
COMMUNICATIONS OF THE ACM August 1996/Vol. 39, No. 8 49

PROGRAMMERS usually type characters on a keyboard to enter, test, and debug computer
programs. More than 30 years ago researchers began augmenting those characters with
diagrams [20] but pure ASCII text is still the ubiquitous standard. We will argue that
these attempts to make programming more visual have failed to become mainstream
because they are too conservative.

Various radical syntaxes for programs are feasible and offer many advantages over the state of the art. Pro-
grams, for example, can be defined by the topology of sketches, even hand-drawn scanned sketches [8]. A pro-
gramming environment can parse these sketches and generate animations of the drawings that evolve as the
program executes [6]. Or programs can be defined by manipulating physical objects, for example, by con-
necting blocks together [21] or inserting plastic cards into slots [17]. We are currently building a system called
ToonTalk in which programs are created, run, and debugged in a manner that closely resembles playing a
video game [7]. In the near future we may see program development systems that exist only in virtual reality
or ones that interpret gestures in the real world. Program sources need not be static collections of text or even

Drawings on Napkins,
Video-Game
Animation,and

Other Ways to Program
Computers

K e n K a h n •

Programming can be
as easy as chi ld’s play.

text and pictures, but can be animated, tactile,
enhanced with sound effects, and have physical form.

Radical Syntaxes for Programming Languages
This article is about syntax—a topic usually associated
with heated battles about whether a comma or semi-
colon is more desirable to separate certain program
fragments. The syntax of programs, that is, the form,
not the semantics, has an incredible range that has
barely been explored. For the purposes of exploring
a wide range of syntaxes, we consider syntax to
include both notation and syntactic structures. In
addition to the traditional use of text to express pro-
grams, one can use pictures, animations, physical
objects, gestures, and actions. Programs can be per-
ceived by more than our eyes—our ears and sense of
touch can play important roles.

The primary role of syntax in programming lan-
guages is to aid in the communication of a program
from a human to a computer. The designers of syn-
taxes are concerned with issues of ambiguity, concise-
ness, ease of learning and use, ease of parsing, and
readability. Readability has grown in importance due
to the realization that people spend lots of time read-
ing their programs and those of others. Literate pro-
gramming [12] addresses the readability issue directly
by providing rich text formatting to program sources.

Before computer terminals became available, pro-

gram sources were created on paper (often paper
specially designed for this purpose—coding sheets)
and then copied to punch cards or paper tape. The
programs were compiled and executed and a paper
listing was returned to the programmer. This kind of
communication is limited to few exchanges per day.
When computer terminals became widespread, much
more fine-grained communications became possible.
Interpreters and incremental compilers followed, as
did structure or syntax-aware program editors. Pro-
gramming became more conversational and less like
exchanging letters. Strings of characters, however,
remained as the foundation of programming lan-
guage syntax.

Researchers have experimented for over 30 years
with language syntaxes that add pictures, icons, and
diagrams to these strings of characters to produce
visual languages [16]. These languages resemble flow
charts, dataflow diagrams, and graphical rewrite
rules. This is an active field of research that has pro-
duced many innovative systems. It is fair to ask, how-
ever, why none of these languages or ideas have
succeeded in any large-scale manner. (Note that Visu-
al Basic and similar languages have a textual syntax
and are visual only in the manner in which one pro-
grams windows, menus, and buttons.) Perhaps visual
programming needs decades of research before it is
mature enough for widespread use. Virtual reality

50 August 1996/Vol. 39, No. 8 COMMUNICATIONS OF THE ACM

Figure 1. Children constructing a program with AlgoBlocks

COMMUNICATIONS OF THE ACM August 1996/Vol. 39, No. 8 51

and hypertext took decades to achieve mainstream
use. Maybe textual languages have a huge advantage
because they were first. Textual languages enjoy a
huge infrastructure in editors, lint programs, search
tools, formatters, and integrated development envi-
ronments. Some argue that if only a large engineer-
ing effort were placed behind a good visual
programming language it would succeed.

