
�

�

“jgt” — 2009/6/9 — 11:58 — page 17 — #1
�

�

�

�

�

�

Vol. 14, No. 1: 17–30

Implementing As-Rigid-As-Possible
Shape Manipulation and Surface
Flattening

Takeo Igarashi
The University of Tokyo, Japan / JST ERATO

Yuki Igarashi
The University of Tokyo, Japan

Abstract. This article provides a description of an “as-rigid-as-possible shape

manipulation” implementation that is clearer and easier to understand than the

original. While the original paper used triangle-based representation, we use edge-

based representation to simplify the coding. We also extend the original algorithm

to allow the user to place handles on arbitrary positions of the mesh. In addition,

we show that the same algorithm can be used for surface flattening with quality and

performance comparable to popular flattening methods.

1. Introduction

The goal of this article is to provide a clear and easy-to-understand
description of the implementation of the “as-rigid-as-possible shape manipu-
lation” algorithm [Igarashi et al. 05]. We have modified the original algorithm
to improve the user experience and simplify coding. We also show that the
same algorithm can be used for surface flattening with quality comparable to
popular flattening methods.

The algorithm computes a natural-looking deformation of a two-dimen-
sional shape according to the user’s specification. The user places an arbitrary
number of point handles on the input shape and manipulates those handles.

© A K Peters, Ltd.

17 1086-7651/09 $0.50 per page

�

�

“jgt” — 2009/6/9 — 11:58 — page 18 — #2
�

�

�

�

�

�

18 journal of graphics, gpu, and game tools

The system then deforms the shape to follow the handles while keeping the
local geometry as rigid as possible. Using this technique, the user can move,
rotate, squash, stretch, and deform a model simply by grabbing and moving
several handles.

This paper makes the following two small refinements to the original al-
gorithm. First, while the original system allowed the user to place handles
only on the mesh vertices, the algorithm described here allows the user to
place handles at arbitrary locations inside the mesh triangles. This is a vis-
ible and significant improvement from the user’s perspective. Second, while
the original algorithm used triangle-based representation for computing this
distortion, the algorithm described here uses edge-based representation. This
second modification is not obvious to the end user but simplifies the coding
significantly.

2. Problem Setup

The 2D shape is represented as a 2D triangle mesh. A handle is given as a
specific vertex of the mesh (we first describe the method where only mesh
vertices can be used as handles as in [Igarashi et al. 05] and then describe
a method where the user can place handles at arbitrary locations). Given
the handle vertices and target 2D position of these handles, the algorithm
computes the 2D position of the mesh vertices (Figure 1).

Trian g le
Mesh

H an d les R esu lt

C om p ilation Man ip u lation

Figure 1. Problem setup: The system takes the triangle mesh and user-specified
handles and returns new vertex positions when the handles are moved.

3. Basic Concept

Our algorithm obtains the coordinates of the deformed mesh by minimizing
the distortion of each mesh triangle, that is, the difference between the orig-
inal triangle and the resulting triangle. The question is how to define the

�

�

“jgt” — 2009/6/9 — 11:58 — page 19 — #3
�

�

�

�

�

�

Igarashi and Igarashi: Implementing As-Rigid-As-Possible Shape Manipulation 19

distortion of a triangle. If the triangle only moves and rotates, the distortion
should be zero. If the triangle shears or scales, the distortion should represent
the amount of shearing and scaling. Ideally, we wish to have a metric that
represents such distortion as a linear function of vertex coordinates so that we
can obtain the result as a closed-form solution. Unfortunately, no such linear
presentation exists [Sorkine et al. 04, Weng et al. 06]. Therefore, we obtain
an approximation by decomposing the non-linear optimization problem into a
sequence of linear problems (Figure 2). The first step obtains the deformation
result allowing free translation, rotation, and uniform scaling, while penaliz-
ing non-uniform scaling and shearing. In the resulting shape, the position
and rotation are correct but the scale is wrong. The next step then takes
the result of this first step (specifically, the orientation of each triangle) and
obtains the final deformation result allowing free translation, while penalizing
rotation, shearing, and scaling.

handles F irs t s tep Sec on d step

Figure 2. Basic concept: The system first applies an optimization that allows free
rotation and scaling and then applies an optimization that allows only translation
to adjust the scale.

