

Clothing Manipulation

Takeo Igarashi
Computer Science Department, University of Tokyo

7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 Japan
E-mail: takeo@acm.org

John F. Hughes
Computer Science Department, Brown University

Providence, RI 02912, USA
E-mail: jfh@cs.brown.edu

ABSTRACT
This paper presents interaction techniques (and the
underlying implementations) for putting clothes on a 3D
character and manipulating them. The user paints freeform
marks on the clothes and corresponding marks on the 3D
character; the system then puts the clothes around the body
so that corresponding marks match. Internally, the system
grows the clothes on the body surface around the marks
while maintaining basic cloth constraints via simple
relaxation steps. The entire computation takes a few
seconds . After that, the user can adjust the placement of the
clothes by an enhanced dragging operation. Unlike standard
dragging where the user moves a set of vertices in a single
direction in 3D space, our dragging operation moves the
cloth along the body surface to make possible more flexible
operations. The user can apply pushpins to fix certain cloth
points during dragging. The techniques are ideal for
specifying an initial cloth configuration before applying a
more sophisticated cloth simulation.

KEYWORDS: User Interface, Clothing.

INTRODUCTION
Putting clothes on a 3D character is often a tedious,
time-consuming task. A typical approach is to place parts of
the clothes around the target body as rigid thin plates and
use a simulation to enforce “stitch-together” constraints and
show the effects of gravity [23]. The 3D character may be
placed in a particular pose (e.g., arms outstretched) and then
some “throwaway” animation may be used to get the
character into a desired pose [3]. However, placing thin
plates in free 3D space using a 2D input device is difficult,
and it is not very flexible for exploring various nonstandard
ways of wearing clothes . Recent fast cloth simulation
systems enable real-time manipulation of clothes: the user
can grab a piece of clothing and drag it around in 3D space
[7,8]. But this is like manipulating clothes with chopsticks;
it’s not ideal for putting clothes on a 3D character.

In this paper we introduce a set of intera ction techniques
for putting clothes on a 3D character (here called the body)

quickly and intuitively using 2D input devices. The
techniques are designed for specifying an approximate
initial cloth configuration before applying a high-quality
cloth simulation to obtain a final, good-looking cloth shape
or animation. The intention is that the interface should also
be useful for exploring various cloth configurations quickly
during the design process , both in 3D character design and
real-world fashion design. The interaction techniques are
supported by an underlying approximate simulation

1 2 3 4 5

1
24

5

1 2 3 4 5

1
24

5

Figure 1: Wrapping. The user paints pairs of freeform
marks on the target body and on the clothes (left); the
system places the clothes on the body so that the
corresponding marks match (right). The result appears
almost instantly. (The mark numbering has been added by
hand to clarify the correspondences.)

Before dragging Vertex dragging Surface dragging

Figure 2: Surface dragging. A typical vertex-dragging
operation moves only one vertex explicitly, causing large
local distortion. Surface dragging explicitly propagates
motion across the clothes, enabling global manipulation.
The pushpin on the shoulder blocks further propagation.

technique whose details we describe briefly, particularly as
they relate to the interactions, but which could be replaced
by any other sufficiently rapid simulation. Our sole
requirement is that both the clothing and the 3D character
be represented as polygonal manifold meshes.

The first technique, wrapping, is for putting the clothes
on the body from scratch. The user paints freeform marks
on the clothes and corresponding marks on the body, and in
a few seconds the system places the clothes on the body in
such a way that the corresponding marks match (Figure 1).
The second technique, surface dragging, is for adjusting the
configuration of clothes already on the body. While a
typical cloth-dragging operation moves a set of vertices in a
single direction in 3D space, our dragging operation moves
the cloth along the body surface (Figure 2). The user can
also place pushpins to hold some clothing parts fixed during
dragging. We describe the user interface of the system first
and describe the implementations of those operations later.

RELATED WORK

The computer graphics community has been interested in
cloth modeling for decades [14,23]. Early approaches were
purely geometric [24], but recent systems use physically
based simulations for generating realistic pictures and
animations [2,5,6]. Some systems also allow real-time cloth
manipulation [8]: the user can drag the cloth around in a 3D
space with appropriate cloth-like behavior, and can even get
haptic feedback [7].

Cloth simulation is common in commercial 3D computer
graphics programs today [20,22]. The typical interface for
putting clothes on a 3D character is to set the character in a
canonical dress-up pose, place the clothes around it as rigid
objects, and then start a simulation to let the clothes fall into
a natural position. Some systems let the user specify various
constraints or motion paths for specific cloth vertices to
control the simulation.

