

The Direct3D® 10 System
David Blythe

Microsoft® Corporation

Abstract
We present a system architecture for the 4th generation of PC-
class programmable graphics processing units (GPUs). The new
pipeline features significant additions and changes to the prior
generation pipeline including a new programmable stage capable
of generating additional primitives and streaming primitive data to
memory, an expanded, common feature set for all of the pro-
grammable stages, generalizations to vertex and image memory
resources, and new storage formats. We also describe structural
modifications to the API, runtime, and shading language to com-
plement the new pipeline. We motivate the design with descrip-
tions of frequently encountered obstacles in current systems.
Throughout the paper we present rationale behind prominent de-
sign choices and alternatives that were ultimately rejected, draw-
ing on insights collected during a multi-year collaboration with
application developers and hardware designers.

Keywords: graphics systems, programmable graphics hardware,
programmable shading

1. Introduction
The rendering pipeline architecture embodied by the OpenGL
[Segal and Akeley 2004] and Direct3D [Gray 2003] systems have
evolved substantially over the past decade. More dramatic
changes have occurred over the last five years with the transition
from a fixed-function pipeline to a programmable pipeline. While
the evolutionary progress has been rapid, each step has reflected a
compromise between generality, performance, and cost.

We have made efforts to understand and build a system to ad-
dress requirements in the many applications for graphics accelera-
tors (presentation graphics, CAD, multimedia processing, etc).
However, we direct significant attention to the demands made by
interactive entertainment applications. These applications manage
gigabytes of artwork in the form of geometry, textures, animation
data, and shader programs (content), consuming large amounts of
system resources (processing, memory, transfer bandwidth) to
render rich and detailed images at interactive rates. The combina-
tion of agile rendering control and large amounts of data poses
significant system design challenges. Solutions to these chal-
lenges are reflected in many aspects of the system design.

Like previous versions of Direct3D, Direct3D 10 was de-
signed in three-way collaboration between application developers,
hardware designers, and the API/runtime architects. Detailed
communication between the parties over the three-year design
process was invaluable in fostering a deeper understanding of
application issues with API and hardware and to similarly dis-
seminate cost and complexity tradeoffs in various hardware pro-
posals. Surveys during the development of Direct3D 10 revealed
that application developers frequently struggled with the follow-
ing limitations and addressed them with the accompanying miti-
gation strategies:
1. High state-change overhead. Changing any type of state (ver-

tex formats, textures, shaders, shader parameters, blending
modes, etc.) incurs a high overhead. The work-around is to re-
duce API state changes by sorting objects by state, reducing
appearance variation, or using shader-based techniques to re-
solve state within the shader . An example of the latter is pack-
ing multiple texture images into a single texture map (some-
times called a texture atlas), combined with texture coordinate
transformations to index the desired subimage.

2. Excessive variation in hardware accelerator capabilities. Ap-
plications respond by writing a small number of “code paths”
customized to a few families of implementations plus a single
minimum-common-feature-set path to cover the remaining im-
plementations. This problem encompasses variations in feature
sets, resource limits, arithmetic precision, and storage formats.

3. Frequent CPU and GPU synchronization. The traditional pipe-
line allows limited re-use of data generated within the pipeline
as input to a subsequent processing step. Render-to-texture
techniques are an example of a mechanism through which a
rendered image can be later used as a texture map with mini-
mal CPU intervention. However, generating new vertex data
or building a cube map requires more coordination or commu-
nication between the CPU and GPU, reducing efficiency.

4. Instruction set and data type limitations. The vertex shader has
led the way in terms of precision requirements and support for
expressiveness in terms of traditional flow control constructs.
The pixel shader has followed, but neither pixel or vertex
shader supports integer instructions and the pixel shader accu-
racy requirements for floating-point arithmetic have been
weakly specified. Applications either live without the extra
capabilities or emulate them using, for example, table-based
function evaluation.

5. Resource limitations. The number of dependent texture reads,
bound textures, program instructions, etc. have been modest.
Applications must scale algorithms back or split them into
multiple shader passes. This has inspired research into auto-
matically partitioning shader programs [Chan et al. 2002; Rif-
fel et al. 2004].

2. Background
Our system builds on the application-programmable rendering
pipeline now prevalent on PCs, workstations, and game consoles.
The contemporary pipeline has two programmable stages, one for
processing vertex data (vertex shader) and a second for processing
pixel fragments (fragment or pixel shader).

The motivations and tradeoffs in designing an early pro-
grammable vertex shader are described in Lindholm et al. [2001].
Programmable pixel shading has followed a similar trajectory to
vertex shading with a few deviations. The evolution of program-
mable vertex and pixel shaders can be divided into four genera-
tions (including Direct3D 10), summarized in Table 1.

The evolutionary trajectories are largely a reflection of benefit
(or necessity) vs. hardware cost. The slightly differing require-
ments surrounding dynamic range, precision, and texture mapping
resulted in different trajectories for the two shader types with a
general trend towards feature-set convergence. Haines [2006]
describes additional details regarding the feature set evolution.

© ACM, (2006). This is the author’s version of the work. It
is posted here by permission of ACM for your personal use.
Not for redistribution.

Hardware pipeline implementations achieve high processing

throughput by exploiting the natural independence between verti-
ces and between pixels fragments. Multiple instances of vertex
and pixel shaders are used to process independent vertices and
pixel fragments in parallel. Hardware implementations typically
include a larger number of pixel shaders than vertex shaders re-
flecting the higher ratio of pixels to vertices in a typical rendering
workload [Montrym and Moreton 2005]. This characteristic also
influences the cost of pixel shaders relative to vertex shaders since
pixel shaders are more heavily replicated.

The programmable pipeline is directed using a low-level ab-
straction layer such as OpenGL or Direct3D. The abstraction
layer serves to hide the differences between varying implementa-
tions of the pipeline and provide a more convenient programming
abstraction. Fixed platforms, such as consoles, differ from PCs in
that there is only one hardware implementation, so often low-level
details of the hardware are exposed through the abstraction layer.

We refer to the abstraction layer as a runtime and it is con-
trolled through its API. The runtime provides device independent
resource management (allocation, lifetime, initialization, virtual-
ization, etc) for texture maps, vertex buffers, and other state and it
communicates with the hardware accelerator through device-
dependent driver software. The transition to a programmable
pipeline has added the task of abstracting and managing shader
programs to the runtime.

The limited instruction store of early programmable proces-
sors made the choice of programming in an assembly-like lan-
guage [Gray 2003] both practical and in many cases necessary to
maximize control of the limited resources. However, modest
increases in available hardware resources created a need for a
higher-level programming abstraction to maximize programmer
productivity. C-like programming languages with some customi-
zations to match the underlying rendering pipeline (4-vectors,
intrinsics, I/O registers) answered this need [Proudfoot et al. 2001;
Microsoft 2002; Mark 2003; Kessenich 2004; McCool and Du
Toit 2004;] Additionally, other languages have been developed to
explore the use of the substantial floating-point processing and
memory bandwidth of GPUs for application domains other than

rendering [Buck et al. 2004; McCormick et al. 2004], but we will
not address this latter subject further in this paper.

While there are similarities to imperative CPU programming
languages (notably C), there are some significant departures. For
example, the machine and compilation model is more virtual ma-
chine-like, with the shader assembly language serving as a ma-
chine-independent intermediate language (IL) rather than a spe-
cific machine language1. Though a high-level language like Mi-
crosoft’s HLSL can be compiled to IL offline, the translation to
the target hardware occurs just in time (JIT) at run-time with the
translator implemented as part of the driver infrastructure for the
GPU. We note that the OpenGL Shading Language takes a dif-
ferent approach with the entire compilation process occuring at
run-time.

Another significant difference is that shading programs are
not standalone applications, and are instead executing in concert
with a program executing on the CPU that orchestrates the render-
ing pipeline. The CPU program also supplies parameters to the
shading program in the form of texture maps or by populating on-
chip registers called constants.

