
Agentsheets: A
Medium for Creating
Domain-Oriented
Visual Languages
Alexander Repenning
Tamara Summer
University of Colorado

Customized visual

representations enable end

users to achieve their

programming goals. Here,

designers work with users to

tailor visual programming

languages to specific problem

domains.

0018-9162/95/$4.00 0 1995 IEEE

n the high-technology workplace, many professionals work in
domains that involve the analysis of complex, dynamic systems. These I systems include computer networks and user interfaces. To cope with

the complexity intrinsic to these domains, environments for visualizing
and interacting with dynamic processes are essential. Using current tech-
nology, creating and modifying such environments often requires tradi-
tional computer science programming skills. However, the professionals
working in these domains typically are not formally trained in comput-
er science, have no interest in learning programming skills per se, and
want to use computers only to solve their specific problems.’

These domain professionals could benefit from visual programming
languages if several barriers to programming were removed. Specifically,
languages should not require users to

1. build up desired program behaviors from low-level programming con-
structs such as iteration and conditionals,2 or

2. bridge the semantic gap between their conceptual model of the prob-
lem to be solved and the computational model of the p r ~ g r a m . ~ . ~

We discuss how these barriers to programming can be lowered through
languages with familiar, visible representations that let users express pro-
grams in terms pertinent to the problem to be solved. We characterize
programming approaches along the dimensions of visualization and
domain orientation4 (Figure 1).

Visualization is a syntactic characteristic indicating how concepts are
presented, that is, the look of concepts but not their semantics. The
Prograph programming language5 is based on the visualization of dataflow
and functional programming. Its two-dimensional visual syntax simpli-
fies program construction. However, Prograph’s language components
use constructs such as iteration and therefore still require users to build
up problem domain behaviors by assembling lower level primitives.

Domain orientation, on the other hand, is a semantic characteristic
describing which things are represented. Domain-oriented languages fea-
ture components directly relevant to end users’ tasks and therefore narrow
the semantic gap between the problem and programming domain^.^
LabView evolved from circuit design.6 It has been enriched with general-
purpose programming constructs but has preserved a domain-oriented fla-
vor. Applications such as Mathematica and Matlab feature domain-oriented
constructs, such as integration and Fourier transformations, familiar to
mathematicians. The spreadsheet formula language can be viewed as being
domain-oriented, since it is based on the tabular forms originally used by
accountants. Many of these languages in the upper half of Figure 1 have
enjoyed widespread success as end-user programming environments.

March 1995

I

A

Figure 1. Languages can be characterized along the dimensions of visualization
and domain orientation. Visualization is a syntactic characteristic indicating
how concepts are presented. Domain orientation, a semantic characteristic
describing which things are represented, can bridge the gap between problem
and programming domains. The Pinball Construction Kit is a domain-oriented
visual language, whereas Prograph is a general-purpose visual language.

We are interested in creating domain-oriented visual
programming languages to support the activities of pro-
fessionals working in domains involving dynamic systems
analysis. These languages elevate the task of program-
ming to the interaction between end users and problem-
related components. For instance, using a domain-
oriented visual language such as the Pinball Construction
Kit, end users program by arranging and interacting with
language components such as bumpers, obstacles, and
flippers3

We describe a design methodology and a tool for creat-
ing domain-oriented, end-user programming languages
that effectively use visualization. We first describe a col-
laborative design methodology involving end users and
designers. We then present Agentsheets, a tool for creat-
ing domain-oriented visual programming languages, and
illustrate how it supports collaborative design by examin-
ing experiences from a real language-design project.

Finally, we summarize the contributions of
our approach and discuss its viability in
industrial design projects.

REAL-TIME COLLABORATIVE
DESIGN METHODOLOGY

Well-designed domain-oriented lan-
guages have a small number of high-level
abstractions.’ These abstractions should be
expressive enough to allow users to state
solutions for commonly occurring prob-
lems, yet constrained enough to shield
users from decisions and details they don’t
want to be concerned with. That is, the
abstraction level of the language compo-
nents should match the user’s conceptual-
ization of the problem. A key challenge in
designing domain-oriented languages is
determining what these abstractions or
language components should be. It’s
unlikely that language designers working
alone could determine these components
because this requires a deep understand-
ing of the end users’ problem domain.
Conversely, it’s unlikely that end users
could articulate what kind of components
they need because much professional
knowledge is tacit and emerges only in
actual practice.’ Thus, end users and
designers need to work together to design
and evolve domain-specific languages
through use to create the right abstractions.