In the actual coding described below, we represent the distortion for each
triangle edge, not each face. This choice is, in a sense, arbitrary. We can
use the vertex, the edge, or the face as a basis for computing local distor-
tion and obtain similar results (Figure 3). Vertex-based representation (vi −∑

j∈Ni
vj , second-order differential or Laplacian) is a popular choice for three-

dimensional meshes because it naturally represents local bumps and concavi-
ties [Sorkine et al. 04]. However, its meaning is less intuitive for 2D meshes,
and it causes difficulty when assigning rigidity to the mesh. What does “this
vertex is more rigid” actually mean? A triangle-based representation pro-
vides a much more intuitive definition. It is very natural to imagine rotating
and scaling individual triangles and to see a mesh as an assembly of indi-
vidual triangles. It is also natural to say “this triangle is more rigid.” This
is the reason why the original paper [Igarashi et al. 05] used triangle-based
representation. The problem is that the actual coding becomes somewhat
complicated because we need to examine three edges of a triangle to define
its distortion. This leads to our choice of edge-based representation (vi − vj ,

�

�

“jgt” — 2009/6/9 — 11:58 — page 20 — #4
�

�

�

�

�

�

20 journal of graphics, gpu, and game tools

vertex face edge
Figure 3. Different representations.

first-order differential). This is somewhat less intuitive for first-time readers,
but the coding becomes much simpler and more straightforward.

4. Algorithm

4.1. Baseline Algorithm

We first describe the baseline algorithm to clarify the idea before describing
the actual implementation . Our goal is to find vertex coordinates that mini-
mize the distortion of edge vectors under the given handle constraints. To do
so, we solve the following equation in a least-squares sense:

v′j − v′i = vj − vi ({i, j} ∈ E) subject to constraints v′i = Ci (i ∈ C),

where vi is the vertex coordinate of the original rest shape, v′i is the vertex
coordinate of the deformed shape, E is a set of edges (all edges are directed),
C is a set of handles, and Ci is the handle coordinate. Combining these
into a single cost function, we obtain the following least-squares minimization
problem:

arg min
v′∈V

⎧
⎨

⎩
∑

{i,j}∈E

∥∥(v′j − v′i) − (vj − vi)
∥∥2 + w

∑

i∈C

‖v′i − Ci‖2

⎫
⎬

⎭ , (1)

where w is a weight factor; we currently use a value of w = 1000.
This is a linear optimization problem for which we can obtain the result as

a closed form solution by solving a linear matrix equation. The derivation is
as follows. We first rewrite Equation (1) in matrix form:

arg min
v′

∥∥∥Av
′ − b

∥∥∥
2

.

We then solve this separately for the x- and y-components. The entries of
the matrix equation for the x-component, where e is an edge vector, are as
follows:

�

�

“jgt” — 2009/6/9 — 11:58 — page 21 — #5
�

�

�

�

�

�

Igarashi and Igarashi: Implementing As-Rigid-As-Possible Shape Manipulation 21

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
′
′

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

M

M

M

M

M

x

x

x

x

x

x

wc
wc

e
e

v
v

w
w

1

0

1

0

1

011
11

A xv′ b

edge vectors

constraints

If e0 starts at v0 and ends at v1, then e0 = v1 − v0. Matrix A is identical for
both x- and y-components. The result of this least-squares minimization is
obtained by solving a normal equation:

ATAv
′
= ATb.

4.2. First Step: Similarity Transformation

The problem with this formalization is that it does not allow rotation
[Sorkine et al. 04]. Ideally, the cost function should be zero if the shape
simply rotates without any distortion (rotation invariance). However, the
cost function to be minimized in Equation (1) becomes non-zero when the
mesh (edge) rotates, because the rotated vector minus the original vector
is non-zero. This is a fundamental limitation of the simple linear represen-
tation, and many attempts have been made to achieve rotation invariance.
Most approaches explicitly compute rotations beforehand and use the rotated
differentials on the right-hand side of Equation (1) [Zayer et al. 05]. That
approach is not applicable to the circumstances of our problem because the
user’s handles do not have orientation information. Recent approaches have
used non-linear solvers [Weng et al. 06], but they require iterative computa-
tion and are not suitable for sudden, large handle displacements.

