
Flatland: New Dimensions in Office Whiteboards

Elizabeth D. Mynatt1, Takeo Igarashi2, W. Keith Edwards1, and Anthony LaMarca1

1Xerox Palo Alto Research Center 2University of Tokyo
3333 Coyote Hill Road 7-3-1 Bunkyo-ku, Hongo

Palo Alto, CA 94304, USA Tokyo 113-8656, JAPAN
+1 650-812-4405 +81 3 3812 2111 ext. 7413

[mynatt,kedwards,lamarca]@parc.xerox.com takeo@mtl.t.u-tokyo.ac.jp

Second, the content on the whiteboard, whether a sketch or
a reminder, has particular characteristics stemming from its
creation and use. We refer to this type of content as
everyday contentand loosely define it as the continually
shifting set of information in your office that you use to do
the majority of your tasks. This flow of information is often
incomplete, unnamed, informal, heavily context-dependent
and transient. Examples are notes, to-do lists, drafts,
reminders, sketches and the like that are in sharp contrast to
archival material typically filed either electronically or
physically. As an interface for everyday content, common
whiteboards afford quick capture of material with an
informal look-and-feel without the overhead of naming,
filing and formatting. However, the context surrounding its
creation (e.g. “What was I thinking when I wrote down
“Rosebud”?”) must be remembered by the user.

Third, whiteboard material is generally clumped into
various clusters on the whiteboard. Some clusters, such as
an important phone number or a sketch, may be long-lived
compared to other clusters, such as an illustration for a
visitor or a quick calculation that is erased within a day.
Often there are “hot spots” that are erased while bordering
content persists. Since whiteboard content is rarely
obscured and quite visible in the office, its presence acts as a
reminder. Some people depend on this informal awareness.
As an interface for clusters of content the whiteboard’s large
visual space affords delegating portions for longer-lived
content. Additionally, its vertical orientation makes it less
likely to be obscured in contrast to the horizontal orientation
of a desk that affords stacking and obscuring layers of
content.

Fourth, in an individual office, the whiteboard functions as a
personal device, but it also has a semi-public role for office
visitors and informal meetings. Whiteboards are typically
visible to an office visitor, and can be the focal point for an
informal office discussion whether one person is illustrating
ideas for the other, or multiple people are contributing to the
board’s content. The placement of the whiteboard
significantly affects its public role, whether it is visible and
writable for the typical office visitor. Since the whiteboard
can be easily erased, private material can be quickly deleted
when an office visitor arrives, although the material would
then be lost.

ABSTRACT
Flatland is an augmented whiteboard interface designed for
informal office work. Our research has investigated
approaches to building an augmented whiteboard in the
context of continuous, long term office use. In particular, we
have pursued three avenues of research based on input from
user studies: techniques for the management of space on the
board, the ability to flexibly apply behaviors to support
varied application semantics, and mechanisms for managing
history on the board. Unlike some previously reported
systems, our design choices have been influenced by a
desire to support preproduction—rather than final
production—work in an office setting.

Keywords: pen-based computing, whiteboards, ubiquitous
computing, light-weight interaction, Flatland

INTRODUCTION
Whiteboards are ubiquitous tools in informal office work.
By this description, we envision a whiteboard in a private
office with four principal characteristics based on
observations of whiteboards in an office setting [17]. First,
the whiteboard acts as a working area and repository to
supportthinking tasks such as sketching out a paper as well
as quickcapturetasks such as jotting down a reminder. As
an interface for thinking, whiteboards are often used forpre-
production tasks where the emphasis is on understanding
ideas, tasks or concepts and the production work based on
that thinking is accomplished in a different arena. Examples
are sketching out an algorithm that is later coded using a
computer, planning out a set of tasks whose schedule is
captured in a planner or email message, drafting ideas for a
web page or organizing concepts that are later put into prose
using a word processor. These pre-production artifacts
would not even be thought of as drafts, but as what comes
before a draft. Due to its large visual surface and simple
input capabilities, the whiteboard can be appropriated for
many pre-production activities It lacks, however,
mechanisms to support specific tasks, such as managing to-
do lists or organizing an outline, that be found in many
desktop and PDA tools.



These four characteristics—thinking or pre-production
tasks, everyday content, clusters of persistent and short-
lived content, and semi-public to personal use—underlie our
model of informal whiteboard use in an individual office.
This use of whiteboards is quite distinct from the use of
desktop computers, and still varies significantly from the
use of personal, pen-input devices given a whiteboard’s
public role and large, continually visible surface.