The garment-design industry has been using 2D pattern
design programs (apparel CAD) for years [10,17], and
recently started incorporating 3D features [1,9]. They use
predefined mappings between 2D cloth patterns and a 3D
mannequin surface, where the manipulations in the 2D
editor appear simultaneously in 3D space.

Our interface is motivated by the recent sketching
interfaces for 3D modeling [12,25]. These tools are
designed for exploratory design and for communication
during discussion; they are designed to support ease of use
in rapid model creation rather than the refined kinds of
modeling needed in the final design stages. Our goal is to
develop similar easy-to-use design tools for clothes.

THE USER INTERFACE

The system has two windows: the pattern -design window
for editing 2D cloth patterns and the 3D window for
manipulating cloth on a 3D character (the body)(Figure 3).
The user first edits a 2D cloth pattern in the pattern-design

window and then puts the clothes on the body using the
wrapping operation. The user can then manipulate the
clothing using surface dragging and pushpins.

Figure 3: A screen snapshot of the system. Pink is the
inside surface of the cloth, green is the outside, and the
small gray lines indicate sewing constraints applied by
the user.

The 2D pattern editor is a specialized 2D drawing
program. The user draws pieces of cloth as closed polygons
that can be freely moved and scaled. Each piece has distinct
front and back sides, and the user can flip a piece to see its
other side. The user can also indicate that two edges from
different pieces are to be connected by specifying sewing
constraints. The system ma intains equality of the lengths of
connected edges during pattern editing. We also provide
simple editing operations such as duplication of pieces and
making a piece horizontally symmetric. The
implementation of the pattern editor is straightforward and
hence not described here.

The 3D viewing window works as a typical 3D object
viewer. The user can rotate and move the body
three-dimensionally using the right mouse button [15].

Wrapping
To put 2D clothes on the body, the user paints freeform
marks on the cloth pattern and the body using the left
mouse button (Figure 1). The marks are numbered
internally based on the order of painting independently on
the clothes and the body, and marks with corresponding
numbers are associated with each other.

After painting the marks, the user presses the “wrap”
button. The system calculates the desired 3D cloth
configuration on the body and shows the result in the 3D
window. For the examples shown in the figures here,
wrapping takes a few seconds in our current
implementation. After presenting the initial result, the
system continuously refines the cloth configuration via a
relaxation operation. Similar mark-based interaction
technique is used in a feature-based image morphing [4].

Wrapping is a best-effort operation. The system tries for
a reasonable result satisfying the constraints specified by
the user, but undesirable results can be generated depending

on the configuration of marks. If the problem is small, the
user can adjust the cloth placement via the surface dragging
operation. However, if the result has serious topological
problems such as the body penetrating the cloth, the user
must cancel the wrapping operation and adjust the
configuration of marks.

For the user’s convenience, the system includes a
“laser-paint” mode [11] in which the user’s mark is
automatically painted on both the front and back sides of
the body. In the pattern-design window a laser-painted mark
is painted on the front-facing cloth piece and the underlying
back-facing piece (if any).

Wrapping can also be used to adjust the configuration of
clothes on the body (called rewrapping) (Figure 4).
Pushpins may be used to restrict the rewrapped area.
Rewrapping is especially useful for edits involving
topological changes (Figure 4 right).

Figure 4: Rewrapping clothes already on the body. The
pushpins limit the rewrapping region.

Figure 5: Examples of wrapping. In the first, laser-paint
is used to duplicate marks front and back; in the
second, we put a scarf on an octopus.

Figure 5 shows two examples of wrapping. The system
generally returns the desired results, but the user must
provide enough marks to avoid undesirable effects. For
example , both the front and back sides must be painted to
put a sleeve around an arm. Otherwise the cloth stays on
one side of the arm. It is difficult to see the correspondence
between pairs of marks in a still picture, but is easy for the
user, who can paint corresponding marks on the pattern and
the body alternately.

Surface Dragging
After putting clothes on the body, the user can adjust the
placement of the clothes using surface dragging . The user
clicks and drags the clothes using the right mouse button.
This operation is superficially the same as the typical
dragging operations in interactive real-time cloth-simulation
systems .

