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n the high-technology workplace, many professionals work in 
domains that involve the analysis of complex, dynamic systems. These I systems include computer networks and user interfaces. To cope with 

the complexity intrinsic to these domains, environments for visualizing 
and interacting with dynamic processes are essential. Using current tech- 
nology, creating and modifying such environments often requires tradi- 
tional computer science programming skills. However, the professionals 
working in these domains typically are not formally trained in comput- 
er science, have no interest in learning programming skills per se, and 
want to use computers only to solve their specific problems.’ 

These domain professionals could benefit from visual programming 
languages if several barriers to programming were removed. Specifically, 
languages should not require users to 

1. build up desired program behaviors from low-level programming con- 
structs such as iteration and conditionals,2 or 

2. bridge the semantic gap between their conceptual model of the prob- 
lem to be solved and the computational model of the p r ~ g r a m . ~ . ~  

We discuss how these barriers to programming can be lowered through 
languages with familiar, visible representations that let users express pro- 
grams in terms pertinent to the problem to be solved. We characterize 
programming approaches along the dimensions of visualization and 
domain orientation4 (Figure 1). 

Visualization is a syntactic characteristic indicating how concepts are 
presented, that is, the look of concepts but not their semantics. The 
Prograph programming language5 is based on the visualization of dataflow 
and functional programming. Its two-dimensional visual syntax simpli- 
fies program construction. However, Prograph’s language components 
use constructs such as iteration and therefore still require users to build 
up problem domain behaviors by assembling lower level primitives. 

Domain orientation, on the other hand, is a semantic characteristic 
describing which things are represented. Domain-oriented languages fea- 
ture components directly relevant to end users’ tasks and therefore narrow 
the semantic gap between the problem and programming  domain^.^ 
LabView evolved from circuit design.6 It has been enriched with general- 
purpose programming constructs but has preserved a domain-oriented fla- 
vor. Applications such as Mathematica and Matlab feature domain-oriented 
constructs, such as integration and Fourier transformations, familiar to 
mathematicians. The spreadsheet formula language can be viewed as being 
domain-oriented, since it is based on the tabular forms originally used by 
accountants. Many of these languages in the upper half of Figure 1 have 
enjoyed widespread success as end-user programming environments. 
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Figure 1. Languages can be characterized along the dimensions of visualization 
and domain orientation. Visualization is a syntactic characteristic indicating 
how concepts are presented. Domain orientation, a semantic characteristic 
describing which things are represented, can bridge the gap between problem 
and programming domains. The Pinball Construction Kit is a domain-oriented 
visual language, whereas Prograph is a general-purpose visual language. 

We are interested in creating domain-oriented visual 
programming languages to support the activities of pro- 
fessionals working in domains involving dynamic systems 
analysis. These languages elevate the task of program- 
ming to the interaction between end users and problem- 
related components. For instance, using a domain- 
oriented visual language such as the Pinball Construction 
Kit, end users program by arranging and interacting with 
language components such as bumpers, obstacles, and 
flippers3 

We describe a design methodology and a tool for creat- 
ing domain-oriented, end-user programming languages 
that effectively use visualization. We first describe a col- 
laborative design methodology involving end users and 
designers. We then present Agentsheets, a tool for creat- 
ing domain-oriented visual programming languages, and 
illustrate how it supports collaborative design by examin- 
ing experiences from a real language-design project. 

Finally, we summarize the contributions of 
our approach and discuss its viability in 
industrial design projects. 

REAL-TIME COLLABORATIVE 
DESIGN METHODOLOGY 

Well-designed domain-oriented lan- 
guages have a small number of high-level 
abstractions.’ These abstractions should be 
expressive enough to allow users to state 
solutions for commonly occurring prob- 
lems, yet constrained enough to shield 
users from decisions and details they don’t 
want to be concerned with. That is, the 
abstraction level of the language compo- 
nents should match the user’s conceptual- 
ization of the problem. A key challenge in 
designing domain-oriented languages is 
determining what these abstractions or 
language components should be. It’s 
unlikely that language designers working 
alone could determine these components 
because this requires a deep understand- 
ing of the end users’ problem domain. 
Conversely, it’s unlikely that end users 
could articulate what kind of components 
they need because much professional 
knowledge is tacit and emerges only in 
actual practice.’ Thus, end users and 
designers need to work together to design 
and evolve domain-specific languages 
through use to create the right abstractions. 

