SIGGRAPH Asia 2010
Preview

Curves Characters & Crowds
2010/12/07

Igarashi lab M1
チン　テイ
陳　鼎
Morphable Crowds

- Issue: control over crowd styles
 - challenging problem
 - cumbersome

- blending crowd animations into a new crowd
 - morphable crowd model
 - Multi-Way Blending
• morphable crowd model
 ◦ the distribution of neighborhood formations
 ◦ locomotion trajectories
- Formation distribution
• Trajectories model
 ◦ the trace of an individual for a short interval
 ◦ short segments are strung together

\[d_{ij} = \| v_i^{\text{end}} - v_j^{\text{begin}} \| \]
Multi-Way Blending
Motion Fields for Interactive Character Animation

- Related work: Motions graphs
 - difficult to create graphs which allow very quick responses to changes of direction
 - difficult to couple these methods to physical simulators and other techniques

- a novel representation of motion data and control: motion fields
• motion fields

 ◦ instead of building a model of the most probable single motion
 ◦ model the set of possible motions at each character state

• motion state

\[m = (x, v) = (x, x' \ominus x) \]

 ◦ a pair of successive poses \(x \) and \(x' \)
Motion Database
 ◦ Input as a set of motion capture data and constructs a set of motion states

Neighborhoods
 ◦ most similar motion states

\[
d(m, m') = \sqrt{\beta_\text{root} \left\| \nu_\text{root} - \nu'_\text{root} \right\|^2 + \beta_0 \left\| q_0(\hat{u}) - q'_0(\hat{u}) \right\|^2 + \sum_{i=1}^{n} \beta_i \left\| p_i(\hat{u}) - p'_i(\hat{u}) \right\|^2 + \sum_{i=1}^{n} \beta_i \left\| (q_i p_i)(\hat{u}) - (q'_i p'_i)(\hat{u}) \right\|^2}
\]
• Control using action weights

• Results
 ◦ Fast
 ◦ Easy to generate a new controller
 ◦ couple these methods to physical simulators

 ◦ motionfields_final.mov
Stable Inverse Dynamic Curves

- fit a smooth piecewise circular arcs curve to a sketched curve

- 2d dynamic curve at stable equilibrium under gravity
- based on the dynamic super-helix model [Bertails et al. 2006]

- two original algorithms
 - the geometric fitting with precise control of the resolution
 - the dynamic fitting with precise control of the stability
Video-based Reconstruction of Animatable Human Characters

- **Input:** multi-view video, mark-less

- **Output:**
 - animatable performance model
 - comprising a skeleton with surface skinning for non-cloth regions, collision proxies,
 - and a physics-based simulation model for apparel
• main contributions

◦ A new approach to capture plausible fully-animatable virtual humans from sparse video recordings

◦ An algorithm to automatically identify wavy cloth regions
• main contributions

- An algorithm to estimate plausible cloth simulation parameters
- A method to easily create new real-time animations