In typical cloth-simulation systems [8], a user’s dragging
operation applies a force to a single vertex, and the system
simulates the consequent forces on the rest of the cloth to
create a larger-scale effect. This approach (which we call
vertex dragging) is useful for adjusting very local cloth
shape, but is inconvenient for more global cloth
manipulations such as revolving a skirt around a body or
pulling the sleeve upwards (see Figure 6). Single vertex
dragging induces large deformations near the vertex, since
other vertices resist the motion because of the friction
against the body. In addition, vertex dragging can only pull
the cloth and cannot push it – if the user tries to push the
cloth, flips and folds result near the vertex. Finally, vertex
dragging is often implemented as an unconstrained 3D
movement and is therefore difficult to control with 2D input
devices. Some commercial systems allow the simultaneous
modification of multiple points, possibly with an
attenuation factor to ease out the deformation, but these
vertices are all moved in the same direction in 3D space and
so it is still cumbersome to move clothing along the body
surface.

Figure 6: Limitations of conventional vertex dragging: it
causes large stretch and folds instead of the desired
upward slide or horizontal rotation of the entire cloth.

Our surface-dragging operation explicitly propagates the
user’s input motion across the clothes along the body
surface to create a global effect. For example, if the user
drags a vertex upwards, the system explicitly moves the
surrounding cloth vertices upwards at the same time, and if
the user drags the front side of a skirt to the right, surface
dragging actually rotates the skirt horizontally around the
body (Figure 7). Just as in wrapping, we apply a relaxation
step after each dragging step to maintain the basic cloth
constraints.

Figure 7: Various dragging approaches: vertex
dragging (left), rigid dragging (center), surface dragging
(right).

Surface dragging is constrained to directions parallel to
the associated body surface and the user cannot pull the
clothes away from the body1. The mouse cursor is projected
onto the tangent plane to the body surface at the click point.
This makes dragging with a 2D input device much simpler
and easier than completely free 3D motion. This constraint
caused us no practical problems during typical operations
(Figure 8).

Figure 8: Surface dragging. The third example uses two
pushpins on the back to block propagation. All
examples run at a few frames per second.

Pushpins

The user can control the behavior of the clothes during
surface dragging and the subsequent relaxation steps by
putting pushpins on the clothes (Figure 9). The user places
or removes a pushpin by clicking on the clothes with the

1 Note that gravity can pull the clothes away from the body during the
relaxation steps.

left mouse button. A pushpin fixes a cloth vertex at some
position on the body, thus helping in local cloth adjustments
by blocking the propagation of motion during surface
dragging. Pushpins are especially useful because dragging
is a single-mouse operation—pushpins are often necessary
to perform operations that require two hands in the real
world.

Figure 9: Surface dragging with pushpin.

ALGORITHMS

This section describes the algorithms for calculating the
cloth configuration during manipulations. First the
immediate goal position for each cloth vertex is computed
in response to user input, and then relaxation steps adjust
the positions to preserve basic cloth constraints such as
prevention of penetration and limiting stretch. These two
phases are actually closely integrated, but we describe them
separately for clarity. We first discuss how to calculate
immediate goal positions for cloth vertices during wrapping
and surface dragging, and then describe how to preserve the
cloth constraints.

The body and the clothes are represented as standard
triangular meshes, and each cloth edge has an associated
rest length . The parameters defining the behavior of the
algorithms must be set accordingly to the characteristics of
the target polygonal models. Our current implementation
uses body models of 1.0~2.0 units in height and width that
consist of a few thousand polygons.

Wrapping

Wrapping tries to put the clothes on the body so that the
freeform marks on the clothes match the corresponding
marks on the body. We begin by triangulating the cloth2,
since each cloth piece is initially a single polygon. Then we
construct a single continuous mesh structure by combining
the pieces of cloth according to the sewing constraints.
Finally, we compute the geometry of the clothes by building
a piecewise-linear map f from this mesh to 3-space by
mapping the vertices one at a time (Figure 10). We’ll say
that an edge is mapped if both its vertices have been
mapped, and that a triangle is mapped if all three of its
vertices are mapped. The steps are

2 We start with a constrained Delaunay triangulation and refine it
iteratively, as in the “skin” algorithm [19]. An alternative triangulation
algorithm [21] could work as well. The triangles must be small enough
faithfully to represent the geometry of the body. We use a triangle edge
length of 0.07~0.08 units.

1 Paste the clothes around the marks by defining f on the
root edges, i.e., edges that cross marks on the clothes.

2 Grow the clothes by repeating the following process
until all triangles are mapped:

(1) Find triangles with one unmapped vertex;
(2) Order the unmapped vertices;
(3) Map the vertices, performing relaxation after

each.