While this paper does not describe a specific hardware em-
bodiment of the new pipeline architecture, the pipeline design is
shaped significantly by hardware practicalities and was designed
concurrently with multiple hardware implementations. Many of
the structural underpinnings from current hardware implementa-
tions [ATI 2005; Doggett 2005; Montrym and Moreton 2005]
continue to be both relevant and influential in this design.

Feature 1.1 2001 2.0 2002 3.0 2004† 4.0 2006
128 256 ≥512 instruction slots
4+8‡ 32+64‡ ≥512

≥64K

≥96 ≥256 ≥256 constant regis-
ters 8 32 224

16x4096

12 12 32 tmp registers
2 12 32

4096

16 16 16 16 input registers
4+2§ 8+2§ 10 32

render targets 1 4 4 8
samplers 8 16 16 16

 4 textures
 8 16 16

128

2D tex size 2Kx2K 8Kx8K
integer ops
load op
sample offsets

 transcendental
ops

derivative op
 static stat/dyn flow control

 stat/dyn
dynamic

Table 1: Shader model feature comparison summary.
†specification released in 2002, hardware in 2004; ‡texture load + arithmetic
instructions; §texture + color registers; dashed line separates vertex shader
(above) from pixel shader (below)

3. The Pipeline
The Direct3D 10 pipeline retains the structure of the traditional
hardware-accelerated 3D pipeline. Two new stages have been
added and other stages have been either simplified or further gen-
eralized. The basic pipeline is illustrated in Figure 1. For consis-
tency we describe each of the pipeline stages, rather than just the
additions. We use traditional terms such as vertex, texture, and
pixel for continuity with prior nomenclature, but acknowledge
that this terminology reflects a specific usage of a more general
processing capability.

Input Assembler (IA) gathers 1D vertex data from up to 8
input streams attached to vertex buffers and converts data items to
a canonical format (e.g., float32). Each stream specifies an inde-
pendent vertex structure containing up to 16 fields (called ele-
ments). An element is a homogenous tuple of 1 to 4 data items
(e.g., float32s). A vertex is assembled by reading from the cur-
rently enabled streams. Normally vertex data is read sequentially
from each vertex buffer; however, if an index buffer is specified
then each stream uses a shared index to compute the offset into
each vertex buffer. Indexing allows additional performance op-
timizations in that the vertex processor computes a result that is
completely determined by the index value, therefore recomputa-
tion of results for the same index can be avoided using a result
cache indexed by the index value.

The IA also supports a mechanism that allows the IA to effec-
tively replicate an object n times. This mechanism is an address-
ing mode referred to as instancing in which a repeat count n is
associated with block of k vertices (corresponding to an object).
At the same time, the primitive data is “tagged” with a current
instance, primitive, and vertex id and these ids can be accessed in
the programmable stages to compute values such as transforma-
tions or material parameters based on these ids.

1 This does contradict the notion that the assembly-level shader program-
mer has absolute control.

Vertex Shader (VS) is most commonly used to transform
vertices from object space to clip space. The VS reads a single
vertex and produces a single vertex as output. The VS and other
programmable stages share a common feature set that includes an
expanded set of floating-point, integer, control, and memory read
instructions allowing access to up to 128 memory buffers (tex-
tures) and 16 parameter (constant) buffers. This common core is
described in more detail in Section 4.

Geometry Shader (GS) takes the vertices of a single primi-
tive (point, line segment, or triangle) as input and generates the
vertices of zero or more primitives. The input and output primi-
tive types need not match, but they are fixed for the shader pro-
gram. A GS program can amplify the number of input primitives
by emitting additional primitives subject to a per-invocation limit
of 1024 32-bit values of vertex data. Triangles and lines are out-
put as connected strips of vertices. A GS program can output
more than one strip in a single invocation or it can effectively
delete an input primitive by not producing an output. A GS pro-
gram can also simply affix additional attributes to a primitive
without generating additional geometry, for example, computing
additional uniform-valued attributes for each primitive. Since all
of the primitive vertices are available, geometric attributes such as
a triangle’s plane equation can be readily computed.

In addition to the traditional input primitives, triangle and line
primitives may also be processed with their adjacent vertices. A
triangle comprises 3 vertices plus 3 adjacent vertices while a line
has 2 vertices with 2 adjacent vertices as shown in Figure 2. Ad-
jacent vertices are included as part of the vertex buffer formats for
triangle and line primitives and are extracted by the IA when a
primitive topology with adjacency is specified (rendered).

Stream Output (SO) copies a subset of the vertex informa-
tion output by the GS to up to 4 1D output buffers in sequential

order. Ideally the SO should have symmetric output capabilities
with the (non-indexed) input capabilities of the IA (8 streams x 16
elements), but the hardware costs were not justified. The SO is
limited to either 1 multi-element output stream of up to 16 ele-
ments or up to 4 single-element output streams. While the IA can
support reading from 8- and 16-bit data types and converting to
float32, the SO can only write raw 32-bit data types. However,
data conversion and packing can be easily implemented in a GS
program reducing the need for fixed-function support.

Set-up and Rasterization Stage (RS) is a fixed-function
stage handling clipping, culling, perspective divide, viewport
transform, primitive set-up, scissoring, depth offset, and fragment
generation. Modern GPU designs invariably include some form
of early depth processing (z-cull, hierarchical-z) [ATI 2005; Mon-
trym and Moreton 2005] as well. We explicitly mention this op-
timization as it is becoming less transparent to application devel-
opers. The input of the RS is the vertices and attributes of a single
primitive and the output is a series of pixel fragments.

The pixel shader program specifies the manner in which ver-
tex attributes are interpolated to produce fragment attributes (no
interpolation, non-perspective-corrected interpolation, or perspec-
tive-corrected interpolation). Modern GPUs usually support mul-
tisample antialiasing [Akeley 1993]. Multisampling requires
additional care in specifying attribute evaluation behavior when a
fragment does not include the pixel center, since center evaluation
may result in an out-of-gamut value. An additional evaluation
qualifier (centroid) can be specified to request evaluation within
the fragment boundaries.

Pixel Shader (PS) reads the attributes of a single pixel frag-
ment and produces a single output fragment consisting of 1 to 8
attribute (color) values and optionally a depth value. The attrib-
ute values (elements) are each written to a separate color buffer
(termed a render target) or the entire result may be discarded (no
fragment is output). Normally depth and stencil values are for-
warded from the RS. However, the PS can replace the depth
value with a computed value, but not the stencil value. Both dis-
carding pixels and replacing the depth value may defeat depth-
processing optimizations in the RS since they can change the
fragment’s visibility.

Figure 1: Direct3D 10 pipeline.
Major additions are highlighted.

Input Assembler
(IA)

Pixel Shader
(PS)

Output Merger
(OM)

Clip + Project +
Setup + Early Z +

Rasterize (RS)

Vertex Shader
(VS)

Geometry
Shader (GS)

Memory

Index
Buffer

Depth/
Stencil

Stream
Output
(SO)

4x32b

4x32b

32b

16x4x32b

32b+8b

4x32b or
16x4x32b

Vertex
Buffer

Vertex
Buffer

Texture

8

128

Texture

Stream
Buffer

Texture

Render
Target

4 or 1

128

8

Sampler
16

Sampler

Sampler

16

16x4x32b

32x4x32b

 8x4x32b +
32b + 8b

Ids

 Clip/Cull +
RT Array

Constant

Constant

Constant

4x32b

Facing

128

1 in,1 out

1 in, 1 out

1 in, 0-many out

1 in, 0-many out

1 in, 0-1 out

1 in, 1 out

Output Merger (OM)2 takes a fragment from the PS and per-
forms traditional stencil and depth testing operations as well as
render target blending. The OM specifies bind points for a single
unified depth/stencil buffer and up to 8 other render targets (at-
tribute buffers). The pixel shader must output a separate value for
each render target (there is no multicast). While a single blending
function is shared across all of the render targets, blending can be
enabled or disabled independently for each render target.