Although the whiteboard is a flexible tool for quickly
capturing input with an informal look-and-feel and its large
visible surface supports parallel tasks including awareness,
its utility past that point is limited. Its content cannot be
saved and retrieved, or even moved out of the way. As
simple strokes on a board, all input is treated the same
whether it is a to-do list, a series of calculations or an
illustration. Additionally, many people complain about
illegible writing and the poor visual quality of drawings.

Our goal in this work is to create an augmented whiteboard
called “Flatland” to better support typical whiteboard use.
Our initial hardware configuration is a SmartBoard (tm)
coupled with a projector. The SmartBoard is a touch-
sensitive whiteboard that accepts normal whiteboard marker
input as well as stylus input. Captured strokes are then
projected onto the board. Given this platform and our
characterization of whiteboard use, our design goals were:

• To support a low threshold for initial use while making
increasingly complex capabilities available. At the
simplest level, Flatland should act like a normal
whiteboard where you can walk up to it and write on it.
In general, its look-and-feel should remain simple and
informal to support the nature of pre-production tasks.

• To provide a look and feel appropriate for informal
whiteboard tasks and distinct from production-oriented
tools such as a desktop computer.

• To support informal office pre-production tasks such as
to-do lists and sketching.

• To support clusters of content on the whiteboard. These
clusters, or segments, may be created for different
purposes, at different times and by different people.

• To support the use of everyday content by creating
context-aware interaction and infrastructure. As
unnamed material, content could be stored and retrieved
based on its salient context (spatial location on board,
time of creation, people present) instead of requiring a
file name.

• To support the flexible management of a dynamic
whiteboard space such as freeing up whitespace for new
input while maintaining the visibility of current content.

• To support a range of use from semi-public to private
use, such as providing a means to get a clean board
without losing current content.

Our efforts are motivated by two threads of inquiry. First,
while there has been previous research in computer-
augmented whiteboards, these efforts have principally
focused on the use of whiteboards in meeting or classroom
settings [1][13]. Our goal is to investigate a computer-
augmented whiteboard design in the setting of an individual
office. Second, we hope to contribute to the growing body of

research in ubiquitous computing [20], augmented reality
[4] and tangible interfaces [10] The whiteboard itself is a
ubiquitous tool in many office environments. In our design,
we attempt to extend the existing whiteboard look-and-feel
with an interface whose feel and aesthetics match its role in
informal office work.

This paper is organized as follows. In the following section
we introduce the basic concepts in Flatland to give the
reader a sense of its functionality and feel. We then discuss
Flatland’s design in three parts. First, we describe facilities
for managing the virtual projected space on the physically
constrained board. Key concepts here are automatically
segmenting user input as well as mechanisms for shuffling
whiteboard segments while maintaining visibility of those
segments.

Second, we describe how we support different tasks on the
whiteboard by allowing the user to apply different
“behaviors” to input strokes. While behaviors provide
specific interpretation of input strokes, the whiteboard
maintains a unified appearance and feel. To support
concurrent tasks and flexible reuse of content, behaviors can
be composed, in parallel or sequentially.

Third, we describe how whiteboard segments are stored
based on their context, and strategies for retrieving those
segments. Each segment is tagged with context markers
(e.g. spatial location on board, people present, time of day)
that can be used as the basis for later retrieving that
segment. Since time is often a key contextual clue, we
provide a strategy for searching segments across time where
the search “snaps” to interesting points in the timeline.

We then discuss related work, paying particular attention to
other whiteboard and pen-input interfaces as well as general
work in blurring the boundaries between the physical and
virtual realms. We close the paper by detailing the status of
the current system, summarizing the key contributions of
this work, and discussing potential avenues for future work.

FLATLAND BASICS
In this section, we give a general description of Flatland. We
shall describe many of these features in greater detail in
later sections. As Flatland is designed for long-term use,
this scenario illustrates using Flatland over a period of days.

On Monday, Ian walks up to his new Flatland board
and jots down some quick notes using the stylus just as
if he were using an old-fashioned whiteboard.
Flatland automatically groups his notes into a segment
and draws an informal border around them. On
Tuesday, he writes down a to-do list creating another
segment. On Wednesday afternoon, he sketches a map
to his house for an office visitor. On Thursday, he uses
the time slider to replay items that he has checked off
so that he can write his status report.(See Figure 1).