The process
Figure 2 illustrates such a process. These

collaboration sessions typically occupy a
couple of hours when the end user and the
designer meet and write a program to solve
a real task in the problem domain. The key
steps are

1. Use. The end user constructs a program
with the language while the designer pri-
marily observes the process, noting usabil-

ity problems and answering questions as needed.
2. Breakdown. At some point, the end user experiences a

breakdown in the language because the components
it provides are insufficient to express desired concepts
or are somehow inappropriate for the current situa-
tion.

3. Negotiation. At that point, both parties must discuss
the breakdown and negotiate how to modify the lan-
guage to address the shortcoming. In the case of insuf-
ficient expressiveness, both parties must decide which
components to change or add to the language. In our
experience, inappropriate components often result
when the provided domain components are not at the
appropriate abstraction level for the task being per-
formed. In these cases, language changes often involve
modifying or combining existing language compo-
nents to create higher level domain abstractions.

4. Modijication. Once the breakdown and possible lan-

Computer

guage modifications are discussed, the
designer steps in and makes modifica-
tions.

5. Testing. After briefly testing the modi-
fications, the designer gives control
back to the end user, who continues to
construct a program.

The tool
Powerful tool support is required for this

real-time collaborative approach to be
viable. Specifically, the tool must

enable the designer to quickly change
existing language components and add
new ones without disrupting the end
user’s programming process, and
allow control to switch quickly between
the end user and the designer without
losing each party‘s current work context.

These sessions are similar to other forms
of collaborative prototyping. The proto-
types described by Bodker and Gronbaek8
and Madsen and Aiken9 are built with the
Hypercard program. Both projects report
favorably on the extensions made possible
in real time by many of Hypercard’s direct
manipulation features, which easily
change the look and placement of interface
components. However, both projects also
report difficulties when real-time exten-
sions require programming. Madsen and
Aiken9 noted that Hypercard’s “missing
object-oriented features made it harder to
create and modify domain-specific build-
ing blocks” (page 63).

Our approach relies on the Agentsheets
system, which supports the collaborative
design of domain-oriented visual pro-
gramming languages. Agentsheets pro-
vides powerful tools and mechanisms that
enable substantive extensions, such as cre-
ating and modifymg domain-specific lan-
guage components, to be made in real time.

,
End User Designer

1

2

3 breakdown and negotiation on

4

5

End User

Who is
in

charge?

Designer

Figure 2. In a real-time collaborative design session, end users and designers
work together to design and extend the visual language. The end user
constructs a program representing a real problem in the domain under
consideration. When a breakdown is encountered, both parties work together
to understand the cause and to design language modifications in real time to
overcome the breakdown.

AGEIYrSHE€i’S A COLLABORATW)(Y
MEDIUM

AgentsheetslOJ1 is a Macintosh application implement-
ed in Common Lisp. In the last four years, it has been used
to create more than 40 domain-oriented visual program-
ming languages in areas such as art, artificial life, educa-
tion, and environmental design.

Using agents
Visual languages created with Agentsheets consist of

autonomous, communicating agents organized in a grid
similar to a spreadsheet. The grid that contains the agents
is called the agentsheet. An agentsheet cell can contain any
number of stacked agents. Users interact with agents
through direct manipulation. Agents can be animated,
move among cells, and play sounds.

Designers create visual programming languages by
defining the look and behavior of agents. Figure 3 shows
visual languages created for four unique problem
domains. Each language component is an agent (a soft-
ware routine that waits in the background and performs
an action when a specified event occurs). To define the
visual language syntax and semantics, the designer must
specify how agents communicate and how they can be
arranged in the grid. Agent communication can be expZic-
it, using links between agents, or implicit, based on spa-
tial relationships between agents such as proximity, order,
and distance. For instance, the LabSheet application
(Figure 3) uses explicit spatial relationships. The
LabSheet application represents dataflow6 between
agents using links. Agents in LabSheet represent language
components such as data-input cells, data-output cells,
and functions such as multipliers.