The process 
Figure 2 illustrates such a process. These 

collaboration sessions typically occupy a 
couple of hours when the end user and the 
designer meet and write a program to solve 
a real task in the problem domain. The key 
steps are 

1. Use. The end user constructs a program 
with the language while the designer pri- 
marily observes the process, noting usabil- 

ity problems and answering questions as needed. 
2. Breakdown. At some point, the end user experiences a 

breakdown in the language because the components 
it provides are insufficient to express desired concepts 
or are somehow inappropriate for the current situa- 
tion. 

3.  Negotiation. At that point, both parties must discuss 
the breakdown and negotiate how to modify the lan- 
guage to address the shortcoming. In the case of insuf- 
ficient expressiveness, both parties must decide which 
components to change or add to the language. In our 
experience, inappropriate components often result 
when the provided domain components are not at the 
appropriate abstraction level for the task being per- 
formed. In these cases, language changes often involve 
modifying or combining existing language compo- 
nents to create higher level domain abstractions. 

4. Modijication. Once the breakdown and possible lan- 
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guage modifications are discussed, the 
designer steps in and makes modifica- 
tions. 

5. Testing. After briefly testing the modi- 
fications, the designer gives control 
back to the end user, who continues to 
construct a program. 

The tool 
Powerful tool support is required for this 

real-time collaborative approach to be 
viable. Specifically, the tool must 

enable the designer to quickly change 
existing language components and add 
new ones without disrupting the end 
user’s programming process, and 
allow control to switch quickly between 
the end user and the designer without 
losing each party‘s current work context. 

These sessions are similar to other forms 
of collaborative prototyping. The proto- 
types described by Bodker and Gronbaek8 
and Madsen and Aiken9 are built with the 
Hypercard program. Both projects report 
favorably on the extensions made possible 
in real time by many of Hypercard’s direct 
manipulation features, which easily 
change the look and placement of interface 
components. However, both projects also 
report difficulties when real-time exten- 
sions require programming. Madsen and 
Aiken9 noted that Hypercard’s “missing 
object-oriented features made it harder to 
create and modify domain-specific build- 
ing blocks” (page 63).  

Our approach relies on the Agentsheets 
system, which supports the collaborative 
design of domain-oriented visual pro- 
gramming languages. Agentsheets pro- 
vides powerful tools and mechanisms that 
enable substantive extensions, such as cre- 
ating and modifymg domain-specific lan- 
guage components, to be made in real time. 
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Figure 2. In a real-time collaborative design session, end users and designers 
work together to design and extend the visual language. The end user 
constructs a program representing a real problem in the domain under 
consideration. When a breakdown is encountered, both parties work together 
to understand the cause and to design language modifications in real time to 
overcome the breakdown. 

AGEIYrSHE€i’S A COLLABORATW)(Y 
MEDIUM 

AgentsheetslOJ1 is a Macintosh application implement- 
ed in Common Lisp. In the last four years, it has been used 
to create more than 40 domain-oriented visual program- 
ming languages in areas such as art, artificial life, educa- 
tion, and environmental design. 

Using agents 
Visual languages created with Agentsheets consist of 

autonomous, communicating agents organized in a grid 
similar to a spreadsheet. The grid that contains the agents 
is called the agentsheet. An agentsheet cell can contain any 
number of stacked agents. Users interact with agents 
through direct manipulation. Agents can be animated, 
move among cells, and play sounds. 

Designers create visual programming languages by 
defining the look and behavior of agents. Figure 3 shows 
visual languages created for four unique problem 
domains. Each language component is an agent (a soft- 
ware routine that waits in the background and performs 
an action when a specified event occurs). To define the 
visual language syntax and semantics, the designer must 
specify how agents communicate and how they can be 
arranged in the grid. Agent communication can be expZic- 
it, using links between agents, or implicit, based on spa- 
tial relationships between agents such as proximity, order, 
and distance. For instance, the LabSheet application 
(Figure 3) uses explicit spatial relationships. The 
LabSheet application represents dataflow6 between 
agents using links. Agents in LabSheet represent language 
components such as data-input cells, data-output cells, 
and functions such as multipliers. 