There are two modes of stylus input. The primary mode is
for drawing strokes on the board. The secondary mode is
activated by holding a button and is used to create meta-
strokes. These meta-strokes form gestures1 that are used for
managing the board’s visual layout as well as for applying
behaviors to segments. The tap gesture causes a pie menu to

1. Although we took great care in designing a small gesture set,
we will not discuss this process in detail due to space constraints.



be displayed and directional gestures are short cuts for the
pie menu (i.e. a marking menu). (See Figure 2)

MANAGING SPACE
As a computationally-enhanced whiteboard, Flatland
provides a flexible and dynamic writing surface. Since the
presence of material on the whiteboard often acts as an
informal reminder, we opted for strategies that allow users
to acquire whitespace while still ensuring the visibility of
existing content.

The basic conceptual building block here is that of a
whiteboardsegment—a cluster of content. Flatland creates
segments automatically when users write on the board. The
segments are not allowed to overlap and can be moved by
the user or the system. Flatland also automatically shrinks
segments to create more whitespace on the board.

FIGURE 1.  Using Flatland

FIGURE 2.  Gestures and Pie Menus

take snapshot

redo

delete

undo
behavior

color

undo

time

apply
behavior

slider

Auto-Segmenting
Most whiteboard users manage multiple clusters of content
on their whiteboard. By taking advantage of the large visual
surface, they use different parts of the board for different
tasks at different times. Since this process of dividing up the
board is a lightweight, implicit interaction, we wanted to
provideautomaticmechanisms for generating these clusters
or segments. Although users do notneedsegments to write
on the board, these segments are the basic building block for
managing the board’s spatial layout, adding additional
behaviors to the whiteboard, and retrieving content.

Given a fresh, clean board, when the user begins writing a
border appears, denoting a new segment. The border grows
to encompass additional strokes of input if the subsequent
strokes seem to fall in the same segment. Several factors
could determine into what segment strokes belong:

• Ink Density: Given a new stroke, the system could
balance maximizing ink density in each segment while
minimizing the number of segments on the board.

• Active Segment: If the user has been interacting with the
board recently, there could be an active segment that
expects subsequent input.

• Time: The system could be biased to creating a new
segment if significant time has passed since input in that
area of the board.

• Content: Similar content could be kept together.

• Spatial Arrangement: The system could expect
subsequent input following cultural norms. For example,
lists would proceed top to bottom, left to right per
Western writing norms.

We explored these factors in our design, interaction mock-
ups, and implementation. We opted for a simple design
where existing segments are grouped into bounding boxes.1

The bounding box for the active segment is expanded to
anticipate new strokes to that segment. If new strokes cross
the border of the expanded segment, they are included.
Currently the extra space in the active segment only follows
Western writing conventions with additional space to the
right of and below existing strokes. Pen input in an inactive
segment, makes it active with an expanded input area. Input
to the “root” space of the board (called theroot segment))
generates a new segment.

We opted for this simpler mechanism since it seemed to do
“the right thing” most of the time and the interaction is
predictable. We also provide simple facilities for joining and
splitting segments that act as error-recovery mechanisms. In
general, automatic segmenting does not significantly raise
the threshold for initial use, and it does provide a base for
supporting interaction tailored to natural clusters of content.

Our design differs from other whiteboard interfaces [14] as
users do not have to explicitly group material and clusters
are not recognized by their content (e.g. recognizing a list or
a table). Although the system is working in the background,
the feel in Flatland is that the user is driving the interaction
since the auto-segmenting mechanism is simple and the user

1. Although aesthetically marked as thick, wavy lines, the
segments are rectangles easing coding complexity and
performance costs. The discrepancy has not been problematic.



can easily activate segments to add more content, or create a
new segment by tapping on the root segment.

Active and Inactive Segments
Flatland supports active and inactive segments where there
can be one or zero active segments at a time. Active and
inactive segments differ in their behavior and appearance.
First, the border of the active segment is much brighter and
visibly noticeable than the lighter borders of the inactive
segments (see Figure 1). We experimented with a number of
approaches in delineating segments, including not showing
borders at all, and only showing the border for the active
segment. Our informal use favored showing borders for all
segments since they convey a great deal of information
about the state of the board. Since Flatland is biased to
including new strokes in the active segment, visually
marking the active segment informs the user where the bias
resides.

Inactive segments are sized to take as little screen real estate
as possible while still showing their content. In contrast,
active segments expand to include white space. This
expansion visually marks the bias for new input to fall into
the active segment. When the segment becomes inactive, it
shrinks to remove the surrounding whitespace.