V0

V1

V2

A0

A2

A1
V0

V1

A0

A1

Figure 2: Triangle and line segment with adjacent vertices.

3.1 Memory Structure and Data Flow
Modern GPUs rely heavily on processing retained data structures
in the form of vertex and index buffers, texture maps, render tar-
gets and depth/stencil buffers. GPUs typically store these in a
high-performance memory system attached directly to the GPU.
The range of structures includes homogeneous 1D through 3D

2 Some implementations traditionally refer to this functionality as “ROP”
for raster operations.

images plus 2D cube map images (all with optional mipmap
pyramids), and 1D homogenous and heterogeneous index and
vertex buffers. Direct3D 10 generalizes these structure types,
called resources, with the goal of improving efficiency. Effi-
ciency improvements come about in two ways: one, by increasing
the range of processing that can be performed in a single render-
ing pass and second, by allowing greater flexibility in generating
data to a resource in one pass followed by using that data in a
subsequent rendering pass.

 The efficiency enhancements for single-pass rendering come
from several sources. One is the addition of arrayed resources.
Texture maps and render targets can be created as linear arrays (of
up to 512 elements) of a homogenous resource and bound to the
pipeline as a texture or a render target. Shader instructions used
to address texture maps are extended to include a shader-
computed array index. This alleviates some pressure for applica-
tion developers to pack multiple images into a texture map and the
extra computation to manipulate texture coordinates to retrieve
the subimage. However, texture arrays do not necessarily help for
the case of (un)packing inconsistently-sized images since the
array elements must all have the same size.

When an array of render targets is bound to the OM, the target
array index is computed for each primitive in the GS. This allows
the GS to sort (or replicate) primitives into different array ele-
ments. One example of this is rendering an environment to a cube
map in a single rendering pass by treating the cube map as an
array of 6 2D render targets. As the environment geometry is
processed, the GS determines to which cube faces a primitive
should be rendered and issues the primitive once for each face.
Note that the GS render target array selection mechanism is inde-
pendent (orthogonal) to the multiple render target outputs of the
PS.

To enable render-to-cube-map and to simplify the use of ar-
rays, resources are extended with the notion of a view that either
selects a subset of the resource (e.g., a single array element) or
binds additional type information to a partially-typed resource. In
the latter case, Direct3D 10 allows a resource to be created with-
out binding the specific element data type (e.g., float16, snorm16,
etc). This allows a very limited form of storage type “casting”
where the data type can change but not the size of the data type
(e.g., an element with 2 float16s cannot be treated as an element
with a single float32). Resources cannot be directly bound to the
pipeline; instead they are bound to the pipeline using a view. Two
different views of a resource can be bound simultaneously to the
pipeline.

Using the rendered cube map in a subsequent pass is an ex-
ample of a multipass or iterative rendering scenario enabled by
the more flexible Direct3D 10 resource model. A similarly useful
capability is render-to-vertex-buffer. One approach is to attach a
vertex buffer as a render target (using a view), compute new ver-
tex data in one of the shader stages, and pass it through the re-
mainder of the pipeline as color attribute data to the render target.
Complications with this approach include limitations in the size
and homogeneity of a vertex element (4xfloat32), the need to use
multiple stages of the pipeline (e.g., VS and PS) for relatively
simple processing, and the manner in which a 1D vertex buffer is
mapped to a 2D render target. A Direct3D 10 application uses a
view to select a contiguous subregion of the buffer as an n-wide x
1-high 2D render target, with a maximum subregion width of 8K
elements.

The stream output capability provides an attractive alternative
for performing sequential 1D output. An advantage of stream
output is its support of richer output formats, for example, being
able to write the equivalent of 16x4xfloat32 elements per vertex
as well as a much larger buffer (128MB vs. 128KB). Stream out-
put does not support random access (scatter) into the output

stream, whereas the render target approach does since address can
be controlled by drawing points and using the vertex shader to
modify the render target coordinates of the point. For these rea-
sons both approaches are useful.

To support iterative computation, the constraints on resources
have been relaxed with respect to where resources can be attached
to the pipeline resource bind points (i.e., IA buffers, VS/GS/PS
textures, SO buffers, and OM render targets) using views as a
form of “adapter” (e.g., rendering to a single mipmap level or a
2D slice of a 3D texture). However these adapters are far from
universal: a 2D resource cannot be treated as a 1D resource and
homogeneous resources comprising a single element type can’t be
interchanged with non-homogeneous resources such as multi-
element vertex buffers. These restrictions largely prevent arbi-
trary reinterpretation of the gross structure of a resource, allowing
hardware implementations to optimize storage layout. Similarly,
the long-standing constraint that a resource cannot be simultane-
ously bound as both an input and an output resource remains.

3.2 Storage Formats
While data operated on within a shader is 32-bit (interpreted as
either floating-point or integer), a richer set of storage data types
is provided to reduce memory footprint and bandwidth. Data
types that are not an integer multiple of 8 bits are packed with
other types to produce a format that is an integer multiple. Almost
all formats can be used in vertex buffers, textures, stream outputs
(using manual conversion and packing), and render targets. The
data types are summarized in Table 2.

name widths range
unormN, snormN 8, 16 [0,1] and [-1,1]
floatN 32, 16, 11, 10 s23e8, s10e5, 6e5, 5e5
uintN, sintN 8, 16, 32 [0,2n-1] and [-2n-1,2n-1-1]
RGBE 32 9/9/9e5
SRGB 8 [0,1] non-linear

Table 2: Storage Data Types.

The unorm, snorm, and float16 (half) formats are already
widely used. While float16 is attractive for high-dynamic range
imaging applications, it consumes too much storage space and
memory bandwidth. Direct3D 10 provides two alternative 32-bit
packed representations: two float11s (R, G) combined with a
float10 (B) and a shared-exponent format (RGBE) with 9-bit man-
tissas for R, G, and B plus a 5-bit exponent. These formats are
restricted to positive values and provide the same dynamic range
as float16 (10 orders of magnitude). The lower precision, 11-11-
10 format works well as a destination format for rendering HDR
color data, whereas the shared exponent format is restricted to use
as a source format for texturing operations. The shared-exponent
format requires a more sophisticated encoder to avoid artifacts,
hence the read-only restriction.

In addition to these simple forms of compression, Direct3D
10 augments the 4x4 texel block compression (S3TC) formats
from previous versions of Direct3D [McCabe and Brothers 1998].
One through four component versions of the format are defined
with compression ratios of 8:1, 6:1, and 4:1. The three and four
(correlated) color component formats are suitable for low-
dynamic-range color, whereas the two (uncorrelated) component
format is suitable for tangent-space normal map data.

3.3 Design Considerations
There are several architecture decisions worth noting or that war-
rant additional discussion.

In contrast to prior generations, Direct3D 10 requires that es-
sentially all features be supported by the hardware. The only two

exceptions are the more costly filtering support for 32-bit floating-
point textures and render target formats involving multisample
antialiasing. This increases the burden on implementation provid-
ers but reflects the application developer preference to scale on
the performance axis rather than the more difficult problem of
scaling across features. Emphasizing hardware support for impor-
tant storage formats increases the likelihood of their adoption
across a wider range of applications.

All traditional fixed-function capability that is expressible in
terms of programmable constructs has been eliminated from the
pipeline and the core API. This includes vertex transform and
lighting, point sprites, fog, and alpha testing. While the fixed-
function capabilities can be easily emulated in software, we be-
lieve to reduce complexity this should be exposed through a sepa-
rate software library rather than the core API.