Our approach is to use an implicit optimization method [Sorkine et al.
04] to rotate the original local differential (edge vector, right-hand side of
Equation (1)) by a rotation matrix Tk that maps the nearby vertices v around
the edge to the new locations v′. That is, we represent the (unknown) rotation
Tk as a function of (unknown) positions of deformed vertices v′, multiply them
by the original edge vectors, and then compute these unknown vertex positions
all together during optimization. As a result, the rotation (which is actually a
similarity transform that allows free rotation and uniform scaling) in 2D can

�

�

“jgt” — 2009/6/9 — 11:58 — page 22 — #6
�

�

�

�

�

�

22 journal of graphics, gpu, and game tools

ek

vj

vi

vl

vr

Figure 4. Edge neighbors.

be represented in a linear form,

Tk =
{

ck sk

−sk ck

}
, (2)

and thus we can solve the system as a linear optimization problem1. The
derivation is as follows.

The rotation matrix Tk is given as a transformation that maps the vertices
around the edge to new positions as closely as possible in a least-squares
sense. We sample four vertices around the edge as a context to derive the
local transformation Tk. It is possible to sample an arbitrary number of
vertices greater than three here, but four is the most straightforward, and we
have found that it produces good results. An exception applies to edges on
the boundary. In those cases, we only use three vertices to compute Tk:

Tk = argmin
Tk

∑

v∈N(ek)

∥∥∥Tkv − v
′∥∥∥

2

, (3)

where (see Figure 4)

N(ek) = {vi, vj , vl, vr}.

Using Equation (2), Equation (3) can be rewritten as

{ck, sk} = arg min
ck,sk

∑

v∈N(ek)

∥∥∥∥

[
ck sk

−sk ck

] [
vx

vy

]
−
[

v′x
v′y

]∥∥∥∥
2

= arg min
ck,sk

∑

v∈N(ek)

∥∥∥∥

[
vx vy

vy −vx

] [
ck

sk

]
−
[

v′x
v′y

]∥∥∥∥
2

1In 3D, even similarity transformations do not have a linear parameterization, and it is
necessary to find the best rotations iteratively [Sorkine and Alexa 07].

�

�

“jgt” — 2009/6/9 — 11:58 — page 23 — #7
�

�

�

�

�

�

Igarashi and Igarashi: Implementing As-Rigid-As-Possible Shape Manipulation 23

= arg min
ck,sk

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vix viy

viy −vix

vjx vjy

vjy −vjx

vlx vly

vly −vlx

vrx vry

vry −vrx

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
ck

sk

]
−

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v′ix
v′iy
v′jx

v′jy

v′lx
v′ly
v′rx

v′ry

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= arg min
ck,sk

∥∥∥∥∥∥∥
Gk

[
ck

sk

]
−

⎡

⎢⎣
v′ix
v′iy
...

⎤

⎥⎦

∥∥∥∥∥∥∥

2

This is again a standard least-squares problem and the solution is given as

[
ck

sk

]
=
(
Gt

kGk

)−1
Gt

k

⎡

⎢⎣
v′ix
v′iy
...

⎤

⎥⎦ .

This shows that Tk is linear in vi, vj , vl, and vr. We now apply this (implicitly-
defined) local transformation Tk to the original edge vector (vj − vi) in Equa-
tion (1).

argmin
v′

⎧
⎨

⎩
∑

{i,j}∈E

∥∥(v′j − v′i
)− Tij (vj − vi)

∥∥2 + w
∑

i∈C

‖v′i − Ci‖2

⎫
⎬

⎭ (4)

The terms inside of the left-hand summation are transformed as follows:

(v′j − v′i) − Tij(vj − vi)

= (v′j − v′i) −
[

ck sk

−sk ck

]
ek

= (v′j − v′i) −
[

ekx eky

eky −ekx

] [
ck

sk

]

�

�

“jgt” — 2009/6/9 — 11:58 — page 24 — #8
�

�

�

�

�

�

24 journal of graphics, gpu, and game tools

= (v′j − v′i) −
[

ekx eky

eky −ekx

] (
Gt

kGk

)−1
Gk

⎡

⎢⎣
v′ix
v′iy
...

⎤

⎥⎦

=
([−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

]
−
[

ekx eky

eky −ekx

] (
Gt

kGk

)−1
Gk

)

×

⎡

⎢⎣
v′ix
v′iy
...