One lesson from informal use pertains to deleting strokes in
an active segment. In our first design, the active segment
would shrink based on the deleted material. This behavior
was disturbing when followed by more pen input since the
input area was now smaller, and new strokes in the area of
the deletion, which was the last location of the pen, might
now fall outside of the active segment. Currently, the active
segment can only become larger, taking the more compact
presentation when made inactive

Moving, Squashing and Flipping
Users can move segments with a standard select and drag
motion. To reduce the complexity of working on the
whiteboard, and to ensure visibility of each segment,
segments are not allowed to overlap. As other segments are
bumped, they move out of the way. According to [17], many
people use their whiteboard as a surrogate memory. If
segments were allowed to overlap, important reminders
might be completely obscured.

Although we did not want users to obscure content via
overlapping segments, we still needed mechanisms for
creating more whitespace. To meet this need, Flatland
automatically squashes segments as they bump into the
border of the board. With each bump the segment is scaled
down until it reaches a minimum size. (see Figure 3)
Flatland is biased to squashing segments that have been
inactive the longest. With further user testing, we will
determine if users need to ever explicitly squash segments
or if the automatic squashing is sufficient. To gain more
space, users can also explicitly remove segments from the
board.

Users can also flip to a new board by dragging the right or
left border of the board [18]. The metaphor is a long roll of
paper partitioned intoflip charts. This mechanism provides
a fast way to get a clean board, and perhaps quickly hide
content from an office visitor.

In interviews regarding how users thought a virtually-
extended whiteboard should be organized [17], they
expressed two main desires. First they did not want to lose
material given the whiteboard’s role of surrogate memory
and reminder. Some explicitly asked for the ability to
squash existing content out of the way so they could gain
more whitespace. Second, they wanted a constrained virtual
space only four to eight times larger than their existing
whiteboard. Flatland’s design addresses these needs and
concerns. In its principal use as a single board, the borders
provide an intuitive affordance for scaling segments to gain
space. The flip charts are a quick way to acquire a clean
board for an office visitor or to create secondary boards for
particular projects and activities. We opted against using a
scrolling or zooming space (a la Pad++ [2]) to minimize the
potential for losing track of whiteboard clusters.

APPLYING BEHAVIORS
One of the primary design philosophies of Flatland is that
the whiteboard should be usable exactly like a normal,
physical whiteboard, and yet should be able to provide
powerful assistance with everyday tasks as needed.

The first goal is one of simplicity—physical whiteboards
allow any type of stroke to be made anywhere, in a
completely free-form manner, without interpretation or
regard to semantics. Simplicity is one of the traits, along
with size and the ability to serve as a focus of context in
workgroups, that makes physical whiteboards so appealing.
This freeform use of space and natural input is often lacking
in existing “desktop” applications, even ones that are
superficially similar, such as paint programs, that typically
reserve parts of the screen for controls, and embed active
elements such as move/grow handles in the content area of
the display.

Conversely, the second goal is one of specificity-—to
provide assistance for common tasks Further, different tasks
on the whiteboard likely require different support—akin to
running multiple applications, in parallel, on a desktop
computer. However, pre-production tasks require informal,
simple, and fluid interaction distinct from most production-
oriented desktop applications.

The tradeoffs between providing specific support for certain
tasks while creating an informal, simply interaction are at
the core of Flatland’s design. Ideally, one would like a

FIGURE 3.  Segments squash to reduce size



system in which the general freeform marking of the
whiteboard is smoothly integrated into a set of tools that can
understand the semantics of particular tasks.

To retain the simplicity of a whiteboard, in Flatland, the
user’s input is always freehand strokes on the board with no
pull-down menus, buttons, handles and the like. At the
simplest level these freehand strokes are inked as they are
drawn on to the board. As previously discussed, these
strokes are grouped into segments. Flatland supports
specific tasks by allowing the user to applybehaviorsto
segments. Behaviors interpret input strokes potentially
adding strokes and replacing existing strokes. For example
with the map behavior, a single line is replaced by a double
line to depict a road. Behaviors, however, do not render the
strokes themselves, they just modify the strokes belonging
to a segment. The segments then paint the strokes creating a
unified appearance for the entire board.

Behaviors are implemented so that the behavior only
observes strokes, not lower-level mouse events. Thus,
behaviors must wait until a stroke is completed before it
interprets the stroke. This design helps provide a unified
interface similar to stroking a normal whiteboard as all
strokes look the same.