In the ProNet application (Figure 3), agents communi-

igure 3. Example Agentsheets applications: LabSheets, ProNet, EcoSwamp, and CityTraff ic.

ite implicitly based on adjacency. Adjacency relation-
lips determine network connectivity; that is, end users
mnect computers such as Macintoshes and Sun work-
ations, using agents representing network wires.
epending on the network specifications given by end
sers, generic network wires proactively turn into more
iecific connections such as Ethernet cables or into nec-
jsary network devices such as gateways.
Agentsheets can also be used to create dynamic simu-

itions such as the EcoSwamp and CityTraffic applications
7igure 3). Both are educational interactive simulation
rograms that use implicit communication between
pnts based on both proximity and overlap. The language
imponents in EcoSwamp are animals such as frogs, alli-
ators, and bugs, and environment patches such as land
nd water. Frogs autonomously move around, eat nearby
ugs, and lay eggs only when in water. In the CityTraffic
pplication, agents representing cars move forward when
piece of road is in front of them and stop when they are
ext to traffic signals.

upporting collaboration through role-
pecific views
An effective collaboration medium requires that the

spective roles of end users and designers be understood;
iat is, tools must

support the tasks that end users and designers individ
ually perform, and
facilitate dialogue between end users and designers.

Agentsheets provides role-specific views and tools to meet
the specific needs of end users and designers (Figure 4).

END USERS INTERACT WITH DOMAIN-ORIENTED
COMPONENTS. End users create programs using language
components based on familiar, visible representations per-
tinent to their problem domain. In the CityTraffic appli-
cation (Figure 4), these components are cars, trains,
streets, and railway tracks. (CityTraffic is an educational
simulation program used by children.) End users “pro-
gram” by assembling these components and interacting
with them.

Assemble components. End users select components from
the Gallery (see Figure 4) and assemble them in the
worksheet into meaningful diagrams. For instance, they
assemble individual road segments into a road system,
put cars onto the roads, and install traffic signals to con-
trol traffic to create a traffic simulation.
Interact with components. End users select tools from
the worksheet’s tool bar and apply them to rearrange,
link, and query components. In the CityTraffic appli-
cation, the state and frequency of traffic lights can be
changed by applying the operate-on tool to traffic
lights. Furthermore, while cars are moving, end users
can change car parameters (such as the likelihood a car
will run a traffic light), introduce additional traffic sig-
nals, and change the topology of streets and railway
tracks. This interaction style extends direct manipula-
tion schemes by allowing end users to more flexibly

omputer

interact with applications consisting of
large numbers of autonomous agents.
We call this interaction style participa-
tory theater" because, in terms of a the-
atrical metaphor,l2 it lets end users
direct the actors (agents) without stop-
ping the play (running the application).

DESIGNERS DEFINE LOOK AND BEHAV-
IOR OF c 0 ~ p o " T s . To support the dia-
logue between end users and designers, a
collaboration medium must provide effi-
cient, incremental mechanisms for the
designer to specify language components
or agents. Agentsheets lets designers

Incrementally define the 1ookofagents.h
agent's look is represented by using
depictions. These are created and stored
in the Gallery using tools available in the
designer view. For instance, designers
can create a horizontal road depiction
using the Depiction Editor (see Figure 7).
However, sometimes in visual languages,
many related depictions are visual vari-
ations of a common underlying theme.
Many depictions are needed for one lan-
guage component to represent the
underlying agent's changes in state.
Language components can also be placed
in many different orientations with a
depiction representing each one.
Creating each related representation by
handwith the depiction editorwould be
tedious and time consuming. In design-
er view, the Gallery provides tools that
help to automate this process. Some tools
help to combine existing depictions to
create new ones. In the CityTraffic appli-
cation, a car depiction could be com-
bined with a gas station depiction to
create a new one representing a car that
is out of gas, that is, a change of state.
Other tools help designers create new
depictions by incrementally modifymg
existing ones using provided geometric

Figure 4. Agentsheets provides role-specific views for end users and designers.
End users compose programs by selecting components in the gallery (1) and
putting them into a worksheet (2). Designers perceive worksheets (2) as
agentsheets (7). that is, agents organized in a grid. They create networks of
related depictions in the expanded gallery (3). design icons with the depiction
editor (6), define behavior with the AgenTalk editor (5) by reusing existing
agent classes found in the class browser (4), and create or subscribe to tools in
the tool store (8). Tools enable end users to interact with agents.