⎤

⎥⎦

=
[

hk00 hk10 hk20 hk30 hk40 hk50 hk60 hk70

hk01 hk11 hk21 hk31 hk41 hk51 hk61 hk71

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v′ix
v′iy
v′jx

v′jy

v′lx
v′ly
v′rx

v′ry

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now Equation (4) can be written in the following matrix form:

argmin
v′

∥∥∥A1v
′ − b1

∥∥∥
2

.

The entries of the matrix equation look like

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
′
′
′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

M

M

M

M

M

y

x

y

x

y

x

y

x

wc
wc
wc
wc

v
v
v
v

1

1

0

0

1

1

0

0

0
0
0
0

A1 v′ b1

edge vectors

constraints

h020

h021

h000

h001

h030

h031

h010

h011

h100

h101

h110

h111

h160

h161

h170

h171

…

h060

h061

h070

h071

h040

h041

h050

h051

h120

h121

h130

h131

h140

h141

h150

h151

w

w

w

w

�

�

“jgt” — 2009/6/9 — 11:58 — page 25 — #9
�

�

�

�

�

�

Igarashi and Igarashi: Implementing As-Rigid-As-Possible Shape Manipulation 25

Here, we compute x- and y-components together and obtain the answer by
solving a normal equation,

At
1A1v

′
= At

1b1. (5)

This gives almost the right answer, but a problem remains because this
solution allows free scaling. If the user moves the handles far apart, the
resulting shape inflates; when the handles are moved close together, the shape
deflates. See the middle image in Figure 2. Therefore, the next step is to
adjust the scale.

4.3. Second Step: Scale Adjustment

The second step takes the rotation information from the result of the first step
(i.e., computing the explicit values of T ′k and normalizing them to remove the
scaling factor), rotates the original edge vectors ek by the amount T ′k, and
then solves Equation (1) using the original rotated edge vectors. That is, we
compute the rotation of each edge by using the result of the first step,

T ′k =
[

ck sk

−sk ck

]
,

[
ck

sk

]
=
(
Gt

kGk

)−1
Gt

k

⎡

⎢⎢⎣

v′i
v′j
v′l
v′r

⎤

⎥⎥⎦ (6)

and then normalize it

T ′k =
1

c2
k + s2

k

{
ck sk

−sk ck

}
.

We compute T ′k for each edge and then insert this transformation into Equa-
tion (1):

arg min
v′′∈V

⎧
⎨

⎩
∑

{i,j}∈E

∥∥∥(v
′′
j − v

′′
i) − T ′ij(vj − vi)

∥∥∥
2

+ w
∑

i∈C

∥∥∥v
′′
i − Ci

∥∥∥
2

⎫
⎬

⎭

(T ′ij is constant in 2nd step).

Again, this is linear in v
′′
, so we can rewrite this in matrix form as

argmin
v′′

∥∥∥A2v
′′ − b2

∥∥∥
2

We solve this separately for the x- and y-components. The entries of the
matrix equation for the x-component look like

�

�

“jgt” — 2009/6/9 — 11:58 — page 26 — #10
�

�

�

�

�

�

26 journal of graphics, gpu, and game tools

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
′
′

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
′′
′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

M

M

M

M

M

x

x

x

x

x

x

wc
wc

eT
eT

v
v

w
w

1

0

11

00

1

011
11

A2 xv ′′ b2

edge vectors

constraints

Matrix A2 is identical for both x- and y-components. We obtain the answer
by solving a normal equation,

At
2A2v

′′
= At

2b2. (7)

The final result appropriately fixes the unwanted scaling observed in the result
of the first step (Figure 2 right).

5. Allowing Handles on Arbitrary Positions in the Mesh

The above algorithm allows the user to place handles only on vertex po-
sitions. The user cannot place a handle on an arbitrary position inside a
triangle. This is because the algorithm represents the constraint as an asso-
ciation between a handle and a single vertex (vi = ci). This constaint can
be easily fixed by representing the handle location by barycentric coordinates
(wi0vi0 + wi1vi1 + wi2vi2 = ci). This leads to a very simple modification
of the overall procedure: simply modify the bottom half of A1 and A2 as
follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w01 w00 w12 · · ·
w10 w12 w11

...