A working behavior is indicated as an animal figure on top
of the segment. This design helps maintain an informal feel
without menus bars while providing a handle to behavior-
specific functions. The metaphor is of an assistant or muse
that interprets user input and personifies the behavior.

Sample Behaviors
We have designed and implemented a few behaviors to
support typical office whiteboard tasks (see Figure 4).
Flatland’s design goals of simple, informal interaction
extend past the general look-and-feel of the interface into
the design of individual behaviors themselves. Since the
purpose of the behaviors is to support informal, pre-
production tasks, ease-of-use is strongly favored over

FIGURE 4.  Flatland Behaviors

providing features for producing a detailed artifact.
Common themes in designing individual behaviors are:

• There are few explicit commands; but strokes are
interpreted on-the-fly.

• Generated output is rendered in a “handdrawn” style.

• Minimal (in any) control widgets are added to the
segment.

• Handwriting recognition is generally not used to limit
the need for error correction and recovery user
interfaces. This design choice limits some potential uses
of the system but significantly simplifies user
interaction.1 The one current exception is the calculator
behavior which requires recognition to be useful.

• “Infinite” undo-redo supports easy error recovery.

To-Do Lists The to-do behavior manages a series of strokes
as a single-column list. The items are not recognized per se,
but remain individual inked strokes. A handdrawn checkbox
is rendered to the left of each item. Subsequent strokes
across the checkbox checks off the item. Strokes across an
item removes it from the list. A simple gesture allows users
to move an item to a new location in the list. After any
change to the list’s contents (e.g. add, remove, reorder) the
list is reformatted.

2D drawing The 2D drawing behavior is a port of
Pegasus[9] to the Flatland architecture. The typical
frustration users have drawing illustrations on their
whiteboards motivates the inclusion of this behavior.
Strokes are neatened to create simple formatted line
drawings. To create an efficient and intuitive drawing
process, Pegasus offers potential new strokes based on the
current structure of the drawing. Without explicit
commands, the user can quickly author compelling and
useful line drawings.

Map Drawing Another common drawing task is sketching
maps for other people. Like the 2D drawing behavior, the
map behavior replaces input strokes with improved strokes.
Single lines become roads with double lines and open
intersections. Again, there are no explicit controls for
creating detailed production quality maps to get in the way
of quickly sketching sufficient and powerful illustrations.

Calculator In the calculator behavior, strokes are interpreted
as columns of numbers to be added or subtracted. Output is
rendered in a hand-drawn style. Successive calculations can
be appended for further interpretation. Likewise input can
be modified at any point to trigger re-interpretation. Instead
of supplying a calculator widget with push buttons and a
display, this behavior leaves a persistent, editable trail that is
more easily shared with others and reused.

Combining Behaviors
The difference between behaviors and traditional
applications is more apparent when one combines multiple
behaviors over time. For example, starting first with the map

1. We are experimenting with off-line handwriting recognition
that makes best guesses at recognizing the content of segments.
Recognized keywords at a reasonable level of confidence can be
used for later retrieval of the segment.



of the slider makes the slider jump to the nextinteresting
point in that timeline. Interesting points are states prior to
long periods of no input, prior to input to another segment,
prior to removing that segment, as well as explicit snapshots
by the user. These states are automatically tagged and stored
via Presto.

The history mechanism used to implement the time slider
also provides infinite undo/redo capability. With a leftward
gesture, users can undo strokes in a segment and quickly
access a past version. Undo strokes on the root segmentplay
backthe whole board including the creation and deletion of
segments. This history mechanism is based on Timewarp
[6].

Context Queries
Visual recognition via thumbnails is another powerful
method for retrieving files [17]. The Find behavior will
allow users to scan and retrieve past segments. To constrain
the search, users select context attributes for a desired
segment such as “the map behavior was used,” “about last
week,” and “Ian was in the room,” “Icons corresponding to
the choices (query terms) are visually depicted in the
segment and can be furthered modified (e.g. negated). When
the number of matching segments is small (20), thumbnails
of the segments are displayed. To retrieve a segment, the
user drags it out of the search segment and onto the root
segment. This retrieval interface is not fully implemented,
but the underlying storage and retrieval mechanisms are in
place.

RELATED WORK

Tivoli
One of the major examples of previous work in this area is
Tivoli [13][14][14][15], a pen-based interface designed to
run on a LiveBoard. Tivoli is principally designed for a
specific task—supporting focused meetings about a single
issue. It has been most used and studied in the context of
supporting PARC intellectual property management.