In the ProNet application (Figure 3), agents communi- 



igure 3. Example Agentsheets applications: LabSheets, ProNet, EcoSwamp, and CityTraff ic. 

ite implicitly based on adjacency. Adjacency relation- 
lips determine network connectivity; that is, end users 
mnect computers such as Macintoshes and Sun work- 
ations, using agents representing network wires. 
epending on the network specifications given by end 
sers, generic network wires proactively turn into more 
iecific connections such as Ethernet cables or into nec- 
jsary network devices such as gateways. 
Agentsheets can also be used to create dynamic simu- 

itions such as the EcoSwamp and CityTraffic applications 
7igure 3). Both are educational interactive simulation 
rograms that use implicit communication between 
pnts based on both proximity and overlap. The language 
imponents in EcoSwamp are animals such as frogs, alli- 
ators, and bugs, and environment patches such as land 
nd water. Frogs autonomously move around, eat nearby 
ugs, and lay eggs only when in water. In the CityTraffic 
pplication, agents representing cars move forward when 
piece of road is in front of them and stop when they are 
ext to traffic signals. 

upporting collaboration through role- 
pecific views 
An effective collaboration medium requires that the 

spective roles of end users and designers be understood; 
iat is, tools must 

support the tasks that end users and designers individ 
ually perform, and 
facilitate dialogue between end users and designers. 

Agentsheets provides role-specific views and tools to meet 
the specific needs of end users and designers (Figure 4). 

END USERS INTERACT WITH DOMAIN-ORIENTED 
COMPONENTS. End users create programs using language 
components based on familiar, visible representations per- 
tinent to their problem domain. In the CityTraffic appli- 
cation (Figure 4), these components are cars, trains, 
streets, and railway tracks. (CityTraffic is an educational 
simulation program used by children.) End users “pro- 
gram” by assembling these components and interacting 
with them. 

Assemble components. End users select components from 
the Gallery (see Figure 4) and assemble them in the 
worksheet into meaningful diagrams. For instance, they 
assemble individual road segments into a road system, 
put cars onto the roads, and install traffic signals to con- 
trol traffic to create a traffic simulation. 
Interact with components. End users select tools from 
the worksheet’s tool bar and apply them to rearrange, 
link, and query components. In the CityTraffic appli- 
cation, the state and frequency of traffic lights can be 
changed by applying the operate-on tool to traffic 
lights. Furthermore, while cars are moving, end users 
can change car parameters (such as the likelihood a car 
will run a traffic light), introduce additional traffic sig- 
nals, and change the topology of streets and railway 
tracks. This interaction style extends direct manipula- 
tion schemes by allowing end users to more flexibly 
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interact with applications consisting of 
large numbers of autonomous agents. 
We call this interaction style participa- 
tory theater" because, in terms of a the- 
atrical metaphor,l2 it lets end users 
direct the actors (agents) without stop- 
ping the play (running the application). 

DESIGNERS DEFINE LOOK AND BEHAV- 
IOR OF c 0 ~ p o " T s .  To support the dia- 
logue between end users and designers, a 
collaboration medium must provide effi- 
cient, incremental mechanisms for the 
designer to specify language components 
or agents. Agentsheets lets designers 

Incrementally define the 1ookofagents.h 
agent's look is represented by using 
depictions. These are created and stored 
in the Gallery using tools available in the 
designer view. For instance, designers 
can create a horizontal road depiction 
using the Depiction Editor (see Figure 7). 
However, sometimes in visual languages, 
many related depictions are visual vari- 
ations of a common underlying theme. 
Many depictions are needed for one lan- 
guage component to represent the 
underlying agent's changes in state. 
Language components can also be placed 
in many different orientations with a 
depiction representing each one. 
Creating each related representation by 
handwith the depiction editorwould be 
tedious and time consuming. In design- 
er view, the Gallery provides tools that 
help to automate this process. Some tools 
help to combine existing depictions to 
create new ones. In the CityTraffic appli- 
cation, a car depiction could be com- 
bined with a gas station depiction to 
create a new one representing a car that 
is out of gas, that is, a change of state. 
Other tools help designers create new 
depictions by incrementally modifymg 
existing ones using provided geometric 

Figure 4. Agentsheets provides role-specific views for end users and designers. 
End users compose programs by selecting components in the gallery (1) and 
putting them into a worksheet (2). Designers perceive worksheets (2) as 
agentsheets (7). that is, agents organized in a grid. They create networks of 
related depictions in the expanded gallery (3). design icons with the depiction 
editor (6), define behavior with the AgenTalk editor (5) by reusing existing 
agent classes found in the class browser (4), and create or subscribe to tools in 
the tool store (8). Tools enable end users to interact with agents. 

