponding to the selector in-

cluded in the message is invoked. The object might send some message
to other objects.

• When the method invoked finishes its execution, it waits for another
message to arrive and so on. In this case, the object we are referring
to in this example is an observer as it is waiting for a message coming
from a subject. An observer knows that a message containing new data
has arrived when it receives a Notify Event from the Subject. A Subject
knows that the Observer is ready to receive new more data when it gets
a Ready Event from the Observer.

2.4 Using OPEN-R

In this section we will explain all the process in the generation of a new ap-
plication, from the configuration of objects, comunication and services, to the
compilation and loading in the robot. We are going to illustrate this with the
Teleoperator example configuration files (Section 5)

374 Programming Model Based on Concurrent Objects for the AIBO Robot

Data
1

3

OBSERVERSUBJECT

Ready Event

Notify Event 2

4
Method

Method

DoInitDoInit DoInit

Fig. 5. Inter-Object Communication Flow

Object definition One object corresponds to one executable file (with .bin
extension) that will be loaded when the system boots. The objects to be
loaded are set up in the OBJECT.CFG file, which is the list of object to load.

Object’s services configuration The number of subjects and observers for
an object is defined in the configuration file STUB.CFG. In this file, the type
of sent data and the methods to be invoked, are also specified. The notion of
stub file is similar to IDL files in CORBA and stubs in Java RMI, where these
files defines the inter-object interfaces to achieve remote method invocation.
OPEN-R also provides a way for execute objects in a distributed way. This
is useful, for instance, for debugging the objects in a PC. This is a example
of STUB.CFG file:

ObjectName : teleoperatorServer
NumOfOSubject : 2

NumOfOObserver : 1
Service : "teleoperatorServer.SendString.char.S", null, null

Service : "teleoperatorServer.Motion.char.S", null, null
Service : "teleoperatorServer.ReceiveString.char.O", null,
Notify()

Network configuration through the WLANCONF.TXT file OPEN-R provides a
method for configure a wireless connection with AIBO. Here we specify all
the aspects related to the network.

HOSTNAME=AIBO
ETHER_IP=193.147.71.22

ETHER_NETMASK=255.255.255.128
IP_GATEWAY=193.147.71.1

ESSID=GSYC_WLAN_SS4
WEPENABLE=0
#WEPKEY=

F. Mart́ın, R. González-Careaga, J.M. Cañas, V. Matellán 375

APMODE=2

#CHANNEL=

DNS_SERVER_1=193.147.71.64

Object’s services communication configuration In the CONNECT.CFG file,
the way in which observers and subjects are connected, is specified:

#

OVirtualRobot --> ImageProcesser

#

OVirtualRobotComm.FbkImageSensor.OFbkImageVectorData.S

ImageProcesser.Image.OFbkImageVectorData.O

#

ImageProcesser <--> TeleoperatorServer

#

TeleoperatorServer.SendString.char.S

ImageProcesser.ReceiveString.char.O

ImageProcesser.SendString.char.S

TeleoperatorServer.ReceiveString.char.O

#

TeleoperatorServer --> Motion

TeleoperatorServer.Motion.char.S Motion.Orden.char.O

#Motion--> locomotion

Motion.ExecuteAA.AtomicAction.S

actuatorControl.ExecuteAA.AtomicAction.O

actuatorControl.ECommander.OCommandVectorData.S

OVirtualRobotComm.Effector.OCommandVectorData.O

actuatorControl.Head.OCommandVectorData.S

OVirtualRobotComm.Effector.OCommandVectorData.O

actuatorControl.Indicators.OCommandVectorData.S

OVirtualRobotComm.Effector.OCommandVectorData.O

actuatorControl.Effectors.OCommandVectorData.S

OVirtualRobotComm.Effector.OCommandVectorData.O

compiling objects For the compilation, we use in a cross compiler for the
MIPS architecture.

Transferring binaries to the robot Once the binaries are generated in the
PC, we transfer them through a card writer to a memory stick that will be
inserted in a slot at the robot

Monitorization through a telnet session at a given port the booting and the
output messages are displayed. This can be used for debugging purposes and
so on.

3 Teleoperator

Here we present an example application that uses the concept discussed before.
The application is an AIBO Teleoperator which is divided in a client and a
server.

The Teleoperator client runs in a PC. It creates a GUI (figure 6) which is
composed by an image box for display the images captured in the AIBO camera,
box for controlling the direction and velocity of actuators and a set of buttons

376 Programming Model Based on Concurrent Objects for the AIBO Robot

for selecting the image size and mode. Too a small box at the bottom shows the
frame per second rate.