To define f on a vertex v of a root edge e that crosses a
mark m on the cloth corresponding to a mark M on the body,
we first find the point p where e intersects m. The point p is
some fraction of the way along the mark m; we find the
point P that’s a corresponding fraction of the way along M
(we’ll call this a proportional correspondence between m
and M). The edge e makes some angle a with the tangent
vector to the mark m at p, and the vertex v is some distance
d from the mark m. We construct a ray tangent to the body
at P with angle a to the tangent to M at P (see Figure 11)
and walk3 a distance d in this direction; the resulting point
is defined to be f(v). If v is an endpoint of multiple root
edges, this calculation is carried out for each edge and f(v)
is defined to be the average of the result.4

a) user input b) triangulation c) root edges d) growing
the mesh

Figure 10: Overview of the wrapping process.

da

mp

v

a d

f(v)

M
P

Figure 11: Mapping root-edge endpoints.

The remaining task is to grow the cloth mesh starting
from the already mapped root edges (Figure 10d). For each
triangle that is already mapped, we check whether the
vertices around the triangle (i.e., the vertices of triangles
that share an edge with this one) are already mapped or not.

3 The “walk” in a given direction is found by traversing the mesh, as
shown in Figure 11.

4 The average is computed in space and the skin algorithm’s surface
tracking is used to find a closest surface point to this result.

If a vertex is not mapped yet, the system marks it as ready
(Figure 12) and places it in a priority queue with priority
given by mesh distance to the nearest mark5. The system
dequeues the lowest-priority vertex, maps it to the 3D body
space (see below), and updates the queue based on the
result. This process is repeated until all cloth vertices are
mapped. We apply this procedure to the merged cloth mesh;
sewn edges are treated as a single edge and the clothes grow
across the sewn edge as usual.

a
b

c

d

Figure 12: Growing process. Blue points and triangles
are mapped vertices and triangles, red points are ready
vertices. Vertex a has one parent triangle and b has
two parents. Vertices c and d will become ready once b
is mapped.

The position of a newly mapped vertex in the 3D space
is calculated based on the triangles (which we call parent
triangles) around the vertex that are already mapped. We’ll
describe the computation done for each parent triangle; the
final value is the average of the results .

Let P be the parent triangle, sharing an edge e with
another triangle T whose other vertex v needs to be mapped.
Because the vertices of P are already mapped, there’s a
plane H in 3-space that contains f(P). Consider the segment
f(e) in the plane H oriented so that f(T) lies to its right
(Figure 13). The basepoint of an altitude from v to e lies
somewhere along the line containing e; the distance from v
to this point is some number d. Find (using a proportional
mapping) the corresponding point on the line containing
f(e), and go a distance d to the right of the directed segment
to find the point f(v) where the vertex v is mapped relative
to this parent.

in 3D space

f(P)

f(T)

d f(v)

f(e)

in 2D space

P

Te

d
v

Figure 13: Calculating the position of a newly mapped
vertex based on a parent triangle. The vertex is placed
on the plane that contains the parent triangle in the 3D
space.

5 The mesh distance, computed by finding the shortest sequence of
edges between two points, is used instead of geodesic distance because it
can be computed quickly.

After each vertex is mapped, we apply a relaxation
process (described below) that tries to keep the edge lengths
of the already mapped mesh close to the corresponding
“rest” lengths and prevents flipping of triangles on the body
(i.e., tries to ensure that the map is orientation-preserving).

This growing algorithm extends the clothes using the
already mapped vertices as guide and ignoring the body as
long as the cloth does not collide with the body (the
relaxation step detects and fixes such intersections). An
alternative is to grow the cloth using the body as guide (see
Figure 14). We experimented with this, but rejected it
because of undesirable artifacts such as that shown in
Figure 15. In general, body-guiding tends to create visually
distracting folding and overlapping that are difficult for
relaxation process to fix.

Figure 14: Two possible approaches for growing:
current approach (left) and growing-on-the-body
approach (right).

a) current approach b) growing-on-the-body approach

Figure 15: Putting a loose sleeve around an arm. The
growing-on-the-body approach causes undesirable
folds.

Surface Dragging

As discussed before, surface dragging explicitly propagates
the dragging effect across the cloth vertices (Figure 7). At
the beginning of a dragging operation, the system constructs
a dependency graph whose root is near the click-point. Then
as the user drags the grabbed vertex the system propagates
the motion vector across the cloth according to the
dependency graph. The system inserts a relaxation step after
each dragging step.

Dependency graphs for surface dragging look similar to
those for wrapping, but have two major differences. First,
the dependency graph for surface dragging starts from a
single root vertex, while that for wrapping starts from
multiple root edges. Second, each vertex is dependent on
multiple parent vertices in surface dragging, while each
vertex is dependent on parent triangles in wrapping.