transfo&ations. gCityTraffic;road depictions for many
orientations were needed; the vertical road and bent
road depictions were created automatically from the hor-
izontal road depiction using the provided transforma-
tions.
Incrementally define the behavior of agents. This behav-
ior determines how agents interact with each other and
with end users through tools. Designers define agent
behavior through the AgenTalk editor. Because
AgenTalk is object oriented, behavior can be defined
incrementally through inheritance. The class browser
helps to locate functionality in the form of existing agent
classes. By building on top of these classes, visual lan-
guage components directly inherit many of their basic
behaviors such as the ability to be linked and queried.
Thus, the language designer need only augment these

inherited behaviors with behaviors specific to the prob-
lem domain.

In the CityTraffic application, the behaviors of cars
and trains must be defined. Cars have to follow roads,
watch out for other cars, avoid collisions, and obey traf-
fic signals. To define the behavior of a train to follow
railway tracks, AgenTalk code could look like

(i) (create-class TRAIN
(ii) (sub-class-of ACTIVE-AGENT)
(iii) (instance-methods

(VI
(iv) (FOREGROUND-TASKS 0

(case (effect (0 1) 'depiction)
(vi) (TRACK (self 'move 0 I))))))

The train class (i) is defined as a subclass of ACTIVE-

March 1995

AGENT. Active agents are autonomous agents receiving
FOREGROUND-TASKS messages to initiate actions. The
case statement (v) contains a spatial operator, (effect (0
1) ’depiction), returning the name of the depiction to
the right of the train agent. If the depiction of that agent
on the right is a TRACK depiction (vi), the train moves to
the right. As soon as the class is defined and the agent
scheduler activated, the train begins to follow the tracks.

AgenTalk programming, which requires knowledge
of Lisp and object-oriented principles, is typically done
only by designers. However, end users can define sim-
ple behaviors through graphical rewrite rules,’O which
are before/after pictures that end users can edit.
Define interaction tools. Designers provide mechanisms
for end users to interact with agents by selectively sub-
scribing to existing tools featured in the tool store,
extending the behavior of existing tools, or creating new
domain-specific tools. Agentsheets provides a default
set of tools with predefined behaviors. For instance,
applying the eraser tool to a car will delete it (unless the
designer has specified otherwise).

In summary, Agentsheets enables real-time collaboration
between end users and designers by providing

1. tools specialized to each of their respective roles,
2. the ability to quickly switch between these two roles,

and
3. incremental specification mechanisms that signifi-

cantly shorten the use-redevelopment loop and let lan-
guage extensions be performed in real-time with
end-user participation.

laboration medium during real-time design sessions, using
excerpts from an actual language design project. The visu-
al language discussed is embedded in a design environ-
ment supporting the design and simulation of phone-based
user interfaces-the Voice Dialog Design Environment
(VDDE). This system minimizes the time it takes to proto-
type phone-based interfaces by enabling user-interface
designers to create their own simulations. This system is
the result of a three-year collaboration between researchers
at the University of Colorado and professional user-inter-
face designers at US West Advanced Technologies.

The voice dialog design task
Voice dialog applications are an important technology

for many businesses because they reduce the need for
human phone operators and provide callers with direct
access to information concerning business services. Voice
information systems and voice messaging systems are typ-
ical applications. Designing in this domain means speci-
fying the interface for a voice dialog application at a
detailed level. Interfaces consist of a series of voice-
prompted menus that request the user to perform certain
actions, such as, “To listen to your messages, press l.”The
user issues commands by pressing touch-tone buttons on
the telephone keypad, and the system responds with
appropriate voice phrases.

Interface designs are typically represented using static
diagrams similar to flowcharts. These charts specify the
control flow of the interface, possible user actions, and the
text of all audio prompts and messages in the interface.

It is difficult for designers and end users of these appli-
cations to anticipate what the final audio design will sound
like by simply looking at a static diagram. Thus, simula-
tions are built to let designers and end users directly expe-
rience the final audio interface. Unfortunately, a simple

design simulation takes a professional pro-
grammer several days to build using cur-
rent software packages; a complex design
simulation can take a couple ofweeks. One
goal of the VDDE project was to provide a
design environment that shortened the
time to build simulations by empowering
user-interface designers to quickly create
their own simulations.