But the problems with visual programming may be
more serious. Some argue that visual languages are
wasteful of precious screen “real estate.” And the lan-
guages don’t scale well. Programming is an abstract
symbolic activity and as such fits better with text than
pictures. Others argue that syntax is relatively unim-
portant and that the small advantages of visual pro-
gramming are not enough to move the installed base
of programmers from what they currently know.
Some see the value in using diagrams to illustrate
aspects of computation (e.g., Petri nets, Turing
machines, finite-state diagrams) but believe that dia-
grams are poorly suited for precisely capturing all the
details that are necessary to encode programs.

MUCH of the debate about whether visual
programming is better than text-only
programming and the debates about
which visual programming language is

better are really debates about human psychology.
And the participants are not experts. Only a few psy-
chologists have studied how people cope with differ-
ent alternatives in textual programming languages,
and more recently have done comparative studies of
textual and visual programming [3, 4]. The more
general issue of the role of visual thinking in math,
logic, and science has been studied by psychologists
for more than a century.

The position taken in this article is that visual pro-
gramming has failed to become widespread because
it isn’t radical enough. Programs describe dynamic
processes. Visual programming languages attempt to
encode descriptions of these dynamic processes with
static pictures. Dynamic pictures, or animations, are a
much better fit. Also, the process of encoding intro-
duces abstraction. The cognitive advantages of the
concreteness of pictures is mitigated by the fact that
these pictures are components of a formal symbolic
system. In pop psychology terminology, visual pro-
gramming is well-suited for those people that are visu-
al thinkers and adept with abstractions.
Unfortunately, such people are apparently a small
minority of the population.

There are visual languages that avoid the com-
plexities of abstraction at the price of power and
expressiveness. KidSim [19], for example, lets pro-
grammers describe computations as graphical re-
write rules. While a wide range of programs can be

expressed this way, to achieve general-purpose pro-
gramming KidSim’s textual properties sub-language
must be used. Klik & Play is a game maker published
by Maxis that is promoted as ‘game programming
without having to program’. Built-in objects have
properties sheets from which users can select and cus-
tomize a large range of behaviors and reactions to
events. A surprising variety of programs can be con-
structed this way, but it is far from general-purpose
computing. VisiCalc and subsequent spreadsheet
programs can be thought of as special-purpose pro-
gramming with a syntax based upon a grid layout
[11]. Rocky’s Boots and Robot Odyssey were two
games published by The Learning Company in the
early 1980s that supported an animated video-game
syntax for building and simulating arbitrary logic cir-
cuits. There many other examples of innovative syn-
taxes in special-purpose programming systems. The
focus of this article, however, is syntaxes of general-
purpose programming languages.

The interplay between syntax and semantics in the
design of programming languages is poorly under-
stood. For example, a video-game animation syntax
for a concurrent constraint programming language
[7] is presented in this article. It is hard to imagine a
good video-game animation syntax for a traditional
language like C or Pascal. Similarly, a dataflow dia-
gram syntax fits a functional computational model
and not a production system, while graphical re-write
rules fit production systems and not functional com-
putation. The interaction is equally complex at the
level of individual language features. Lexical scoping,
for example, can be easily captured by a picture syn-
tax that supports containment and is difficult to cap-
ture well by a syntax based upon icons and lines
between them.