We build the dependency graph incrementally: we start
with the grabbed vertex as the root, and insert its neighbors

in a priority queue, with priority given by the distance to the
root. Distances are calculated based on the edges’ target rest
lengths (i.e., the lengths of the corresponding edges in the
cloth mesh). Now vertices are extracted from the priority
queue and processed until the queue is empty. To process a
vertex v, we first insert it into the graph and then examine
its neighbors: if the neighbor vertex n is already in the
graph, we add a directed edge from n to v. If not, we add the
length of the edge nv to the priority of v to get a priority for
n, which we insert in the queue. This process generates a
directed acyclic graph of vertices with the grabbed vertex as
the root.

We now describe how to propagate a motion vector from
the root node to all other nodes. Just as in the wrapping
algorithm, we compute a motion vector for each vertex
from the motion vector for each of its parent vertices and
then average the results to get the true motion vector (which
may be zero).

There are two ways to propagate the motion over the
clothing, one based on the body geometry and the other
based on the cloth geometry. Figure 16 illustrates the
difference between the two. The first approach works better
when the clothes are close to the body surface, but causes
undesirable motion when the clothes are far from the body.
The second approach works better when the clothes are
away from the body, but can be unstable because of its
recursive nature, especially if significant wrinkles are
present. Our current implementation uses the first approach
because of its stability. In addition, the system slightly pulls
the clothes near the body towards the body at each surface
dragging step to make it stable (currently, a cloth vertex
moves towards the nearest body surface so as to halve the
distance when the distance is less than 0.036).

a) along body geometry b) along cloth

geometry

Figure 16: Two possible approaches to surface
dragging. Our current implementation uses the first
one.

We now describe how to compute a child vertex’s motion
vector from that of its parent vertex. We first define a local
coordinate system for each vertex. We use the normal
vector of the corresponding body surface as the z-axis; we
let u

r
 be a unit vector along the directed edge from the

parent to the child, and use zzuu
rrrr

)(⋅− as the direction of
the x-axis and the cross product of the two as the y-axis.
The motion vector for the child vertex is defined as the
parent’s motion vector mapped from the parent’s coordinate
system to the child’s.

Pushpins
Pushpins provide additional control for surface dragging. A
naïve approach to implementing them is simply to fix the
pinned vertex and move the other vertices normally, but this
generates large distortions around the pinned vertex (Figure
17).

naive approach

desirable effect

before dragging

Figure 17: Pushpin effect. Naïve approach causes
distortion.

To obtain the desirable effect in Figure 17, we attenuate
the dragging vectors at the cloth vertices near the pushpin
and diminish them on the other side of the pushpin (Figure
18a). This is done by calculating an attenuation ratio for
each cloth vertex at the beginning of surface dragging; for
each cloth vertex v, the system computes the mesh distance
a to the grabbed vertex g, and the mesh distance b to the
pinned vertex p (see Figure 18b). The system also computes
the distance c between g and p.

a b

c p
g

a) attenuation of vectors b) calculation of distances

Figure 18: Calculating the attenuation ratio.

Given these distances, the attenuation ratio for the vertex
is defined as

1 if a – b = –c,
(c – a + b) / 2c if –c < a – b < c,
0 if c = a – b

where 1 means full motion and 0 means no motion.

If multiple pushpins are used, the system calculates the
attenuation ratio for each pushpin and uses their minimum6.
The user can conveniently block the surface dragging effect
by putting in a few pushpins in a row.

Pushpins are also important in controlling rewrapping
(see Figure 4). Rewrapping first removes the cloth triangles
from the 3D scene and then pastes them back around newly

6 It is possible to use a blend function or the product of pin
attenuations, but our simple approach shows satisfying results and we opt
for the simplicity.

placed marks. But the removal of triangles is blocked by the
pushpins – the system does not move vertices whose
distance from the mark is greater than the distance between
the mark and the pushpins.

Keeping Clothes on the Body
We now describe the algorithms for maintaining basic cloth
constraints during wrapping and surface dragging. This
section describes the algorithm for handling cloth-body
collision, and the next section describes the algorithm for
preventing excessive stretching and folding.

Collision detection is the most time -consuming part in
cloth simulation in general [14,23]. In addition, exact
collision detection can impede placing cloth in the intended
position. To achieve real-time operation, we ignore
cloth-cloth collision and handle cloth-body collision in a
limited way, by simply preventing cloth vertices from
sinking into the body at each step and ignoring collisions
between cloth edge and body edge. The sys tem also ignores
possible collisions during transitions. This simplified
strategy obviously exhibits flaws in some situations, but it
is fast and works well for our purpose.