Despite our changes to further generalize the pipeline, several
large fixed-function blocks remain. Early on we considered mak-
ing the IA fully programmable to allow more complex indexing
schemes or vertex layouts, but ultimately we could not justify the
extra complexity. Conversely, the memory read capability of the
VS allows more complex indexing schemes to be implemented in
the VS; in fact, one could eliminate all of the memory reads from
the IA and just compute the id values. However, we retained the
more complex IA for performance reasons with the observation
that its position and function in the pipeline can enable hardware
to do a better job of scheduling vertex-related memory traffic.

There are many complicated design issues around the GS.
One of the more important pipeline tradeoffs is enabling parallel-
ism while preserving order of operations. The GS is defined to
preserve the order of its inputs, so multiple GS units executing in
parallel cannot emit primitives out of order. This requirement
translates into parallel implementations that must buffer their
outputs and process the completed buffers in input order. Effi-
cient buffer management motivated an upper bound on the output
and the ability of the GS program to specify a smaller bound. The
ceiling of 1024 32-bit values is a compromise between hardware
cost and allowing useful amplification, for example, extruding the
edges of a triangle. Undoubtedly there will be a temptation to
employ the GS for larger scale amplification such as tessellation
and our expectation is that performance will degrade quickly.

The GS subsumes as much of the RS functionality as is prac-
tical. While it would be desirable to have the GS perform the
homogeneous divide, viewport transform, etc, the clipping opera-
tion that precedes these operations is impractical thus the GS-RS
partition at clipping. The GS does perform some of the clipping
set-up, e.g. computing vertex to model clip-plane distances and
passing those to the RS in addition to the clip-space coordinates of
the vertex. Since the precision and exact set of operations for the
fixed-function RS vertex processing are not precisely defined, it is
not possible for the GS to exactly mimic the transformations to
produce image-space (window) coordinates, though it can come
close. This limits some of the utility of the GS in implementing
algorithms that rely on manipulating the image-space coordinates
of a primitive.

Finally, the fixed-function limitations of the OM are a fre-
quent source of discussion. The OM unit is the only stage where
memory read-modify-write operations are supported and this is
one of the features frequently requested for the programmable
units. One proposal is to merge the OM functionality into the PS.
However, the complexities in managing pipeline hazards and
maximizing memory system efficiency do not yet lend themselves
to a justifiable cost. Multisampling further complicates the struc-
ture since PS computations are performed on pixel fragments
whereas blending operations are performed on samples. Promot-
ing the PS to execute at sample granularity has significant per-
formance ramifications. Furthermore, notable performance gains

are achieved using early depth and stencil rejection optimizations.
Success relies on the predictability of the outcome of shading
operations, creating an argument against migrating that function-
ality to the PS.

4. Shader Model 4.0
In previous versions of Direct3D, the programmable pipeline
stages are described by a separate virtual machine for each pro-
grammable stage, i.e., vertex and fragment processors. Each vir-
tual machine is described by a register-based Von Neumann-style
processor with an assembly language-like instruction set, input
and output registers for inter-stage communication, general pur-
pose registers (sometimes called temporary registers), and a set of
resource binding points for attaching memory resources such as
texture images.

Direct3D 10 defines a single “common core” virtual machine
as the base for each of the programmable stages, illustrated in
Figure 3. This virtual machine retains many of the features of the
previous models, for example, the basic 4-tuple register and float-
ing-point arithmetic operations, while adding the following:
• 32-bit integer (arithmetic, bitwise, and conversion) instructions
• unified pool of general purpose and indexable registers

(4096x4)
• separate unfiltered and filtered memory read instructions (load

and sample instructions)
• decoupled texture bind points (128) and sampler state (16)
• shadow map sampling support
• multiple banks (16) of constant (parameter) buffers (4096x4)

Together, these constitute a major increase in capability. This
unified model is considerably closer to providing all of the arith-
metic, logic, and flow control constructs available on a CPU.
Resources such as registers, texture bind points and instruction
store, have been substantially increased to the point where they
should not be a developer impediment for our target market for
the next several years. Hardware implementations are expected to
exhibit roughly linear degradation with increasing resource con-
sumption as opposed to falling off performance cliffs.

With the increase in number of textures bindings, it became
apparent that the number of unique texture filtering combinations
did not require a commensurate increase. Instead the sampler

Figure 3: Programmable core.
†Input and output registers are further specialized in each stage.

fp unit
128b

int ALU
128 b

16 sampler
bind points

temp
registers
32x128b

indexable
temp

registers
4096x128b

128 texture
bind points

16 constant
buffer

bind points

input registers
16 + † x 128b

output registers
16 + † x 128b

special
function

state is decoupled into a separate object and the sampling instruc-
tions specify both a texture and a sampler to apply. The same
texture can also be read, unfiltered, via a load instruction that
operates using non-normalized addresses.

The demand for both an increase in constant storage and for
more efficient update of constants presented a challenge. Current
systems exhibited problems with both efficiently updating indi-
vidual constant locations and with pipelining the update opera-
tions. The problem was made worse by switching between shader
programs and needing to reload the constants associated with the
new shader. One observation was that groups of constants are
updated at different frequencies (e.g., once per frame, once per
object, once per object instance). This led us to partition the con-
stant store into separate buffers and to separate the operations of
updating constants from binding them to the pipeline. Separating
these operations allows implementations to do a better job of
pipelining both types of operations. Since these operations are
identical to how texture resource are handled we considered re-
moving or unifying constants with textures.

However, the manner in which constants and textures are ref-
erenced are different in important ways. Constants are typically
accessed at much higher frequencies than textures and often using
indices that are uniform across sets of vertices or pixels, whereas
textures are accessed at lower frequencies and with different in-
dexes (texture coordinate values). This suggested that there were
hardware implementation advantages to keeping constants and
textures distinct.

A less visible, but equally significant change to the processing
core is that the data representations, arithmetic accuracy, and be-
havior are much more rigorously specified than in the past. Much
of this comes from recognition that shading programs, constants,
and other pipeline state are actually part of the art content in an
application rather than part of the execution engine. In this re-
spect, there is increasing pressure to make this content more port-
able between implementations as well as preserving compatibility
between generations of content. This is a reflection of the success
of programmable shading.

Where possible we have avoided inventing custom behavior
and follow CPU norms. We transitioned to the IEEE-754 [IEEE
1985] single-precision floating-point representation with a goal to
converge to the exact behavior within a few years. In this genera-
tion, the basic arithmetic operations (add, subtract, multiply) are
accurate to 1 ulp (rather than .5 ulp required in IEEE-754). Di-
vide and square root are accurate to 2 ulp. Denormalized numbers
are flushed to zero (but are defined and required for float16 opera-
tions) and IEEE-754 specials (NaNs, infinities) are fully imple-
mented. These tolerances are driven by cost versus benefit con-
siderations, where our first priority is to create well-defined, con-
sistent behavior between hardware implementations and second to
improve accuracy as hardware costs permit.

 One of the more controversial design decisions has been the
explicit adoption of IEEE-754 special behavior. This new behav-
ior was introduced in the previous generation (shader model 3.0)
and has caused some problems with portability of shading pro-
grams that relied on NaNs being flushed to zero. While we con-
sidered adding a unique mode to allow suppression of specials, we
ultimately decided this would ease shader development in the
short term at the expense of a greater long term maintenance cost
in supporting this mode in all future hardware.

This rigor in specification is not solely limited to the pro-
grammable units; it extends to the definitions of the rules for fil-
tering, rasterization, subpixel precision, data conversion, blending
operations, etc. Our goal is twofold: to achieve both behavioral
consistency and predictability for application developers. Pursuit
of these objectives necessitated detailed discussions about NaN-
propagation, optimizations of arithmetic or memory operations

involving coefficients of 0 and 1, etc. Generally, we tried to ar-
rive at compromises that allow for important performance optimi-
zations.