transfo&ations. gCityTraffic;road depictions for many 
orientations were needed; the vertical road and bent 
road depictions were created automatically from the hor- 
izontal road depiction using the provided transforma- 
tions. 
Incrementally define the behavior of agents. This behav- 
ior determines how agents interact with each other and 
with end users through tools. Designers define agent 
behavior through the AgenTalk editor. Because 
AgenTalk is object oriented, behavior can be defined 
incrementally through inheritance. The class browser 
helps to locate functionality in the form of existing agent 
classes. By building on top of these classes, visual lan- 
guage components directly inherit many of their basic 
behaviors such as the ability to be linked and queried. 
Thus, the language designer need only augment these 

inherited behaviors with behaviors specific to the prob- 
lem domain. 

In the CityTraffic application, the behaviors of cars 
and trains must be defined. Cars have to follow roads, 
watch out for other cars, avoid collisions, and obey traf- 
fic signals. To define the behavior of a train to follow 
railway tracks, AgenTalk code could look like 

(i) (create-class TRAIN 
(ii) (sub-class-of ACTIVE-AGENT) 
(iii) (instance-methods 

(VI 
(iv) (FOREGROUND-TASKS 0 

(case (effect (0 1) 'depiction) 
(vi) (TRACK (self 'move 0 I)))))) 

The train class (i) is defined as a subclass of ACTIVE- 
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AGENT. Active agents are autonomous agents receiving 
FOREGROUND-TASKS messages to initiate actions. The 
case statement (v) contains a spatial operator, (effect (0 
1) ’depiction), returning the name of the depiction to 
the right of the train agent. If the depiction of that agent 
on the right is a TRACK depiction (vi), the train moves to 
the right. As soon as the class is defined and the agent 
scheduler activated, the train begins to follow the tracks. 

AgenTalk programming, which requires knowledge 
of Lisp and object-oriented principles, is typically done 
only by designers. However, end users can define sim- 
ple behaviors through graphical rewrite rules,’O which 
are before/after pictures that end users can edit. 
Define interaction tools. Designers provide mechanisms 
for end users to interact with agents by selectively sub- 
scribing to existing tools featured in the tool store, 
extending the behavior of existing tools, or creating new 
domain-specific tools. Agentsheets provides a default 
set of tools with predefined behaviors. For instance, 
applying the eraser tool to a car will delete it (unless the 
designer has specified otherwise). 

In summary, Agentsheets enables real-time collaboration 
between end users and designers by providing 

1. tools specialized to each of their respective roles, 
2. the ability to quickly switch between these two roles, 

and 
3. incremental specification mechanisms that signifi- 

cantly shorten the use-redevelopment loop and let lan- 
guage extensions be performed in real-time with 
end-user participation. 

laboration medium during real-time design sessions, using 
excerpts from an actual language design project. The visu- 
al language discussed is embedded in a design environ- 
ment supporting the design and simulation of phone-based 
user interfaces-the Voice Dialog Design Environment 
(VDDE). This system minimizes the time it takes to proto- 
type phone-based interfaces by enabling user-interface 
designers to create their own simulations. This system is 
the result of a three-year collaboration between researchers 
at the University of Colorado and professional user-inter- 
face designers at US West Advanced Technologies. 

The voice dialog design task 
Voice dialog applications are an important technology 

for many businesses because they reduce the need for 
human phone operators and provide callers with direct 
access to information concerning business services. Voice 
information systems and voice messaging systems are typ- 
ical applications. Designing in this domain means speci- 
fying the interface for a voice dialog application at a 
detailed level. Interfaces consist of a series of voice- 
prompted menus that request the user to perform certain 
actions, such as, “To listen to your messages, press l.”The 
user issues commands by pressing touch-tone buttons on 
the telephone keypad, and the system responds with 
appropriate voice phrases. 

Interface designs are typically represented using static 
diagrams similar to flowcharts. These charts specify the 
control flow of the interface, possible user actions, and the 
text of all audio prompts and messages in the interface. 