To detect collisions between a cloth vertex and the body
surface efficiently, the system keeps track of the nearest
point on the body surface (track point) for each cloth vertex
(this is the strategy used in the skin algorithm [19] for
tracking the nearest skeleton surface for each skin vertex).
Whenever a cloth vertex is moved, the system updates its
track point by locally searching the body surface (Figure 19
left). Given the track point, detecting collision is a
straightforward. If the cloth vertex is inside the body
surface, the system pushes the cloth vertex back to above
the body surface (Figure 19 right). The system actually
keeps the cloth vertices a bit away from the body so that
cloth edges do not penetrates the body surface (the current
offset is 0.012). A vertex also shares information with its
immediate neighbors so as to jump from a local solution to
a distant solution (Figure 20). This migration feature is
important when a garment spans separate body regions such
as an arm and a torso.

This simple approach cannot detect collisions with body
parts approaching from above or with separate body parts
that were not covered by the cloth before. This causes no
practical problems in our experience, but the current simple
approach must be extended to handle more complex cases
(see “Additional Algorithm Details ” section).

Figure 19: Each cloth vertex is associated with the
nearest body surface. A vertex inside of the body is
pushed back to the body surface.

?a
b

c d

Figure 20: Cloth vertices share information with their
neighbors. This enables vertex a to find the true
solution d instead of being stuck with local solution c.

Relaxation Steps

Relaxation steps are inserted during wrapping and surface
dragging to keep the clothes visually plausible by
preventing excessive stretch and folds. Note that the
purpose of this relaxation step is to move the cloth towards
a class of desirable static configurations. Our goal is to add
useful behavior to cloth so as to help the user put clothes on
characters, not to mimic physically realistic behavior. For
example, our relaxation steps automatically unfold flipped
clothes, which does not happen in the real world.

A relaxation step has four parts. First, we try to make
each edge’s length closer to its rest length to prevent stre tch
and shrinkage. Second, we try to recover flipped triangles to
prevent folds. Third, we try to flatten the cloth at each edge
of triangle; this corresponds to a dihedral-angle spring and
helps generate attractive wrinkles. Finally, we mimic the
effects of gravity and friction.

Preventing stretch and flip The system addresses the first
two goals simultaneously by adjusting vertex positions so
that each triangle T recovers its rest shape (called the
reference triangle) on the body surface. The reference
triangle is uniquely defined by the rest length of the edges.
The system places a copy U of the reference triangle as
close to T as possible, and moves each vertex of T towards
its corresponding vertex in this copy of U (Figure 21). U is
placed in a plane (described below) with the centers of
gravity, O and O’, of T and U aligned, and is rotated as
follows . The system computes B'' by rotating B by ∠B'OA'
around O, and computes C'' by rotating C by ∠C'OA'
around O. The system rotates U so that 'OA parallels

'''' OCOBOA ++ . A similar technique is used in automatic
texture coordinate optimization [18].

Reference
Triangle

Current
Triangle

A

B

C

A'

B'

C'

O
O'O=O'

Current
Triangle

Reference
Triangle

A

A'

B''

C''

B

C

C'

B'

Figure 21: Matching a triangle and its reference
triangle.

We’ve found that this triangle-based strategy works
faster than an edge-based strategy (e.g. [8]) and generates
better results for our purpose. In addition, it automatically

recovers flipped triangles if we place the reference triangle
front-face up. “Face up” is determined by a “temporary
normal vector.” The temporary normal is the body surface
normal when the cloth is near the body surface (distance <
0.012), but is the cloth surface normal when the cloth is far
from the body (distance > 0.08); the normals are blended in
the intermediate region. The triangle-based relaxation is
done on the plane perpendicular to this temporary normal:
the system projects T to that plane, applies the above
method above, and then moves the vertices according to the
resulting vectors (which are parallel to the plane).

Flattening the cloth We flatten the cloth by moving
vertices so as to make the dihedral angle at each edge closer
to 180 degrees . We compute the vectors shown in Figure 22
for the four vertices associated with each edge; the sum of
these is then applied to the vertices. This corresponds to the
dihedral-angle spring found in typical cloth simulations [2].

v0=k a r0 n0

v1=k a r1 n1 -(v0+v1)/2

-(v0+v1)/2

a r0

r1

n0

n1

Figure 22: Each edge on a ridge moves four adjacent
vertices to become flat.