4.1 Stage-Specific Functionality
Shader stages may have stage-specific specializations that aug-
ment the common behavior. These specializations include the
configuration of the input and output attribute registers and addi-
tional instructions. The VS, with input and output configuration
of 16x4 floating-point data elements, defines the common core.

The GS can input up to 6 times that number since it must read
all of the vertices for a triangle and its 3 adjacent vertices. Since
the GS can output more than one vertex or primitive, it cannot use
the stream model of the other stages, where values are accumu-
lated in output registers, with the actual output signaled by the end
of the program. Instead there is an explicit emit instruction to
signal output of an accumulated result to the next stage. There is
also a cut instruction that signals the end of a strip primitive. The
GS uses a compile-time configuration directive to specify the
maximum output that any invocation will produce. Each output
vertex can include up to 32 4xfloat32 elements for input by the
RS and subsequent input into the PS. This is twice the number
output by the vertex shader. These extra resources are used to
communicate clipping and culling information to the RS as well
as additional per-primitive data to the PS.

The PS has up to 32x4 input registers, but can only use them
all if the GS is active. If the GS is not active, then the PS can only
input the 16x4 values produced by the VS. These input values
include compile-time directives to specify the evaluation (interpo-
lation) method for each attribute. The PS outputs directly to up
to 8 render targets, so it has 8x4 output registers plus a register for
depth. The PS includes an instruction to discard a pixel with no
effect on the render target and instructions for computing image-
space derivatives (∂/∂x, ∂/∂y). Only the PS stage has a built-in
notion of screen-space, so while the VS and GS include instruc-
tions for sampling textures, they do not include the instructions
that implicitly compute level-of-detail for mipmap filtering or the
derivative instructions. Derivative behavior inside flow control is
ill-defined (implementation specific) when the conditional expres-
sion varies between pixels. Therefore derivative instructions are
disallowed within non-uniform flow control using compile-time
enforcement.

A final set of specializations supports communication of val-
ues that are produced or consumed by fixed-function stages such
as the IA and RS with the other programmable stages. For exam-
ple, the IA produces a set of system-generated values: vertex,
instance, and primitive ids and the RS produces a value indicating
whether a polygon is front or back facing. Similarly, the RS ac-
cepts the system interpreted values output by a shader such as the
position coordinates for a primitive, clip and cull distances, and
render target array index. System-generated values are input into
a programmable stage by declaring one of the inputs with the
corresponding system-generated name, and conversely a system-
interpreted value is driven by a programmable stage by declaring
an output with the name of the system-interpreted value. These
values count against the number of input and output registers used
by a shader and in some cases they must be defined or an error
results (e.g., the RS needs to distinguish position from other at-
tributes). Sharing with the other registers keeps the input and
output architecture more regular and avoids wasting resources that
may go idle if additional dedicated input and output registers were
used.

While a general purpose mechanism to manipulate other
fixed-function state from the programmable stages (e.g., blend
modes, depth or stencil configurations) is attractive, it is currently
only practical to do this for limited amounts of state.

5. Core API and Runtime
We separate the API and runtime into separate, but integral

pieces: the core API/runtime and the shading language/state man-
agement system. We describe some of the larger parts of the new
runtime and how they have changed relative to current systems.

The core API and runtime serves as the low-overhead, thin
abstraction layer above the hardware. The transition to the pro-
grammable pipeline and removal of redundant fixed-function has
dramatically simplified API and runtime. The API and runtime
provide services for allocating and modifying resources, creating
views and binding them to different parts of the pipeline, creating
shaders and binding them to the pipeline, manipulating state for
the non-programmable parts of the pipeline, initiating rendering
operations, and querying information from the pipeline either by
retrieving statistics or the contents of resources.

Figure 4: System layering.

5.1 State Management
One of the big problems we set out to solve is reducing the

end-to-end overhead of transferring commands from the applica-
tion to the hardware. We partition commands into two classes:
those that allocate or free resources and those that alter pipeline
state. We are most concerned with the latter since they are the
ones that necessarily occur most frequently in an application. We
have a simple model for how those commands are delivered to the
pipeline. The runtime allocates a memory buffer in which to ap-
pend commands. Each API command calls through the runtime to
the driver to add the hardware-specific translation of the com-
mand to this buffer. The buffer is transmitted to the hardware
when it is full or when another operation requires the rendering
state to be synchronized (e.g., reading the contents of a render
target).

Little has changed in this runtime model on the PC over the
past 10 years. Our goal is that commands be appended to the
buffer with no need for extra processing. In the past this expecta-
tion has been unrealistic, so we endeavored to understand why
and to look for design changes to bring our model closer to this
ideal.

We found that there were several contributors to extra proc-
essing in both the runtime and drivers:

• mismatch between API and hardware
• deferred processing style
• miscommunication over application requirements

Of the three the third was the easiest to resolve, amounting to
reaching agreement among application developers, runtime, driver,
and hardware providers that the problem needed to be addressed
in a significant way (i.e., not a 10% improvement but a tenfold
improvement).

The second describes a traditional implementation strategy in
which state changes are accumulated and resolved when primi-
tives are issued to the pipeline. This has advantages that a set of
state changes can be processed in bulk and state implementations
that are interdependent (non-orthogonal) can be processed to-
gether rather than evaluating the interdependent state each time
one of the dependencies change. It also allows redundant state

changes to be trivially discarded. However, this comes at the cost
of extra CPU cycles to record the changes and to do this global
processing. An example of a catastrophic non-orthogonality is a
change in a texture binding requiring a shader program recompile
to match the new format. We advocate eliminating interdependen-
cies in the hardware state implementations as much as possible
and to relegate redundant state change suppression to a separate
optional layer in the runtime (rather than redundantly attempting
to solve it in multiple parts of the software stack).

The first category covers several kinds of mismatches. One
example is orthogonality mismatches as exemplified by the shader
recompile example, but there are many others. A related issue
concerns granularity of a state change. Both OpenGL and prior
versions of Direct3D define state changes at very fine granularity,
e.g., change a blend factor, or a sampler filtering mode. There
have been various attempts to aggregate state changes to make
them more efficient, for example, using display lists in OpenGL
or state blocks in Direct3D 9. While it is possible that those solu-
tions could be made to work with a much more concerted effort,
we chose a simpler approach. The elimination of redundant fixed
pipeline functions has reduced the overall amount of state. Our
analysis failed to show any significant advantage in retaining fine
grain changes on the remaining state, so we collected the fine
grain state into larger, related, immutable aggregates called state
objects. This has the advantage of establishing an unambiguous
model for which pieces of state should and should not be inde-
pendent and reducing the number of API calls required to substan-
tially reconfigure the pipeline. This model provides a better match
for the way we have observed applications using the API.

Driver

Application

Hardware

Content

HLSL/FXCore API/
runtime

Direct3D 10 defines 5 state objects: InputLayout (vertex
buffer layout), Sampler, Rasterizer, DepthStencil, and Blend. The
partitioning reflects state that logically belongs together (stage-
wise) and is only further subdivided if an application is likely to
change it independently at a significant frequency. At object
creation time the driver can create the hardware representation for
this state (e.g., a set of register values) and when the object is
bound to the pipeline, the corresponding commands are copied
into the command buffer. Some implementations may choose to
retain (cache) the state representation in hardware and reduce the
implementation of the API command to a hardware command to
activate this retained state.

In Section 4 we described an issue involving pipelining con-
stant updates. This is an instance of a more general problem in-
volving pipeline hazards. Some types of hazards occur when a
value is about to be updated, but the previous one is still being
used. These are typically solved using extra storage to hold the
new value and redirecting references to the new value to use the
new buffer (renaming).

Another type of hazard occurs when switching a resource
from being written to, to being read from. For example, switching
a texture that was previously used as a render target, to a texture
source requires that the outstanding rendering commands com-
plete and be written to the render target before texels can be
fetched from it. Unlike the update hazard described above, read-
after-write hazards are more difficult or impossible to eliminate
from the API and runtime. To avoid stalling the pipeline in such
cases, the application should be structured to perform rendering
work that does not immediately require reading from the previous
render target whenever possible.