This application is designed for display images on demand from AIBO and
sending commands to actuators.

Three image sizes are defined (hight, medium and low resolution) and two
modes (color and black & white). Obviously, this has an impact in the number
of frames per second the robot can transmit.

When we have active any mode of image capture, the client demands an
image to the server. When it receives the image, it displays the image and it
asks for another one.

When we have the Teleoperator active, clicking in the visual joystick we can
setup the velocity and direction of movement. We can stop the movement in any
moment too, clicking at the stop button.

Fig. 6. Teleoperator GUI on PC side

The communication with the AIBO side uses a TCP/IP protocol for sending
commands and receiving images.

The Teleoperator server runs on the AIBO robot and perform the motion
commands selected in the client, sending the images from its camera.

3.1 Client/Server design

The figure 7 shows the high object level design. The blue circles represents
OPEN-R services that provides communication, motion control and camera data.
The left side separated by a vertical line correspond to the client allocated in
the PC. The right side represent the server allocated in AIBO. The red arrow
represent TCP/IP communication and the black arrow OPEN-R messages. Note
that not all the arrows are bidirectional.

F. Mart́ın, R. González-Careaga, J.M. Cañas, V. Matellán 377

Fig. 7. Teleoperator high level design

The OPEN-R objects implemented in the server are:

Teleoperator Server This object receives commands from the client in the Pc
side via TCP/IP. First, it checks whether the message is a motion command
or a vision command. If the message is an image command it sends an OPEN-
R message with the mode of the image asked to the imageProcesser object.
If the message is a motion command it sends an OPEN-R message with the
new kind of movement to the actuatorControl object.

imageProcesser object Each time this object receives and message asking for
a image, the object communicates with the camera and get the image. It may
include some image, and this is the reason for heaving a separate object.

actuatorControl object This object commands the movement of the robot
according to the motion order it received last time. When it receives a new
motion command, it changes its dynamic of movement.
This object has not been implemented by us. It is the motion module im-
plemented in the University of New South Wales (UNSW) [8] and National
ICT Australia (NICTA) for the Robocup Championship. This is so by the
complexity of implement our own motion module.

4 Conclusions

As we have shown, the programming in AIBO is performed by the OPEN-
R API. OPEN-R has several characteristics that APERTOS provides: single-
threaded objects, TCP/IP communication, memory protection, message passing.
The OPEN-R API goal is to provide an interface for the managing of these aspect
in a convenient and easy way, providing an interface to the robot programmer,
so that he only has to worry about the access to low-level components of AIBO
as actuator and sensors.

378 Programming Model Based on Concurrent Objects for the AIBO Robot

In the Teleoperator example we shown how an application is implemented

defining the objects and the communication that will be established between

them when writing such example. We have not had any concurrency or mutual

exclusion problems in mind, and we have concentrate our efforts in the access

and management of sensors and actuators of AIBO Sony robot.

F. Mart́ın, R. González-Careaga, J.M. Cañas, V. Matellán 379

References

[1] Yasuhito Yokote. “The Apertos Reflective Operating System: The Concept
and its implementation”. Sony Computer Science Laboratory Inc. Japan
1992

[2] Jun-ichiro Itoh, Yasuhito Yokote. “Concurrent Object-Oriented Device
Driver Programming in Apertos Operating System”. Sony Computer Sci-
ence Laboratory Inc. Japan 1994

[3] Franois Serra, Jean-Christophe Baillie. “Aibo programming Using OPEN-R
SDK. Tutorial”. ENSTA. France 2003

[4] OPEN-R Documentation. http://openr.aibo.com/
[5] Jean-Charles Fabre and Tanguy Prennou. ”A Metaobject Architecture

for Fault-Tolerant Distributed Systems: The FRIENDS Approach”, IEEE

TRANSACTIONS ON COMPUTERS, Vol 47. January 1998.
[6] H. Mashuhara, S.Mtsuoka, T.Watanabe, and A. Yonezawa. “Object-

Oriented Concurrent Reflective Languages Can Be Implemented Effi-
ciently”, Proc. FTCS-22, pp.386-395, Boston, 1992

[7] Robocup Official Site. http://www.robocup.org/
[8] rUNSWift Robocup Team. University New South Wales (Aus-

tralia).http://www.cse.unsw.edu.au/ robocup/index.phtml