THE VDDE LANGUAGE: A CASE STUDY
This section illustrates how Agentsheets served as a col-

System overview
The VDDE system provides a gallery (top

window, Figure 5) of components, such as
voice menus and prompts. The lower two
windows are worksheets where end users
program by assembling language compo-
nents according to three rules:

Figure 5. The Voice Dialog Design Environment. This design is an
interface for a delivery service in a pizza parlor. If customers call
when the business is closed, they hear a standard message. If
customers call during business hours, they can navigate through a

1 series of voice menus to specify their pizza order. The design 1 shown consists of two programs: a subprogram processing the
’ incoming call based on business hours and a subprogram for
1 specifying the desired pizza order.

The horizontal rule. Components placed
physically adjacent to each other within
a row are executed from left to right.
The vertical rule. Components placed
physically adjacent to each other with-
in a column describe available options
at that point in the execution sequence.
The arrow rule. Linking two compo-
nents also defines execution ordering

Computer

and is identical to placing components next to each
other horizontally.

The interface design can be simulated at any time.
Simulation consists of a visual trace of the execution path
combined with an audio presentation of all prompts and
messages encountered.

Analysis of a design session

manipulate this data type. The designer quickly created
these new language components by incrementally refining
the behavior of existing agent classes. The end user then
used these new components to complete her program.

This session uncovered two shortcomings in the visual
language design. In the first case (that is, present and
absent), the functionality provided was sufficient, but its
presentation did not match the user’s conceptualization
of the problem domain. The second case uncovered a

In this session, the end
user wanted to simulate a
new product interface. She
created several voice
menus and then experi-
enced a breakdown in
terms of inappropriate or
unexpected language com-
ponents (see time period 1,
Figure 6). Because the cur-
rent language’s undefined
phone numbers were rep-
resented as zero, determin-
ing if a phone number had
been specified involved
testing for zero. However,
in this domain, it is more
appropriate to think of
phone numbers and other
data items as being either
“present” or “absent.”
Using the depiction editor
provided in Agentsheets’
designer view, the design-
er modified the look of
some language compo-
nents to reflect this domain
terminology.

After further design, the
end user experienced
another breakdown; this
one highlighted a crucial
lack of expressiveness in
the language (see time
period 3, Figure 6). The
current language support-
ed conditional branching
on touch-tone button press-
es. However, features can
be “on” or “off,” or mes-
sages can be “new,”
“saved,” or “unread,” which
demonstrates the impor-
tance of enumerated data
types for this domain. For
this session, the designer
added language compo-
nents to overcome the spe-
cific breakdown by creating
an enumerated type “call
forwarding” with possible
values of “on” or “off,” and
visual components to

Time
Periods

1 ’ I 1 I ‘
1 ExDerience Breakdown: Need to

I I 1 branch to special menu if no I
Cphone number has been specified)

2

4 functionality for collecting a
phone number

Experience Breakdown: Need
to present different voice

menus depending on whether
the service is on or off I

4

rI +-_,, I Create new 1
building blocksJ
by incrementall

L

Use language to assemble (the service-%;dent voice

L L ’ I

System is in
End User View

System is in
Visual

Language
Designer View

System is in
End User View

System is in
Visual

Language
Designer View

System is in
End User View

Figure 6. Language modifications in a two-hour collaborative design session. In
time period 1, the end user experienced a breakdown when trying to branch to
a special menu. In time period 2, the designer modified existing language
components to reflect the domain terminology, “present” and “absent.“ In
time period 3, the end user experienced another breakdown when trying to
create conditional voice menus. In time period 4, the designer added new
language components to reflect a particular enumerated type, “call
forwarding“ with possible values of “on” or “off.” In time period 5, the end
user completed her design.

March1995 1

199 1 1992 1993

Figure 7. Evolution of the VDDE system. The first prototype consisted of six
language components with no domain orientation. By the next generation
shown, the three placement rules and 36 domain-oriented language
components had been defined. These components were expressive, but their
abstraction level was too low. In the final version shown, many of those 36
components had been combined to create higher level domain abstractions.

major expressiveness shortcoming in the current lan-
guagelack of support for user-defined, enumerated data
types. The designer gained valuable information to apply
when designing more general data-type mechanisms in
the next iteration of the language.