5.2 Validation and Error Handling
Some of the tenets of the API design are to avoid creating situa-
tions where errors may arise or to do error checking during more-
expensive low-frequency operations such as object creation rather
than object use. While our performance objectives do not permit
having copious error checking throughout the API for a deployed

application, we appreciate the value of such error checking during
application development. The strategy we use for error detection
and reporting involves partitioning errors into two categories,
critical and non-critical. Critical errors are always checked and
reported in all versions of the runtime. The non-critical errors are
detected in a separate interception layer that can be transparently
pushed onto the runtime. This validation layer is primarily used
during application development, with the developer disabling it
when the application is deployed. In addition to detecting errors,
it can also look for and report other types of non-ideal API use.
The validation layer includes additional controls to enable a de-
veloper to make it more selective over what it detects or reports.

The error partitioning approach does create ambiguity over
which errors are always detected and what the behavior should be
for errors that are not detected. Undefined error behavior may
later appear as an unintended but relied upon (defacto) behavior.
Or, if the runtime doesn’t detect a particular error, the driver may
need to anyway to avoid a catastrophic hardware error, negating
any performance win. We have made efforts to identify such er-
rors and move their detection to the runtime. Another criterion
that we imposed is that no error detection should happen at render
time, e.g., error detection shouldn’t be deferred until a Draw
command is issued. The list of critical errors includes mis-
matched depth buffer and render target sizes, simultaneous bind-
ing a resource for read and write operations, etc, whereas exam-
ples of less-critical errors include: mismatched shader type link-
ages (signatures) and mismatched data format declarations.

At this stage in the shader programming model evolution it is
costly to trap run-time errors in shader programs. Instead we have
specified well-defined behavior, for example, returning 0 when
reading outside of an array, to achieve consistent behavior.
Longer term we anticipate that hardware implementations will
support exception mechanisms.

5.3 Resource Mapping and Access
One of the more complex issues with the API and pipeline design
concerns shared access to resources between the CPU and the
GPU. For example, both Direct3D and OpenGL allow vertex
buffers to be mapped into the application’s address space irrespec-
tive of whether the buffer is allocated from system memory or
dedicated accelerator memory. However, the location can have a
dramatic effect on performance. The memory bandwidth between
accelerator and attached memory can be more than 50GB/s on a
modern accelerator, whereas a PCI Express interconnect can pro-
vide no more than 2.8 GB/s of bandwidth to the GPU from system
memory.

There are other degrees of freedom as well. For example,
CPU access may be cached or uncached having a dramatic effect
on read performance, or write-combined or not, having a similarly
dramatic effect on CPU write performance. Additionally, a mem-
ory resource may be reordered from row-order to another (e.g.,
Morton, boustrophedon, or pi orders), or tiled [Blinn 1990; Ha-
kura and Gupta 1997; Igehy et al. 1999] to improve spatial coher-
ence when accessed from the GPU. We believe it essential to
keep the application unaware of the tiling patterns, therefore when
a resource is mapped to the CPU it must appear in a linear organi-
zation. Since tiling patterns are also dependent on the access
pattern, they are different for 2D vs. a 3D texture and this issue is
not purely one of CPU vs. GPU access. There are compelling
performance reasons to try to expose all of these capabilities, but
the tradeoff complexity can make it exceedingly difficult for an
application to achieve the performance improvement. We have
tried to provide as much of the functionality as possible within a
straightforward model.

We classify the readers and writers of a particular resource,
e.g., CPU vs. GPU and read vs. write. If the resource is primarily

used by one client, then the problem is simpler since placement
can be biased to the principal consumer. Similarly, knowing
whether the resource is used exclusively as a read source or write
destination also helps. Fortunately, this describes a large number
of typical application usages. For example, render targets and
textures are primarily accessed by the GPU and limited to write
destinations and read sources. On the other hand, vertex buffers
can have more complicated usage. While static geometry is read
primarily by the GPU, dynamic geometry is often generated on
the CPU as part of animation or synthesis and subsequently proc-
essed on the GPU. This amounts to frequent CPU writes and
frequent GPU reads.

Direct3D 10 partitions resources into 4 classes according to
usage: default, immutable, dynamic, and staging. Default corre-
sponds to simple texture, render target, or static vertex buffer
GPU-only access. Resources of type default are initialized by
copying the contents from another resource. Immutable disallows
the copy operation but provides a way to initialize the resource at
creation time. Default and immutable resources cannot be
mapped for CPU access. Dynamic resources can be bound to the
pipeline while allowing write-only CPU mappings. This handles
CPU generated vertex data, video decoders, etc. Finally, staging
resources allow CPU-only mapping but can be copied to and from
other resources. Staging resources are useful for initializing or
retrieving data from GPU-only resources.

Resource placement and encoding is further qualified at crea-
tion time as to where on the pipeline the resource can be bound.
These categorizations include vertex buffer, index buffer, constant
buffer, shader resource (texture), stream output buffer, render
target, or depth/stencil buffer. This typing serves two purposes: it
provides additional placement hints to the driver and it simplifies
error checking when the resources are used.

5.4 HLSL 10
The broad and rapid adoption of high-level shading language has
left no doubt about the importance of such languages. In addition
to supporting the new pipeline features, we have several addi-
tional objectives for our high-level shading language – HLSL.
Simply put, we want an application developer to program effi-
ciently in HLSL without needing to know arcane details of the
underlying virtual machine, for example, register names or con-
stant buffer indexes. We refined this statement to these sub-goals:
1. Eliminate the need and desire for applications to explicitly

control resource allocation and assignments.
2. Transition from bind-by-name to bind-by-position as the

principal binding mechanism.
3. Eliminate the need to author in the intermediate (assembly)

language.
The first goal has several manifestations. In current systems

application developers exercised control over placement of pa-
rameters in the constant store. This facilitated sharing of variables
between multiple shader programs, by having the developer per-
form global allocation and placement amongst multiple shaders.
With the addition of multiple constant buffers per pipeline stage,
we believe that the compiler has sufficient information to perform
placement within a buffer, but the application developer should
control assignment of parameters to constant buffers. We ex-
tended the language to allow specification of the buffer name as
part of the parameter declaration.

The second goal is a larger departure from previous directions
and is related to our concerns around performance and future
evolution. Bind-by-name can occur in several places: matching
input and outputs between shaders, matching vertex buffer layout
with the vertex shader, etc. While the run-time cost for doing
matching of names between source and destination can be made

moderately efficient and an implementation can cache source-
destination pairs, we believe this is unwarranted complexity and
encourages additional overhead in the runtime system. The
changes are manifested in several places in the new system.
Shader inputs and outputs have associated signatures that are
similar to function prototypes in C. A pipeline configuration is
legal only if the output signature of the preceding stage is com-
patible with the input of the next. Compatibility means there is an
element-by-element match between the inputs and outputs. The
one concession we make is that the following stage need not con-
sume the trailing outputs from the preceding stage.

Bind-by-position is also reflected in the vertex buffer bindings
to the IA and SO stages. However, in these stages we create sepa-
rate objects to encapsulate the bindings, allowing the more expen-
sive matching operation to be performed once at create time.

The third objective will also be considered controversial,
since it strongly manifests itself in our implementation by not
supporting input of shader programs authored in intermediate
language. We have reached the point where shader programs are
sufficiently complex that equivalents hand-authored in IL are
consistently less efficient than those produced by the compiler.
Furthermore we cannot justify the extra work in supporting and
maintaining compatibility with a hand-authored IL path as we
increase the sophistication of optimization, linkage, and interac-
tion with driver compilers. The system does support generation of
IL output from the compiler as a diagnostic technique, but we do
not allow an application developer to modify the compiler output
and inject that into the runtime.