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

�

“jgt” — 2009/6/9 — 11:58 — page 27 — #11
�

�

�

�

�

�

Igarashi and Igarashi: Implementing As-Rigid-As-Possible Shape Manipulation 27

6. Implementation Notes

The system solves two sparse linear matrix equations, Equations (5) and (7),
using a fast solver [Davis 03, Toledo et al. 03] each time the user moves the
handles (interactive update). We accelerate this computation by applying
pre-computations when the original rest shape is defined (registration) and
when the handles are added or removed (compilation). In the registration
step, we compute the top half of A1 and A2 (we call the results L1 and L2),
as well as Lt

1L1 and Lt
2L2. We also compute (GtG)−1G in Equation (6). In

the compilation step, we first compute the bottom half of A1 and A2 (we call
the results C1 and C2) as well as Ct

1C1 and Ct
2C2. We then factor At

1A1 =
Lt

1L1 +Ct
1C1 and At

2A2 = Lt
2L2 +Ct

2C2. These matrices remain constant and
only b1 and b2 change during the interactive update, so we simply apply back
substitution to solve the matrix equations reusing the factorization results.

For the sake of simplicity, the energy function described here does not have
weights for edges. This works well for evenly triangulated meshes but can
cause a problem when the mesh is not even. In that case, it is necessary to
give weights to edges in the energy function (multiply each row of A and b with
the corresponding edge weight). We recommend using the cotangent weight
formula wij = 1

2 (cot∠ilj + cot∠irj) [Sorkine and Alexa 07] (see Figure 4).
We use a standard sparse linear-matrix solver and do not exploit the spe-

cial structure of the matrix other than its sparseness. The problem is well-
conditioned and no degeneracy occurs as long as more than two handles are
provided and there are no co-incident handles or degenerated triangles in the
mesh. The algorithm is always stable regardless of the position of the handles
because of the nature of least-squares formulation. It works without failure
even in cases of extreme deformations. However, extreme deformations can
cause fold over of the mesh, reversing some of the triangles.

7. As-Rigid-as-Possible Surface Flattening

Our deformation algorithm can be used for surface flattening (unwrapping)
with a slight modification. The basic concept behind the 2D deformation algo-
rithm is to minimize the difference between a triangle in the original 2D mesh
and one in the deformed 2D mesh (i.e., to compute the as-rigid-as-possible
mapping of the 2D triangle). We can use the identical measurement to calcu-
late the difference between the 3D triangle and the 2D triangle, which results
in a simple flattening method (i.e., computing the as-rigid-as-possible mapping
of the 3D triangle to the 2D triangle while preserving mesh connectivity).

The above edge-based algorithm can be used for surface flattening by mak-
ing the following changes. For each edge ei, we locally flatten the edge
and two adjacent triangles, obtaining 2D coordinates of the edge (a, b) and

�

�

“jgt” — 2009/6/9 — 11:58 — page 28 — #12
�

�

�

�

�

�

28 journal of graphics, gpu, and game tools

a

b

c

d a´ b´

c´

d´

3D 2D

Figure 5. Local flattening of an edge and adjacent faces.

nearby vertices (c, d). Specifically, we define a′ = (0, 0), b′ = (|a − b|, 0),
c′ = (|c − a| cos∠cab, |c − a| sin∠cab), d′ = (|d − a| cos∠dab, |d − a| sin ∠dab)
and use these values (a′, b′, c′, d′) in the optimization (Figure 5). It may seem
somewhat counterintuitive, but the above algorithm does not use any mesh-
connectivity information other than computing edge vectors and Tcsk, making
it possible to use this approach. It is necessary to constrain at least two ver-
tices to solve the optimization problem. The choice of the two constraints is
arbitrary, but we choose to use the end points of an edge at the center of the
mesh.

(a) First step of our method (b) Second step of our method

(c) LSCM [Lévy et al. 02] (d) ABF++ [Sheffer et al 05]

Figure 6. Comparison of our method to existing flattening methods. Note that
pattern size on the 3D surface is more uniform in our method.

�

�

“jgt” — 2009/6/9 — 11:58 — page 29 — #13
�

�

�

�

�

�

Igarashi and Igarashi: Implementing As-Rigid-As-Possible Shape Manipulation 29

It is difficult to compare the quality of flattening with other methods be-
cause the goals vary depending on the target application. Experience has
shown that our algorithm generates results that are almost indistinguishable
from those of popular flattening methods [Sheffer et al. 06] for almost de-
velopable meshes. When the mesh is far from developable, it respects scale
consistency while sacrificing conformality (Figure 6). It is possible to improve
the quality of our method by using other interactive refinement [Weng et al.
06, Liu et al. 08]. In terms of performance, our current implementation is
comparable to state-of-the-art methods [Sheffer et al. 06] after introducing hi-
erarchical methods and optimizing the computation for the particular matrix
structure.