Gravity and friction To mimic the effects of gravity, we
move each cloth vertex downward by a predefined amount
unless it collides with the body surface (i.e., we make
clothes fall at a constant speed). Friction is mimicked by not
allowing any vertex to be moved if 1) the vertex is in
contact with the body surface, 2) the requested motion
vector heads downwards with respect to the underlying
body surface, and 3) the requested motion vector is smaller
than a p redefined threshold.

ADDITIONAL ALGORITHM DETAILS

This section describes some further implementation details .
The features described are optional: one can manipulate
clothes reasonably with the basic algorithms alone, but
these features help make the system robust and improve the
user experience.

Adaptive Subdivision

As discussed in the previous section, we prevent the
vertices from sinking into the body but do not prevent edges
from sinking into the body. This works well when the
underlying body surface is reasonably flat, but causes
serious problems for high-curvature regions such as arms
and legs. The body surface appears on top of the clothes and
is very distracting.

This is essentially an aliasing problem, and our solution
is to adaptively change mesh resolution according to the

curvature of the body surface. A cloth edge is automatically
split when it intersects the body, and restored when it no
longer intersects the body (the original edge no longer
exists in the mesh if it is split, but the system remembers the
original edge information). We use the 3 subdivision
scheme [16] because it allows edgewise split/merge and
generates reasonable mesh patterns (Figure 23). Our current
implementation allows only one subdivision step for
simplicity, and this hides most problems sufficiently.

Figure 23: Splitting two edges with 3 subdivision.

We use Figure 24 to describe how the system decides
whether to split an edge. Here, the system needs to know
whether edge AB intersects the body. It is too expensive to
do precise collision detection by traversing the body surface,
so the system performs an app roximate computation using
local information, that is, the locations of A, B, and P,
where P is the nearest point on the body to A, which is
always available from the “skin” algorithm. It is obviously
not possible to detect actual collision, so we approximate it
by testing collision with a sphere of radius L = length(AB)
that is tangent to the surface at P. The test is approximated
by (d + L) sinθ < L and (d + L) cosθ < L; if both inequalities
hold, we split the edge AB. The justification for using L as
the body’s local radius is that it provides a minimum radius
that we must worry about. If the body radius is actually
larger than L, the “vertex is always on the body surface”
constraint approximately guarantees that the edge does not
sink below the surface. The system performs the equivalent
test at B as well.

!
L L

L d
A

P

B
θ

Figure 24: Testing an edge for collision with an
approximating sphere.

Collision Detection with Bones

Adaptive subdivision effectively prevents most
edge-to-edge penetration, but excessive mo vement can
cause the clothes to penetrate the body. We can ignore small
amounts of “sinking” because the relaxation process
gradually recovers from the error, but the system cannot
recover from significant topological errors such as the cloth
penetrating the body all the way from one end to the other.
This happens typically where thin parts such as a neck or an
arm stick out from the body (Figure 25 center). To prevent
this, we implemented collision detection against simple
“bone structures ” (Figure 25 right). A bone is a simple edge

defined by two end points, and collision with all bones is
checked whenever a cloth edge is moved. If a collision
occurs, the system pushes the cloth edge back to prevent
penetration. For the human body in Figure 2, we used six
bones.

Figure 25: Collision detection against simple bones.

IMPLEMENTATION AND RESULTS

The current prototype system is implemented in Java™
(JDK1.4), and uses directX7 for 3D rendering. Figure 26
shows some clothing designed using the system. The
clothes have a few hundred triangles and the system
maintains reasonable frame rates during surface dragging
on a high-end PC (AMD Athron™ 1.5GHz).

We have begun an informal user study. It took
approximately 20 minutes before a user started using the
system fluently under our supervision. The last image in
Figure 26 was created by the test user. It took a while for
the user to learn the peculiar behavior of the clothes in our
system. The user tended to drag the clothes long way in a
single interaction, making the system unstable; clothes must
be moved gradually towards the goal position instead. It’s
also necessary to release the mouse occasionally during the
dragging so that relaxation steps can dissolve the
accumulated distortion. The user also had difficulty in
designing the clothes of an appropriate size. It would be
helpful if one could adjust the size of the clothes after
putting them on the characters.

Figure 26: 3D characters in various clothes.

LIMITATIONS AND FUTURE WORK
Our current system has several limitations: our techniques

are designed specifically for clothing a character and not for
manipulating clothes away from a body. We support only a
single layer of clothes on a body, although we plan to
extend the system to support multilayer clothes. We also
plan to support explicit folding of clothes (e.g., collars). But
to support these, we need to track the nearest object on top
of each cloth vertex as well as the nearest object under the
vertex.