This desire to achieve maximum performance out of compiled
code raises a number of questions. Foremost is the scope of op-
timizations that a driver may be permitted to do while mapping
the IL to the machine-specific language. As shaders increase in
complexity it becomes vital to ensure that application developers
have sufficient control over optimizations that change the order of
executed operations. Invariance must be achievable for critical
code fragments, so that multipass algorithms produce the same
intermediate values for duplicate computations in separate shaders.
We considered several solutions for how to specify invariance
requirements in the source code itself, for example, requiring that
subroutines be compiled in an invariant fashion even if they are
inlined. However, our search ultimately led us to the more tradi-
tional route of providing selectable, well-defined optimization
levels that must also be respected by the driver compiler.

We should also note that our preferred usage model is to per-
form author-time compilation of the HLSL code and only perform
driver compilation of the opaque IL code at application runtime.
This stems from a desire to avoid increasing delays in application
response by adding additional compilation time. While this be-
havior is preferred whenever possible we also acknowledge that
content authoring and other applications need to do run-time
compilation and this is fully supported by the runtime.

5.5 HLSL-FX 10
We have already noted that the success of the programmable pipe-
line has led to a shift in treating the shader program and the re-
mainder of the pipeline configuration from being part of the exe-
cution engine to part of the (portable) art assets for an application.
To accommodate this practice, the Effects (FX) system extends
the HLSL language to allow initialization of other fixed-function
parts of the pipeline. A similar approach is described for CgFX
and Cg [Mark 2003]. Though the approaches share common roots,
we have diverged in the evolution of HLSL-FX. Our objective
with FX is to meet the needs of runtime asset representation first
and as an asset interchange or general content authoring tool sec-
ond. In many ways these two are historically at odds since au-
thoring tools are often willing to trade increased flexibility for

reduced performance, whereas we have made run-time perform-
ance one of our most important goals.

The FX system has evolved substantially both as a result of
our experiences with how application developers have used it and
in response to our efforts to improve run-time performance. To
this latter end the FX, HLSL, API, runtime, and the pipeline are
all examined together to arrive at complementary solutions.

Similar changes were made to decouple expensive name
lookup and matching operations from frequently issued state ma-
nipulation functions.

A recurring theme is the manner in which state is processed.
One way to structure an application is to render a set of geometric
objects, where each object has a pipeline configuration (an Effect)
applied to it. An Effect is parameterized by setting shader pa-
rameters in constant buffers, texture bindings, and by setting other
fixed-function state. For maximum efficiency, an application
should draw all objects that use the same Effect together. This is
the traditional state-sorting solution to efficiency used by scene
management systems [Rohlf and Helman 1994]. However, within
an Effect there may be several levels of parameterization, for
example, per-frame state such as current time, view position;
character static state such as texture maps or vertex data; character
dynamic state such as position, pose; etc. A separate constant
buffer is used to store the shader parameterization at each level
and as the objects are drawn constant buffers holding static pa-
rameters are simply bound, and constant buffers holding dynamic
parameters are updated and bound.

As a practical matter, applications cannot always sort objects
by Effect. There may be other constraints that govern the order of
drawing objects, such as distance from the viewer, opacity, etc.
We have designed the Direct3D 10 system to substantially reduce
the cost of state changes in general so that reconfiguring the entire
pipeline can be done efficiently.

6. System Experience
This project started in early 2003 and the runtime system and first
hardware implementations are slated to ship sometime in 2006.
We shared our first software prototypes in late 2004 and the first
publicly available reference software implementation in late 2005.

Performance has received considerable attention throughout
the project. Early on we made many measurements of current
systems using microbenchmarks. We performed similar meas-
urements on the new runtime using a simulated driver (faithfully
implementing all of the driver interfaces) and the reference pipe-
line implementation. An abbreviated set of results are summarized
in Table 3. It is difficult to make a perfect comparison as the
Direct3D 10 commands operate at larger granularity. Our meas-
urements look promising, but we will not know the final answer
until we have hardware and drivers later in 2006.

During the course of development we have written many ap-
plications to validate ideas for using the geometry shader, stream
out, render target arrays and other new features. These samples
include soft shadow volume algorithms, procedural content gen-
eration, higher-order normal interpolation, motion blur, morphing
with sparse targets, shell and fin extrusions, etc. (see Appendix A).
These prototypes were critical to uncovering early design prob-
lems and now serve as validation for hardware implementations
and educational examples for application developers.

Operation Direct3D 9 Direct3D 10 (reference)
Draw 1470 154
Bind VS Shader 6636 416
Set Constant 3297 916
Set Blend Function 787 530

Table 3: Command cycle counts on Pentium IV.

With the reference implementation available we have been
working with outside application developers to port several large
Direct3D 9 applications to the new API to help track down “rough
edges” in the API design. Concurrently we are working with
several outside developers to create “from the ground up” applica-
tions using the new API and we anticipate that these will be
commercially available later this year.

7. Future Work
We are currently analyzing development experience with our
design and using that to inform a minor update to the API and
runtime a year after the release of Direct3D 10. Since the applica-
tion landscape is constantly changing, we encountered new prob-
lems with simple solutions, but too late for inclusion in the hard-
ware. These features are also under consideration for the minor
update.

Longer term we are looking at somewhat larger additions to
the pipeline and programming model. Much of our attention is
directed to the growing bottleneck in content production. One
solution we are investigating is hardware-assisted procedural and
quasi-procedural techniques for synthesis of detail. Examples
include traditional procedural texture generation or tessellation of
curved surfaces followed by displacement mapping. We believe
these additions are possible with minimal disruption to the archi-
tecture. With respect to programming model, shader program
composition and specialization are increasingly becoming a de-
velopment and management burden. We are examining variations
on traditional programming language constructs such as subrou-
tines with dynamic binding. We believe this can be supported
through minor hardware additions to the common shader core
with the bulk of the work in the software system.

8. Conclusions
Direct3D 10 constitutes a large step forward from previous gen-
erations of the rendering pipeline. We chose to depart from the
annual revision cycle of previous versions, taking more than 3
years to go from concept to hardware to leverage a larger net im-
provement in raw hardware capability. We were also more will-
ing to make broader changes, breaking compatibility with previ-
ous versions of the pipeline and API to both solve the problems
we were presented with and to provide a solid foundation for fu-
ture evolution.

We anticipate the geometry shader and stream output becom-
ing a rich source of new ideas. We are confident that the changes
we made to extend and homogenize the programmable shading
core are good long term steps for both hardware implementations
and application developers. Ultimately we are satisfied that we
arrived at good solutions for the problems we set out to address.
We hope that this paper provides insights into the system design
and that it will provide helpful background for those thinking
about the next set of challenges and solutions for similar systems.

9. Acknowledgements
We would like to thank the companies who contributed to the
Direct3D 10 design: ATI, NVIDIA, Intel, S3, and the members of
the DirectX Graphics Advisory Board. Bob Drebin and Tom
Frisinger at ATI and Henry Moreton at NVIDIA provided critical
insights into hardware implementation. We also thank the design
engineers in Microsoft’s DirectX group: Amar Patel, Brian
Klamik, John Ketchpaw, Jeff Noyle, Iouri Tarassov, Relja Mark-
ovic, Dan Baker, Craig Peeper, Peter-Pike Sloan, Mike Toelle,
Sam Glassenberg, and Chas Boyd. Mike Toelle, Sam Glassen-
berg, Henry Moreton, and the anonymous reviewers made many
constructive suggestions to improve the clarity of the paper.
Shanon Drone and the SDK team provided the sample images.

References
ATI. 2005. Radeon X800 3D Architecture White Paper. http://

www.ati.com/products/radeonx800/RadeonX800ArchitectureW
hitePaper.pdf.