It is difficult for designers and end users of these appli- 
cations to anticipate what the final audio design will sound 
like by simply looking at a static diagram. Thus, simula- 
tions are built to let designers and end users directly expe- 
rience the final audio interface. Unfortunately, a simple 

design simulation takes a professional pro- 
grammer several days to build using cur- 
rent software packages; a complex design 
simulation can take a couple ofweeks. One 
goal of the VDDE project was to provide a 
design environment that shortened the 
time to build simulations by empowering 
user-interface designers to quickly create 
their own simulations. 

THE VDDE LANGUAGE: A CASE STUDY 
This section illustrates how Agentsheets served as a col- 

System overview 
The VDDE system provides a gallery (top 

window, Figure 5) of components, such as 
voice menus and prompts. The lower two 
windows are worksheets where end users 
program by assembling language compo- 
nents according to three rules: 

Figure 5. The Voice Dialog Design Environment. This design is an 
interface for a delivery service in a pizza parlor. If customers call 
when the business is closed, they hear a standard message. If 
customers call during business hours, they can navigate through a 

1 series of voice menus to specify their pizza order. The design 1 shown consists of two programs: a subprogram processing the 
’ incoming call based on business hours and a subprogram for 
1 specifying the desired pizza order. 

The horizontal rule. Components placed 
physically adjacent to each other within 
a row are executed from left to right. 
The vertical rule. Components placed 
physically adjacent to each other with- 
in a column describe available options 
at that point in the execution sequence. 
The arrow rule. Linking two compo- 
nents also defines execution ordering 
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and is identical to placing components next to each 
other horizontally. 

The interface design can be simulated at any time. 
Simulation consists of a visual trace of the execution path 
combined with an audio presentation of all prompts and 
messages encountered. 

Analysis of a design session 

manipulate this data type. The designer quickly created 
these new language components by incrementally refining 
the behavior of existing agent classes. The end user then 
used these new components to complete her program. 

This session uncovered two shortcomings in the visual 
language design. In the first case (that is, present and 
absent), the functionality provided was sufficient, but its 
presentation did not match the user’s conceptualization 
of the problem domain. The second case uncovered a 

In this session, the end 
user wanted to simulate a 
new product interface. She 
created several voice 
menus and then experi- 
enced a breakdown in 
terms of inappropriate or 
unexpected language com- 
ponents (see time period 1, 
Figure 6). Because the cur- 
rent language’s undefined 
phone numbers were rep- 
resented as zero, determin- 
ing if a phone number had 
been specified involved 
testing for zero. However, 
in this domain, it is more 
appropriate to think of 
phone numbers and other 
data items as being either 
“present” or “absent.” 
Using the depiction editor 
provided in Agentsheets’ 
designer view, the design- 
er modified the look of 
some language compo- 
nents to reflect this domain 
terminology. 

After further design, the 
end user experienced 
another breakdown; this 
one highlighted a crucial 
lack of expressiveness in 
the language (see time 
period 3, Figure 6). The 
current language support- 
ed conditional branching 
on touch-tone button press- 
es. However, features can 
be “on” or “off,” or mes- 
sages can be “new,” 
“saved,” or “unread,” which 
demonstrates the impor- 
tance of enumerated data 
types for this domain. For 
this session, the designer 
added language compo- 
nents to overcome the spe- 
cific breakdown by creating 
an enumerated type “call 
forwarding” with possible 
values of “on” or “off,” and 
visual components to 

Time 
Periods 

1 ’ I  1 I ‘  
1 ExDerience Breakdown: Need to  

I I 1 branch to special menu if no I 
Cphone number has been specified) 

2 

4 functionality for collecting a 
phone number 

Experience Breakdown: Need 
to present different voice 

menus depending on whether 
the service is on or off I 

4 

rI +-_,, I Create new 1 
building blocksJ 
by incrementall 

L 

Use language to  assemble ( the service-%;dent voice 

L L  ’ I  

System is in 
End User View 

System is in 
Visual 

Language 
Designer View 

System is in 
End User View 

System is in 
Visual 

Language 
Designer View 

System is in 
End User View 

Figure 6. Language modifications in a two-hour collaborative design session. In 
time period 1, the end user experienced a breakdown when trying to branch to 
a special menu. In time period 2, the designer modified existing language 
components to reflect the domain terminology, “present” and “absent.“ In 
time period 3, the end user experienced another breakdown when trying to 
create conditional voice menus. In time period 4, the designer added new 
language components to reflect a particular enumerated type, “call 
forwarding“ with possible values of “on” or “off.” In time period 5, the end 
user completed her design. 
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199 1 1992 1993 

Figure 7. Evolution of the VDDE system. The first prototype consisted of six 
language components with no domain orientation. By the next generation 
shown, the three placement rules and 36 domain-oriented language 
components had been defined. These components were expressive, but their 
abstraction level was too low. In the final version shown, many of those 36 
components had been combined to create higher level domain abstractions. 

major expressiveness shortcoming in the current lan- 
guagelack of support for user-defined, enumerated data 
types. The designer gained valuable information to apply 
when designing more general data-type mechanisms in 
the next iteration of the language. 