Physical Objects as Source Code
Programs can be more than text, more than pic-
tures—they can be tactile. A program can be con-
structed by manipulating items in the real world so
long as the computer is able to sense their state. In
the mid-1970s, for example, Radia Perlman and
Danny Hillis built a syntax device for a subset of the
Logo programming language called a slot machine
[17]. The prototype consisted of four units, which dif-
fered only in their color. Each unit had 10 or so slots
into which plastic cards could be inserted. The cards
had holes in the bottom so the machine could iden-
tify them. Some cards had pictures of basic opera-
tions (for Logo turtle programming these included
forward, turn right, etc.). Others had numbers that
could be placed in a slot together with an operation
card to provide an argument to the operation (e.g.,
how far to turn right). Some just had a color that
matched the color of one of the units. This provided

for a means of expressing procedure calls. While the
prototype had no way of expressing variables or con-
ditionals, there were detailed plans for how to add
them. The machine was limited to expressing num-
bers less than 10, procedures could not be longer than
10 instructions, and the planned variables were limit-
ed to numeric values. Despite these limitations it was
capable of expressing an interesting class of programs.

As programs constructed on the slot machine ran,

a light lit up on the slot currently executing. This is a
simple but effective example of program animation
[2]. In program animation, as a program runs one
sees representations of its state evolve. In most sys-
tems, the animation is not in the same visual terms as
the program source but is instead a user-defined
abstraction of the program state. On the slot
machine, the lights directly showed the state of the
machine. Another interesting aspect of the machine
was that it only read the cards when the slot was
active. A programmer easily could remove and add
cards as the program executed.

More recently a group of researchers at NEC have
built what they call AlgoBlocks [21]. These are cubes
with electronics inside and connectors on the sides.
Programs are constructed by connecting blocks
together. A major focus of this project is to support
collaborative programming where several people can
jointly build a program—see Figure 1. One might
wonder why one would want to program by manipu-
lating physical objects. In both of these projects the
answer is that they are well-suited for teaching pro-
gramming concepts—even to very young children.

Many children and some adults seem to learn better
when there is something they can touch and manip-
ulate. These research prototypes are rather limited
but we can imagine professional programmers build-
ing programs by manipulating real world objects
(other than the keyboard and mouse). There are
clear disadvantages—one can’t save or copy pro-
grams, editing is tedious, and it is hard to scale to
large programs. Improved technology may help over-

come these difficulties. More powerful systems might
include cameras that observe what is being construct-
ed or changed, objects than can move (or be moved
by robots), and embedded electronics capable of giv-
ing the objects sophisticated behaviors. Perhaps
manipulating physical objects will be the preferred
method for constructing and testing small program
fragments, and other means will be used for saving
and combining them.

The Topology of Drawings as Source Code
Visual programs are nearly always constructed using a
dedicated editor that is part of the language’s pro-
gram development environment. This severely limits
the range of appearances for programs. An exception
is Pictorial Janus [6, 10] in which the syntax is defined
in terms of the topological relations between picture
elements. Relations like “inside,” “touching,” and
“connected” are used in defining the syntax of the lan-
guage (see Figure 2). Shape, color, size, and texture
are left for programmers to use as they see fit. Pro-
grams can be drawn on paper, scanned in, and parsed
(see Figure 3). Programs can also be constructed

52 August 1996/Vol. 39, No. 8 COMMUNICATIONS OF THE ACM

Figure 2. The topological syntax of Pictorial Janus Figure 3. Hand-drawn source code for appending lists

in Pictorial Janus

COMMUNICATIONS OF THE ACM August 1996/Vol. 39, No. 8 53

using one’s favorite illustration program. More radical
possibilities involve constructing program fragments
with plastic Color Forms®, Lego® bricks or other physi-
cal objects and then capturing their appearance by a
scanner or camera. A friendly programming environ-
ment could constantly interpret the input from cam-
eras and give advice and help.

Pictorial Janus also animates the execution of pro-
grams in the same visual terms as they were construct-
ed. A hand-drawn program, unless automatically
cleaned up, will animate as hand-drawn elements that
grow, shrink, move, and dissolve. The animation of an
agent reduction shows a rule expanding until it visu-
ally matches the agent contour. It then dissolves away
leaving behind the body of the rule. Links shrink as
newly created agents grow (see Figure 4).