Agentsheets was the collaboration medium between the
end user and the designer because it supported tightly
interwoven use and design sessions. Agentsheets’ support
for incrementally defining behavior and its tools for cre-
ating visual depictions enabled the language designer to
quickly add and modify language components. Its role-
specific view mechanism enabled the system to quickly
switch views many times without losing context. In design-
er view, the end user’s visual program remains on screen,
and language extensions are performed and tested in the
context of the user’s visual program that caused the break-
down. Context preservation helps to ensure that language
extensions overcome breakdowns, and it helps end users
to participate in designing language extensions by situat-
ing the modification activities within their particular pro-
gramming task.

Domain orientation emergence during use
The VDDE language resulted from a series of collabo-

rative sessions over several months. The language’s
domain orientation emerged through repeated attempts
at problem solving. In our experience, language evolution
was driven by end users and designers envisioning new
possibilities while directly interacting with successive ver-
sions. Figure 7 illustrates how the expressiveness and
abstraction level of VDDE language components evolved
over time. We examine the expressiveness and abstraction
level of VDDE language components over time.

The first prototype (1991) consisted of six language
components such as circles and buttons. These compo-
nents could be connected by using links and, when exe-
cuted, displayed a visual trace of the control flow through
the network and simultaneously produced simple sounds.
This simplistic node-link representation was similar to
existing static design representations. By interacting with
this version, end users and designers could see how the
visual language paradigm could be used to create a
phone-based interface design environment.

By the next generation
(1992), the three rules
(horizontal, vertical, and
arrow) guiding language
component placement
were defined, based on the
grid underlying the work-
sheet. These rules were a
new way to express solu-
tions made possible by the
visual programming lan-
guage environment, elimi-
nating many links that
cluttered designs in the
previous version. Expres-
siveness also substantially
increased with the enumer-
ation of 36 domain-oriented
language components rep-

resenting atomic actions, such as touch-tone button press-
es and audio messages.

Collaborative sessions with this language version
revealed that many components were not at the appro-
priate abstraction level. Voice dialog designers thought
about their domain in terms of higher level abstractions
such as voice menus and phone numbers. Thus, in the
1993 language version, many atomic components were
combined to create higher level language components.

DOMAIN-ORIENTED VISUAL LANGUAGES can be valuable com-
putational artifacts for a wide class of users who need to
analyze complex, dynamic systems but are not trained in
traditional computer science concepts. Creating domain-
oriented visual languages requires end users familiar with
the domain to collaborate with language designers famil-
iar with the technological possibilities. Computational
tools are needed to serve as a collaboration medium
between these two roles during the language design
process. The Agentsheets system is an effective collabo-
ration medium providing

1. role-specific views containing tools tailored to the spe-
cific activities of end users and designers,

2. the ability to easily switch back and forth between
these two views while preserving the end user’s work
context, and

3. tools and mechanisms that support the rapid incre-
mental modification of the look and behavior of lan-
guage components.

We have demonstrated how Agentsheets allowed us to
use real-time collaborative design sessions to drive lan-
guage design by analyzing experiences from a specific lan-
guage project: the Voice Dialog Design Environment.
Although these experiences represent events from only
one case study, we see this approach as promising for fast-
paced, industrial, product-development environments.
Our experiences indicate that real-time collaborative lan-
guage design is both useful and viable. It is useful because
it provides an action-oriented methodology for simulta-
neously doing domain analysis, language design, and

Computer

usability testing. It is viable when coupled with proper tool
support in the form of a collaboration medium such as
Agentsheets. I

Acknowledgments
We thank the members of the Center for Lifelong

Learning and Design group at the University of Colorado,
Gerhard Fischer, and Clayton Lewis, who contributed to
the conceptual framework and the systems discussed in
this article. We particularly thank Susan Davies, Josh
Staller, and Mike King for their support during the VDDE
project. We thank Jim Sullivan and Chris Digiano for their
work on some of the applications presented here. We also
thank Jonathan Ostwald, Kumiyo Nakakoji, Gerry Stahl,
Jim Ambach, Loren Terveen, Francesca Iovine,and our five
anonymous reviewers for their comments on various
drafts of this article. This research was supported by the
National Science Foundation under grant No. RED-
9253425, Apple Computer Inc., and US West Advanced
Technologies.