We do not claim that our algorithm is better than existing flattening algo-
rithms, but we believe that our method can be a choice when scale consistency
is more important. For example, our approach can be useful for designing
cloth patterns by flattening a target 3D geometry [Julius et al. 05, Igarashi
and Igarashi 08], because cloth should not stretch or compress too much.
We also believe that our particular formulation (computing the as-rigid-as-
possible mapping) could provide a basis for specific extensions, such as locally
controlled rigidity, by changing edge weights.

References

[Davis 03] Timothy A. Davis. “Umfpack Version 4.1 User Guide.” Technical report
TR-03-008, University of Florida, 2003.

[Igarashi and Igarashi 08] Yuki Igarashi and Takeo Igarashi. “Pillow: Interactive
Flattening of a 3D Model for Plush Ttoy Design.” In SmartGraphics, edited
by A. Butz, B. Fisher, A Krüger, P Olivier, and M. Christie, pp. 1–7, Lecture
Notes in Computer Science 5166. Berlin: Springer-Verlag, 2008.

[Igarashi et al. 05] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. “As-
Rigid-as-Possible Shape Manipulation.” Proc. SIGGRAPH ’05, Transactions
on Graphics 24: 3 (2005), 1134–1141.

[Julius et al. 05] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. “D-Charts:
Quasi-Developable Mesh Segmentation.” Computer Graphics Forum (Proceed-
ings of Eurographics 2005) 24:3 (2005), 981-990.

[Lévy et al. 02] Bruno Lévy, Petitjean Sylvain, Ray Nicolas and Maillot Jerome.
“Least Squares Conformal Maps for Automatic Texture Atlas Generation.”
Proc. SIGGRAPH ’02, Transactions on Graphics 21:3 (2002), 362–371.

[Liu et al. 08] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven
J. Gortler. “A Local/Global Approach to Mesh Parameterization.” Computer
Graphics Forum, Symposium on Geometry Processing 27:5 (2008), 1495–1504.

�

�

“jgt” — 2009/6/9 — 11:58 — page 30 — #14
�

�

�

�

�

�

30 journal of graphics, gpu, and game tools

[Sheffer et al 05] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bo-
gomyakov. “ABF++: Fast and Robust Angle Based Flattening.” ACM Trans-
actions on Graphics 24:2 (2005), 311–330.

[Sheffer et al. 06] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh Parameteri-
zation Methods and Their Applications. Hannover, MA: Now Publishers,Inc.,
2006.

[Sorkine and Alexa 07] Olga Sorkine and Marc Alexa. “As-Rigid-as-Possible Sur-
face Modeling.” In Proceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing 2007 pp.109–116. Aire-la-Ville, Switzerland:
Eurographics Assoc., 2007.

[Sorkine et al. 04] Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa,
Christian Rössl, and Hans-Peter Seidel. “Laplacian Surface Editing.” In Pro-
ceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing, pp.179–188. Aire-la-Ville, Switzerland: Eurographics Assoc., 2004.

[Toledo et al. 03] Sivan Toledo, Doron Chen and Vladimir Rotkin. “TAUCS. A Li-
brary of Sparse Linear Solvers.” http://www.tau.ac.il/∼stoledo/taucs/

[Weng et al. 06] Yanlin Weng, Weiwei Xu, Yanchen Wu, Kun Zhou, and Baining
Guo. “2D Shape Deformation Using Nonlinear Least Squares Optimization.”
The Visual Computer 22:9-11 (2006), 653–660.

[Zayer et al. 05] Rhaleb Zayer, Christian Rössl, Zachi Karni, and Hans-Peter Sei-
del. “Harmonic Guidance for Surface Deformation.” Computer Graphics Forum
(Proceedings of Eurographics 2005) 24:3 (2005) 601–609.

Web Information:

Additional material can be found online at http://jgt.akpeters.com/papers/Igarashi
Igarashi09/ and http://www-ui.is.s.u-tokyo.ac.jp/∼takeo/.

Takeo Igarashi, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033,
Tokyo, Japan (takeo@acm.org)

Yuki Igarashi, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904,
Tokyo, Japan (yukim@acm.org)

Received December 8, 2008; accepted in revised form April 17, 2009.