AKELEY, K. 1993. RealityEngine graphics. In Proceedings of ACM SIG-
GRAPH 1993. ACM Press, New York, NY, 109-116.

BLINN, J. F. 1990. The truth about texture mapping. IEEE Computer
Graphics and Applications 10, 2, 78-83.

BUCK, I. FOLEY, T., HORN, D., SUGERMAN, D., FATAHALIAN, K., HOUSTIN,
M., AND HANRAHAN, P. 2004. Brook for GPUs: Stream computing on
graphics hardware. Transactions on Graphics 23, 3, 777-786.

CHAN, E., NG, R., SEN, P., PROUDFOOT, K., AND HANRAHAN, P. 2002.
Efficient partitioning of fragment shaders for multipass rendering on
programmable graphics hardware. In Graphics Hardware, 69-78.

DOGGETT, M., 2005. Xenos: XBox 360 GPU. GDC-E 2005,
http://www.ati.com/developer/eg05-xenos-doggett-
final.pdf.

GRAY, K. 2003. The Microsoft DirectX 9 Programmable Graphics Pipe-
line. Microsoft Press.

HAINES, E. 2006. An Introductory Tour of Rendering. IEEE Computer
Graphics and Applications 26, 1, 76-87.

HAKURA, Z. S., AND GUPTA, A. 1997. The design and analysis of a cache
architecture for texture mapping. ACM SIGARCH Computer Architec-
ture News 25, 2, 108-120.

IEEE COMPUTER SOCIETY .1985. IEEE Standard for Binary Floating-
Point Arithmetic. IEEE Std 754-1985.

IGEHY, H., ELDRIDGE, M., AND HANRAHAN, P. 1999. Parallel texture
caching. In Graphics Hardware, ACM Press, New York, NY, 95-106.

KESSENICH, J., BALDWIN, D., and ROST, R. 2004. The OpenGL Shading
Language version 1.10.59.
http://www.opengl.org/documentation/oglsl.html.

LINDHOLM, E., KILGARD, M. J., AND MORETON, H. 2001. A user-
programmable vertex engine. In Proc. of SIGGRAPH 2001, ACM Press
/ ACM SIGGRAPH, 149-158.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD, M. J. Cg: A
system for programming graphics in a C-like language. ACM Transac-
tions on Graphics 22, 3, 2003, 896-907.

MCCABE, D., AND BROTHERS, J. 1998. DirectX 6 texture map compres-
sion. Game Developer Magazine 5, 8. 42-46.

MCCOOL, M. and DU TOIT, S. 2004. Metaprogramming GPUs with Sh. A
K Peters.

MCCORMICK P. S., INMAN, J., AHRENS, J. P., HANSEN, C., AND ROTH, G.
2004. Scout: A hardware-accelerated system for quantitatively driven
visualization and analysis. In Proc. of IEEE Visualization, 171-178.

MICROSOFT CORP. 2002. High-level shader language. In DirectX 9.0
Graphics. http://msdn.microsoft.com/directx.

MICROSOFT CORP. 2006, Direct3D 10 Reference. In Direct3D 10 Graph-
ics. http://msdn.microsoft.com/directx.

MONTRYM, J., and MORETON, H. 2005. The GeForce 6800. IEEE Micro
25, 2, 41-51.

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRAHAN, P. 2001.
A real-time procedural shading system for programmable graphics
hardware. In Proc. of SIGGRAPH 2001, ACM Press / ACM SIG-
GRAPH, 159-170.

RIFFEL, A., LEFOHN, A. E., VIDIMCE, K., LEONE, M., AND OWENS, J. D.
2004. Mio: Fast multipass partitioning via priority-based instruction
scheduling. In Graphics Hardware, 35-44.

ROHLF, J. AND HELMAN, J. 1994. IRIS Performer: A high performance
multiprocessing toolkit for real-time 3D graphics. In Proc. of SIG-
GRAPH '94. ACM Press, New York, NY, 381-394.

SEGAL, M., and AKELEY, K. 2004. The OpenGL Graphics System: A
Specification (Version 2.0). http://
www.opengl.org/documentation/spec.html.

TARDITI, D., PURI, S., AND OGLESBY, J. 2005. Accelerator : Simplified
programming of graphics units for general-purpose uses via data paral-
lelism. Technical Report, MSR-TR-2005-184.

http://www.opengl.org/documentation/

Figure 5: From left –— render to cube map, particle system, instancing, shadow volume, displacement mapping.

Appendix A: Examples
Figure 5 shows images from several Direct3D 10 sample appli-
cations. Each of these applications uses pipeline features to
substantially reduce the amount of preprocessing or CPU opera-
tions compared to current rendering systems.

Example 1 renders a scene to a cube map and then applies
the result as a reflection map in a second rendering pass. The
cube map is generated in a single pass using a GS program to
replicate each input triangle 6 times, applying a separate model-
view transformation for each face of the cube. Each of the re-
sulting triangles is directed to the appropriate element of a ren-
der target array view of the cube map.

Example 2 demonstrates a particle system using the GS and
stream output. A pair of vertex buffers holds the current and
next particle state, consisting of position, time, and type (emit-
ters, non-emitters). In each pass the array of particles are proc-
essed drawing them as a list of point primitives. The GS evalu-
ates the current state of each particle and writes zero or more
updated particles to the stream output depending on this state.
The number of output particles is tracked as part of the vertex
buffer state and is used as the primitive count in subsequent
drawing commands. The new list of particles is rendered in a
second pass using the GS to convert each particle to a “point
sprite” consisting of a pair of triangles.

Example 3 uses the instancing and geometry amplification
features to draw a scene composed of 50 islands using a total of
6 drawing commands to draw the sky (1), lower island bases
(50), upper island bases (50), trees (50), leaves (125000), and
grass blades (500000). Instance and primitive ids generated by
the IA are used to index arrays of modeling transforms and tex-
ture images to apply distinct transformations and shading to
each of the instances. A GS program is used to dynamically

generate the 10,000 blades of grass per island from a smaller
number of seed primitives.

Example 4 demonstrates lighting with shadowing using a
shadow volume technique [Everitt and Kilgard 2002]. A
shadow volume consisting of front and back caps and side faces
is created from the caster geometry in a single rendering pass
using a GS program. The front cap is created using the surface
normal and light vector to select those triangles that face the
light source and draw them. The back cap is created by dupli-
cating the front cap triangles and translating them along the light
direction. Side faces are created by using adjacency information
for each triangle to determine which triangle edges participate in
the silhouette and extruding a quadrilateral (triangle pair) along
each of the silhouette edges connecting the front and back caps.

Example 5 demonstrates a per-pixel displacement mapping
technique [Hirche et al. 2004] used to add additional geometric
detail to a base mesh of 1480 triangles. A GS program is used
to extrude a prism at each base triangle along the surface normal.
The prisms are each decomposed to 3 tetrahedra resulting in an
additional 17760 triangles. Ray casting against a height field is
performed in a PS program to test whether pixels generated by
the extrusions are part of the displaced surface. Pixels are either
discarded or shaded depending on the outcome of the test.

EVERITT, C. AND KILGARD, M. 2002. Practical and Robust Stenciled

Shadow Volumes for Hardware-Accelerated Rendering.
http://developer.nvidia.com.

HIRCHE, J., EHLERT, A. GUTHE, S. AND DOGGETT, M. 2004. Hardware
accelerated per-pixel displacement mapping. In Proc. of Graphics In-
terface 2004, 153-160.

	Abstract
	Introduction
	Background
	The Pipeline
	Memory Structure and Data Flow
	Storage Formats
	Design Considerations

	Shader Model 4.0
	Stage-Specific Functionality

	Core API and Runtime
	State Management
	Validation and Error Handling
	Resource Mapping and Access
	HLSL 10
	HLSL-FX 10

	System Experience
	Future Work
	Conclusions
	Acknowledgements
	References
	Appendix A: Examples