Agentsheets was the collaboration medium between the 
end user and the designer because it supported tightly 
interwoven use and design sessions. Agentsheets’ support 
for incrementally defining behavior and its tools for cre- 
ating visual depictions enabled the language designer to 
quickly add and modify language components. Its role- 
specific view mechanism enabled the system to quickly 
switch views many times without losing context. In design- 
er view, the end user’s visual program remains on screen, 
and language extensions are performed and tested in the 
context of the user’s visual program that caused the break- 
down. Context preservation helps to ensure that language 
extensions overcome breakdowns, and it helps end users 
to participate in designing language extensions by situat- 
ing the modification activities within their particular pro- 
gramming task. 

Domain orientation emergence during use 
The VDDE language resulted from a series of collabo- 

rative sessions over several months. The language’s 
domain orientation emerged through repeated attempts 
at problem solving. In our experience, language evolution 
was driven by end users and designers envisioning new 
possibilities while directly interacting with successive ver- 
sions. Figure 7 illustrates how the expressiveness and 
abstraction level of VDDE language components evolved 
over time. We examine the expressiveness and abstraction 
level of VDDE language components over time. 

The first prototype (1991) consisted of six language 
components such as circles and buttons. These compo- 
nents could be connected by using links and, when exe- 
cuted, displayed a visual trace of the control flow through 
the network and simultaneously produced simple sounds. 
This simplistic node-link representation was similar to 
existing static design representations. By interacting with 
this version, end users and designers could see how the 
visual language paradigm could be used to create a 
phone-based interface design environment. 

By the next generation 
(1992), the three rules 
(horizontal, vertical, and 
arrow) guiding language 
component placement 
were defined, based on the 
grid underlying the work- 
sheet. These rules were a 
new way to express solu- 
tions made possible by the 
visual programming lan- 
guage environment, elimi- 
nating many links that 
cluttered designs in the 
previous version. Expres- 
siveness also substantially 
increased with the enumer- 
ation of 36 domain-oriented 
language components rep- 

resenting atomic actions, such as touch-tone button press- 
es and audio messages. 

Collaborative sessions with this language version 
revealed that many components were not at the appro- 
priate abstraction level. Voice dialog designers thought 
about their domain in terms of higher level abstractions 
such as voice menus and phone numbers. Thus, in the 
1993 language version, many atomic components were 
combined to create higher level language components. 

DOMAIN-ORIENTED VISUAL LANGUAGES can be valuable com- 
putational artifacts for a wide class of users who need to 
analyze complex, dynamic systems but are not trained in 
traditional computer science concepts. Creating domain- 
oriented visual languages requires end users familiar with 
the domain to collaborate with language designers famil- 
iar with the technological possibilities. Computational 
tools are needed to serve as a collaboration medium 
between these two roles during the language design 
process. The Agentsheets system is an effective collabo- 
ration medium providing 

1. role-specific views containing tools tailored to the spe- 
cific activities of end users and designers, 

2. the ability to easily switch back and forth between 
these two views while preserving the end user’s work 
context, and 

3. tools and mechanisms that support the rapid incre- 
mental modification of the look and behavior of lan- 
guage components. 

We have demonstrated how Agentsheets allowed us to 
use real-time collaborative design sessions to drive lan- 
guage design by analyzing experiences from a specific lan- 
guage project: the Voice Dialog Design Environment. 
Although these experiences represent events from only 
one case study, we see this approach as promising for fast- 
paced, industrial, product-development environments. 
Our experiences indicate that real-time collaborative lan- 
guage design is both useful and viable. It is useful because 
it provides an action-oriented methodology for simulta- 
neously doing domain analysis, language design, and 
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usability testing. It is viable when coupled with proper tool 
support in the form of a collaboration medium such as 
Agentsheets. I 
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