Interactive Techniques

Introduction

主にデスクトップコンピュータにおけるGUI操作を改良する手法について紹介する。

Scroll
Pointing
Visualization
Pen computing
Voice input

Scroll Interface

Problem Navigation of a large document is difficult. Scrolling Interfaces Zooming Interfaces autozoom

Demo

<u>autozoom</u>

3. Implementation Issues

Basic Algorithm

scale • speed = constant | (Eq.1)

This ensures that the perceptual scrolling speed remains constant.

Refining the Implementation

Straightforward implementation of the equation causes problems.

- 1) Sudden zoom-out at the beginning.
- 2) Abrupt swelling at turning.

Naïve implementation: Speed is proportional to mouse movement Scale is then calculated based on eq. 1. speed = C * dy * * * * * speed Annoying! vo dy (mouse position)

Revised implementation:

Scale is exponential to mouse movement Speed is then calculated based on eq.1.

Summary

Problem:

Browsing large document combining scrolling and zooming.

Solution:

Automatically zoom in and out depending on scrolling speed.

Pointing

Fitts's law

A model of target acquisition:

$$T = a + b \log_2 \left(1 + \frac{\mathsf{D}}{\mathsf{W}} \right)$$

Visualization

Bubble Clusters

An Interface for Manipulating Spatial Aggregation of Graphical Objects

Nayuko Watanabe, Motoi Washida, Takeo Igarashi
(The University of Tokyo)

Introduction

Bubble Clusters

Demonstration

bubble ink

Implementation

Clustering Simple pair-wise distance thresholding. for (all objects o_i) $c(o_i) = \{o_i\};$ for (all object pairs o_i , o_j) if (distance(o_i , o_j) < threthshold[o_i , o_j])) merge($c(o_i)$, $c(o_j)$);

Summary

Problem:

Management of spatially organized icons on a desktop.

Solution:

Automatically cluster nearby icons as a bubble.

Visual Languages 98

Fluid Visualization of Spreadsheet Structures

Takeo Igarashi (Univ. of Tokyo) Jock Mackinlay (Xerox PARC), Bay-Wei Chang (Xerox PARC), Polle Zellweger (Xerox PARC)

A spreadsheet has an underlying dataflow graph in addition to the surface numerical view.

We visualize these structures using animation and interaction techniques.

..¥..¥..¥archive¥www¥~takeo¥video¥fluid.mpg

Phosphor: Explaining Transitions in the user Interface Using Afterglow Effects

[Baudisch 2006]

- 残像効果でX qgrを支援
- ・ アニメーション効果との比較実験など

movie

Pen Computing

Research Goal

Designing computationally augmented office whiteboard

Observation

Office whiteboards are used for informal, pre-production activities.

Examples:

Note-taking over a phone.

Organizing to do list.

Sketching paper outlines.

Discussing with office mates.

Design Goal

Design a computational system that complements current desktop computers.

Goal-oriented Tedious, complicated Formal, typed

Pre-productive Light, simple, easy Informal

Features

- 1. Managing Space
- 2. Behaviors on Surface
- 3. History Management

~~~ ☆ Demo!

flatland

Context-based search

Summary

Problem:

Multiple informal tasks on a electronic whiteboard.

Solution:

A window system for digital ink.

Voice Input

Voice as Sound:
Using Non-verbal Voice Input for Interactive Control

Takeo Igarashi
John F. Hughes
(Brown University)

Two Aspects of Voice
 Verbal information
 Speech recognition
 Non-verbal information (pitch, volume, speed, etc)
 → Voice as Sound techniques

Video

voice

Implementation

- Signal Processing (FFT) C++
- Application Control Java

On/off ... total volume > threshold (ignore low frequency part)

Pitch ... detect change in frequency

Pitch Detection

Naïve approach: identify absolute pitch

Ambiguous, noisy, unstable

Our approach: up or down at each frame

Reliable and stable

Summary

Problem:

Continuous control using voice.

Solution:

Use non-verbal aspect of voice.

非言語情報を利用した音声インタフェースの例

(音声補完シリーズ)

Summary

主にデスクトップコンピュータにおけるGUI操作を改良する手法について紹介した。

Scroll
Pointing
Visualization
Pen computing

Voice input