References
1. B. Nardi, A Small Matter of Programming, MIT Press, Cam-

bridge, Mass., 1993.
2. C. Lewis and G.M. Olson, “Can Principles of Cognition Lower

the Barriers to Programming?,” Empirical Studies of Pro-
grammers: Second Workshop, Ablex Publishing, Norwood,

3. G. Fischer and A,C. Lemke, “Construction Kits and Design
Environments: Steps Toward Human Problem-Domain Com-
munication,”HCI, Vol. 3,1988, pp. 179-222.

4. G. Fischer, “Domain-Oriented Design Environments,” inAuto-
mated Software Engineering, Kluwer Academic Publishers,
Boston, Mass., 1994, pp. 177-203.

5. E.J. Goliin, “Tool Review: Prograph 2.0 fromTGS Systems,”J.
Visual Languages and Computing, Vol. 2,1991, pp. 189-194.

6. D.D. Hils, “Visual Languages and Computing Survey:
Dataflow Visual Programming Languages,” J. Visual Lan-
guages and Computing, Vol. 3,1992, pp. 69-101.

N.J., 1987, pp. 248-263.

7. M. Polanyi, The Tacit Dimension, Doubleday,
Garden City, N.Y., 1966.

8. S . Bodker and K. Gronbaek, “Design in
Action: From Prototyping by Demonstration
to Cooperative Prototyping,” in Design at
Work: Cooperative Design of Computer Sys-
tems, J. Greenbaum and M. Kyng, eds.,
Lawrence Erlbaum, Hillsdale, N.J., 1991.

9. K.H. Madsen and P.H. Aiken, “Experiences
Using Cooperative Interactive Storyboard
Prototyping,” Comm. ACM, Vol. 36, June

10. A. Repenning, “Agentsheets: A Tool for
Building Domain-Oriented Dynamic, Visu-
al Environments,” University of Colorado at
Boulder, PhD dissertation, Dept. of Com-
puter Science, 1993.

11. A. Repenning and T. Sumner, “Program-
ming as Problem Solving: A Participatory
Theater Approach,” Proc. Workshop on
Advanced Visual Interfaces 94, ACM Press,

1993, pp. 57-64.

New York, pp. 182-191.

Mass., 1993.
12. B. Laurel, Computers as Theater, Addison-Wesley, Reading,

Alexander Repenning is a research assistant professor
and member of the Center for Lifelong Learning and Design
at the University of Colorado in Boulder. He has worked in
research and development at Asea Brown Boveri, Xerox
PMC, and Hewlett-Packard. Repenning has also been a con-
sultant for Apple Computer. His research interests include
education and computers, end-userprogramming, interac-
tive learning and simulation environments, human-com-
puter interaction, and artificial intelligence. He received a
PhD in computer science and the certificate of cognitive sci-
encefrom the University of Colorado in 1993. Repenning is
a member of ACM (SIGCHI) and IEEE.

Tamara Sumner is a research assistant and member of
the Center for Lifelong Learning and Design at the Universi-
ty of Colorado in Boulder. She is working toward a PhD in
thefield of human-computer interaction. Prior to joining the
University of Colorado, she worked in research and develop-
ment at Hewlett-Packard. Her research interests include
design processes and design environments, human-comput-
er interaction, and interactive learning andsimulation envi-
ronments. Sumner received an MS in computer sciencefrom
the University of Colorado in 1992 and a BSfrom the Uni-
versity of California at Santa Cruz in 1982.

Readers can contact the authors at the Department of Com-
puter Science and the Center for Lifelong Learning and
Design, University of Colorado, Boulder, CO 80309-0430.
Repenning’s e-mail is ralex@cs.colorado.edu; Sumner’s is
sumner@cs.colorado.edu. The World Wide Web home page
for the Center for Lifelong Learning and Design can be
accessed at http://www. cs. Colorado. edd-hcc/.

Name [Please Print) I
PLEASE NOTIFY
us WEEKS IN New Address ADVANCE

MAIL TO:
IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

City State/Country zip

.
-T-- .d

March 1995

mailto:sumner@cs.colorado.edu
http://www