Although there are many surface similarities, the interaction
styles in the two systems are significantly different. As a
tool for meetings, Tivoli’s interface is geared for sorting,
categorizing and annotating whiteboard content. Different
types of content such as tables and lists are implicitly and
explicitly marked and supported. At any time, however, the
strokes on the board are simple strokes that must be

FIGURE 6.  Snapping to an Interesting Point in Time

behavior, a user can sketch out the relevant streets and
intersections. After removing the map behavior and applying
the 2D drawing behavior, the user can now sketch relevant
buildings and other landmarks. Now with no behaviors
present, the user can label the map. In the future a writing
behavior that cleans up letters might be used (see Figure 5).

RETRIEVING SEGMENTS
One obvious limitation of current whiteboards is that once
material on the whiteboard is erased it can no longer be
recovered. In our design, we sought to enable users to
retrieve past whiteboard content without adding to the
complexity and overhead of using the whiteboard.

Naming a file and deciding on its location is a common,
albeit heavyweight task, too heavyweight for informal
interaction with a whiteboard. Simply determining a name
for content that is loosely associated with any product or
deliverable is difficult. In contrast to production artifacts,
whiteboard content is heavily context-dependent (e.g. “the
outline I was working from last month,” “the diagram that
Amy and I worked on a few days ago,” “my latest to-do
list”).

To support lightweight, context-rich storage and retrieval of
whiteboard content, Flatland uses the Presto [5] document
repository. By default, each segment in Flatland is
automatically saved as a Presto document without requiring
an explicit action or input from the user. The document is
identified by its surrounding context (date, time, color(s),
spatial location, active and past behaviors). Other forms of
context, such as people present in the office, are possible but
not yet implemented.

With saving as an automatic process that doesn’t require
explicit attention from the user, we still must provide a
means for retrieving saved segments. When whiteboard users
were asked to describe past segments, as well as strategies
for retrieving segments, time and visual recognition were the
two most cited cues that would aid them in retrieval [17]. We
are currently experimenting with a number of context-based
retrieval methods for Flatland segments. Two are described
below:

Semantic Time Snapping
Time is a powerful cue in retrieving context-rich
information. In [17], most whiteboard users could not say
exactly when they had written something on their board, but
they had a good idea for a general range in time (e.g. few
days ago, sometime last week, couple months ago). To
support time-based retrieval in Flatland, users can attach a
time slider to any segment. The slider can be used as
expected, to change the display backward and forward in
time for that segment (see Figure 6). Touching the endpoints

FIGURE 5.  Combining Behaviors



reparsed to support subsequent operations. To support
application-specific controls, Tivoli provides “domain
objects”—packaged data and controls that can be freely
interspersed with freeform ink strokes.

In contrast, Flatland is designed to support ongoing,
continuous work across a host of domains, rather than a
series of meetings. Content is clustered automatically as the
user moves among different segments. In general, the basic
interface is much simpler with fewer controls and a smaller
gesture set. Further, Flatland engenders a kind of fine-
grained persistence, in which the entire history of a user’s
experience with the whiteboard is captured and available for
retrieval and use, as opposed to the potentially more coarse
persistence of Tivoli, where, although meeting records may
be kept indefinitely, history is largely “chunked” by
particular meeting or topic. In contrast to the use of domain
objects and continuously reparsed strokes, Flatland provides
behaviors that can be associated with any content region
building persistent application state for those strokes. This
ability to dynamically associate an application’s
interpretation of content with the representation of that
content is much closer to Kramer’s notion of Translucent
Patches[11].

Translucent Patches and Magic Lenses
Kramer’s work [11] identified the importance of separating
representation from perceived structure and the
interpretation of that structure, especially in the creative
design process. Kramer’s work focused on the “window
system” issues around this free-form association, in the
form of “translucent patches.” These patches are non-
rectangular regions which allow users to associate
interpretations of content area with regions on the screen.

Kramer’s work applied translucency as a way to preserve
context. Arbitrarily-shaped patches were a way to allow
spatial multiplexing of interpretations—different nearby
regions of the screen could have different interpretations
applied to them.