Cloth-cloth collision is ignored in the current
implementation. Although we believe that this is a
reasonable decision given current processor performance,
we need to incorporate cloth-cloth collision detection in the
future. That will let us explore more interesting
cloth-manipulation techniques such as tying a tie.

Wrinkles are an important part of clothes design [13]. We
plan to develop interaction techniques for explicitly placing
wrinkles on clothes . For example, it might be useful for the
system to automatically adjust global cloth configuration so
that wrinkles appear where the user paints freeform marks.

Some basic interface improvements would be very
useful: An obvious extension is to let a user edit the clothes
in 2D and 3D space simultaneously [8]. We are considering
several operations such as cutting, stitching, and resizing.
And our dragging operation should probably interleave
“relaxation steps” during long drags.

We believe it is reasonably easy to incorporate our
cloth-manipulation techniques into existing 3D graphics
systems because we use standard triangular mesh structures
for the cloth and the body. A potential difficulty is finding
appropriate values for the many ad hoc parameters in our
algorithms (the current values are chosen as the result of
many experiments). They must be carefully adjusted
according to object geometry and the user input.

ACKNOWLEDGEMENTS

We would like to thank the Brown University computer
graphics group for thoughtful discussions, and the CMU
stage3 research group, especially Dennis Cosgrove, for
allowing us to use their Jalice scenegraph. We also thank
reviewers for their constructive critique.

REFERENCES
1. Asahi AGMS, www.agms.co.jp
2. D. Baraff and A. Witkin. Large steps in cloth

simulation. SIGGRAPH 98 Conference Proceedings,
pages 43-4, 1998.

3. D. Baraff, PIXAR. Personal communication, 2001.
4. T. Beier and S. Neely. Feature-based image

metamorphosis. SIGGRAPH 92 Conference
Proceedings, pages 35-42, 1992.

5. D.E. Breen, D.H. House, and M.J. Wozny. Predicting
the drape of woven cloth using interacting particles.
SIGGRAPH 94 Conference Proceedings, pages 365-72,
1994.

6. M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D.

Thalmann. Dressing animated synthetic actors with
complex deformable clothes. SIGGRAPH 92
Conference Proceedings, pages 99-104, 1992.

7. F. Dachille IX, J. El-Sana, H. Qin and Arie E.
Kaufman. Haptic sculpting of dynamic surfaces. Proc.
of Interactive 3D Graphics 1999, pages 103-110,
1999.

8. M. Desbrun, P. Schroder, and A. Barr. Interactive
animation of structured deformable objects. Proc. of
Graphics Interface ’99, pages 1-8, 1999.

9. DressingSim, www.dressingsim.com
10. Gerber Technologies, www.gerbertechnology.com
11. T. Igarashi and D. Cosgrove. Adaptive unwrapping for

interactive texture painting. Proc. of Interactive 3D
Graphics 2001 , pages 209-216, 2001.

12. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A
sketching interface for 3D freeform design.
SIGGRAPH 99 Conference Proceedings, pages
409-416, 1999.

13. S. Hadap, E. Bangerter, P. Volino, N.
Magnenat-Thalmann. Animating wrinkles on clothes.
Proc. of the Conference of Visualization ’99, pages
175-182, 1999.

14. D. House and D. Breen. Cloth Modeling and
Animation. AK Peters, 2000.

15. J. Hultquist. A virtual trackball. Graphics Gems (ed. A.
Glassner). Academic Press, pages 462-463, 1990.

16. L. Kobbelt, 3 subdivision, SIGGRAPH 2000
Conference Proceedings, pages 103-112, 2000.

17. Lectra, www.lectra.com
18. H. Malan, Righthemisphere Inc. Personal

communication, 2001.
19. L. Markosian, J.M. Cohen, T. Crulli and J.F. Hughes.

Skin: a constructive approach to modeling free-form
shapes. SIGGRAPH 99 Conference Proceedings,
pages 393-400, 1999.

20. Maya Cloth, www.aliaswavefront.com
21. J.R. Shewchuk. Triangle: engineering a 2D quality

mesh generator and Delaunay triangulator. First
Workshop on Applied Comp. Geometry Proc., pages
124-133, 1996.

22. 3ds MAX, www.ktx.com
23. P. Volino, N. Magnenat-Thalmann, Virtual Clothing

Theory and Practice , Springer-Verlag, 2000.
24. J. Weil. The synthesis of cloth objects. Computer

Graphics (Proc. of SIGGRAPH) , Vol. 20, No. 4, pages
49-53, 1986.

25. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes.
SKETCH: an interface for sketching 3d scenes.
SIGGRAPH 96 Conference Proceedings, pages
163-170, 1996.