Our work takes a different approach. Our dynamic behavior
infrastructure does not require translucency to preserve
context, because the user isalwaysworking in the context of
the representation. That is, the user does not need to work
“through” the translucent patch to acquire the new
interpretation of the content. Second, instead of spatial
multiplexing of interpretations, we use temporal
multiplexing. In Flatland, a given region of content can have
multiple interpretations over the course of its lifetime. These
interpretations can be added and removed over time. The
focus on temporal multiplexing relieves the user from the
tasks of spatial management of interpretations (such as
patches) in addition to the spatial management of content.
To describe the Flatland model in terms of Translucent
Patches, Flatland supports one interpretation layer at a given
time, instead of multiple “onion skins” layers at the same
time.

Magic Lenses[3], much like Translucent Patches, provide a
way to view and manipulate data in different ways. Many of
the distinctions between Behaviors and Patches are the same
distinctions that can be drawn between Behaviors and
Magic Lenses: spatial versus temporal multiplexing, no
need for special “see through” presentations, etc.

Further, Lenses provide a way to temporarily modify the
presentation or interaction with the data in a non-persistent
way. That is, the transformation is in effect during the time
when the lens is over the data area. While Flatland
behaviors affect input and output only while they are
applied, they “annotate” the back-end structure of the data
they have been applied to with persistent information. That
is, if a set of strokes has ever been interpreted as a map (by
having a Map Behavior applied to it), that information is
stored in with the strokes in a way specific to the semantics
of the Map Behavior. Now, if the Map Behavior is ever
removed and then reapplied, those strokes are able to regain
their “mapness” as a result.

DynaWall
DynaWall is one or theroomwarecomponents developed
within the i-LAND project [7]. It has an active area of 4.5
meters by 1.1 meters with a resolution of 3027x768. Using
multiple computers and projectors, it is clearly designed for
a setting quite different than Flatland’s intended setting. Its
gestures for “throwing, shuffling and taking” whiteboard
content are designed for its large size and collaborative use.

Rekimoto
In [21], Reikimoto investigated how to combine multiple
pen-based devices. With the Pick-and-Drop interaction,
users could move content from one tablet to another. In [22],
he demonstrated pick-and-drop and other techniques for
using multiple personal tablets with shared whiteboard in a
collaborative setting. In the future, we would like to
investigate coupling tablets to Flatland as a means to
connect Flatland with existing tablet and desktop interfaces
as well as to support personal spaces in conjunction with the
shared whiteboard space.

Sketching ++
Saund and Moran’s perceptual sketch editor
(Persketch)[19], Gross and Do’s work on an “intelligent
cocktail napkin” [8] and Landay and Myer’s work on
sketching user interfaces (SILK)[12] are good examples of
interpreting sketched input while maintaining the look and
inherent ambiguity of sketches. SILK recognizes GUI
layouts while the Cocktail napkin recognized shapes from a
number of domains (furniture layout, circuit diagrams).
Persketch extracts perceptual structure out of a collection of
strokes. We clearly share the same design ideas of using free
strokes to support creative thinking, but our focus is on an
environment to support those tasks. Additionally, both SILK
and the Cocktail Napkin were tablet interfaces similar to
using a untapped. Flatland is designed for long-term use of a
whiteboard with heterogeneous content and context-based
storage and retrieval of content.

STATUS
The Flatland system has been implemented in Java using
JDK1.1.6 and the Swing UI toolkit. The current
implementation is approximately 42,000 lines of code. The
system uses the Presto document management system as the
basis for saving and retrieving “documents” that represent
the histories of segments. All of the behaviors described in
this paper have been implemented; the Calculator behavior
uses the Calligrapher online handwriting recognizer from



Paragraph Corporation; this is the only native code in the
system.

CONTRIBUTIONS
This work has investigated approaches to building an
augmented whiteboard in the context of continuous, long
term office use. In particular, we have pursued three avenues
of research based on input from user studies: techniques for
the management of space on the board, the ability to flexibly
apply behaviors to support varied application semantics, and
mechanisms for managing history on the board.

Unlike some previously reported systems, our design
choices have been influenced by a desire to support informal
work in an office setting, rather than heavy-weight
“production” tasks. In particular this focus manifests itself
in the four characteristics of use mentioned in the
introduction: whiteboards provide interfaces for thinking
through pre-production problems; they are useful for
organizing and managing “everyday content;” information
is implicitly clustered on the board; and office whiteboard
use spans the range from private to semi-public. Our designs
have attempted to address these characteristics, to make the
augmented whiteboard fit easily into existing office work
practices.

FUTURE WORK
One obvious area of future work is in the creation of
additional behaviors for the Flatland system. There are a
number of common tasks in office preproduction work that
have been suggested by users and could profitably be
supported by behaviors: paper outlining, rough budget
analysis, communications, and so on. One of our goals is to
evolve the system into a development environment for the
creation of light-weight pen-based tools for whiteboard
settings.

Although our work has been informed by usage studies of
whiteboards in actual offices, we plan to validate our
designs via several additional studies: first, an evaluation of
the specific UI techniques presented here, and second, an in
situ evaluation of the board in its intended setting.

Finally, one of the goals of our work which we have not
begun to address yet is the blurring of the physical and the
virtual in the office setting. We plan on extending the
notions of ubiquitous computing throughout the office, with
a particular focus on integrating physical artifacts.

REFERENCES
[1] Abowd, G., Atkeson, C., Feinstein, A., Hmelo, C.,
Kooper, R., Long, S., Sawhney, N. and Tani, M. Teaching
and learning as multimedia authoring: the classroom 200
project. Proceedings of ACM Multimedia ‘96. New York:
ACM.

[2] Bederson, B.B., & Hollan, J.D. Pad++: A zooming
graphical interface for exploring alternate interface physics.
Proceedings of UIST’94. New York: ACM.

[3] Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and
DeRose, T. Toolglass and magic lenses: The see-through
interface. In James T. Kajiya, editor, Computer Graphics
(SIGGRAPH ‘93 Proceedings), volume 27.

[4] Communications of the ACM, Special Issue on
Augmented Environments, 36 (7), 1993.

[5] Dourish, P. Edwards,W.K., LaMarca, A., Salisbury, M.
Uniform document interaction using document properties.
Submitted to CHI’99.

[6] Edwards, W.K, Mynatt, E.D. Timewarp: techniques for
autonomous collaboration. Proceedings of CHI’97. New
York: ACM.

[7] Geissler, J., Shuffle, throw or take it! Working
efficiently with an interactive wall. Proceedings of CHI’98.
New York: ACM.

[8] Gross, M.D., & Do, E.Y. Ambiguous intentions: a
paper-like interface for creative design. Proceedings of
UIST ‘96. New York: ACM.

[9] Igarashi, T., Matsuoka, S., Kawachiya, S., & Tanaka,
Hidehiko. Interactive beautification: A technique for rapid
geometric design. Proceedings of UIST’97. New York:
ACM.

[10] Ishii, Hiroshi & Ulmer, B. Tangible Bits: Towards
seamless interfaces between people, bits and atoms.
Proceedings of CHI’96. New York: ACM.

[11] Kramer, A. Translucent patches - dissolving windows.
Proceedings of UIST ‘94. New York: ACM.

[12] Landay, J.A. and Myers, B.A. Interactive sketching for
the early stages of interface design. Proceedings of CHI’95.
New York: ACM.

[13] Moran, T.P., Chiu, P., Harrison, S., Kurtenbach, G.,
Minneman, S. & van Melle, W. Evolutionary engagement in
an ongoing collaborative work process: a case study.
Proceedings of CSCW’96. New York: ACM.

[14] Moran, T.P., Chiu, P., van Melle, W., & Kurtenbach, G.
Implicit structures for pen-based systems within a freeform
interaction paradigm. Proceedings of CHI’95. New York:
ACM.

[15] Moran, T.P., van Melle, W., & Chiu, P. Tailorable
domain objects as meeting tools for an electronic
whiteboard. To be published in the Proceedings of
CSCW’98. New York: ACM.

[16] Moran, T.P., Chiu, P., & van Melle, W. Spatial
interpretation of domain objects integrated into a freeform
electronic whiteboard. To be published in the Proceedings
of UIST ‘98. New York: ACM.

[17] Mynatt, E. D. The writing on the wall. Submitted to
CHI ‘99.

[18] Nakagawa, M., Oguni, T., Yoshino, T. Human interface
and application on IdeaBoard. Published in Interact ‘97.

[19] Saund, E. & Moran, T.P. A perceptually-supported
sketch editor. Proceedings of UIST’94. New York: ACM.

[20] Weiser, M. The Computer of the 21st Century.
Scientific American 265(3):94-104, 1991.

[21] Rekimoto, J. Pick-and-drop: a direct manipulation
technique for multiple computer environments. Proceedings
of UIST’97. New York: ACM.

[22] Rekimoto, J. A multiple device approach for
supporting whiteboard-based interactions. Proceedings of
CHI’98. New York: ACM.