Reliance upon topological features of drawings
greatly simplifies the parsing problem. It gives the pro-
grammer a great deal of freedom—freedom that, if

abused, can lead to hard-to-
understand diagrams. Unlike
simple picture parsers based
upon topology, the human
visual system has difficulty
abstracting. Two items with
similar shapes and colors are
easily confused even if they dif-
fer in some significant topo-
logical aspect. Programmers
need to use the graphical free-
dom with care—just as users of
word processors need to use
care when mixing lots of dif-
ferent fonts in the same docu-
ment. In both cases, good
styles emerge and should be
followed.

A more fundamental prob-
lem that Pictorial Janus shares
with most visual programming
systems is that formal diagrams
are used to encode programs
and many people find formal
diagrams difficult to understand
and construct. Venn diagrams,
for example, are much simpler
than visual programs and while
most readers of a magazine like

Communications of the ACM find them very easy, one for-
gets how hard it is for most children to learn them.

Video-Game Animation as Source Code
Animation is very well-suited for displaying computa-
tions, not just because it is dynamic, but because it
can elide unimportant aspects and highlight other
aspects. The human visual system is well-tuned for
perceiving events and patterns in changing images.
Since animation is well-suited for showing a compu-
tation as it evolves, could it also be well-suited for pro-
gram sources?

ToonTalkTM is a programming language whose
source code is animated [7]. (ToonTalk is so named
because one is “talking” in (car)toons.) This does not
mean that it is a visual programming language where
some static icons have been replaced by animated
icons. It means that animation is the means of com-
municating to both humans and computers the

Figure 4. Snapshots

of a single reduction of

a Pictorial Janus queue

program

entire meaning of a program. While the advantages
of animated source code are many, constructing ani-
mation is generally difficult and time-consuming.
Good animation authoring tools help, but it is still
much more difficult to animate an action than to
describe it symbolically.

Luckily, there is one sort of computer animation
that is trivial for a user to produce—video-game ani-
mation. Even small children have no troubles pro-
ducing a range of sophisticated animations when
playing games like Nintendo’s Mario Brothers®. While
the range is, of course, very limited relative to a gen-
eral animation authoring tool, video-game style ani-
mation is fine for the purposes of communicating
programs to computers. If, for example, a program
fragment needs to swap the values of two locations,
what can be more natural and easy than grasping the
contents of one, setting it down, grasping the con-
tents of the other, placing it at the first location and
then moving the original item to the second location?
(See Figure 5.) This is something a very young child
can understand and do, while only a programmer can
write the equivalent code (see Figure 6).

ONCE the step is taken to use video-game
technology for the construction of source
code, it is easy to see other uses of video-
game technology for browsing, editing,

executing and debugging programs. Other ideas
from video games can be borrowed. Some video
games have animated characters whose purpose is to
provide help to users. These characters can play the
role of online help and tutorial systems.

Computer scientists strive to find good abstrac-
tions for computation. In ToonTalk a critical goal is
to find good “concretizations” of those abstractions.
The challenges are twofold: to provide high-level
powerful constructs for expressing programs and to
provide concrete, intuitive, easy-to-learn, systematic
game analogs to every construct provided. After all, a
Turing machine is both concrete and a universal
computing formalism. (Alan Turing strove not just
for mathematical computing formalisms but for their
concrete analogs as well.) One can imagine a Turing
machine game that in theory supports the construc-
tion of arbitrary computations, but I can’t imagine
using it to build large or complex programs.

The ToonTalk world resembles a twentieth-centu-
ry city. There are helicopters, trucks, houses, streets,
bicycle pumps, toolboxes, hand-held vacuums, boxes,
and robots. Wildlife is limited to birds and their nests.
This is just one of many consistent themes that could
underlie a programming system like ToonTalk. A
space theme with shuttlecraft, teleporters, and the
like would work as well. So would a medieval magical
theme or an Alice in Wonderland theme.

An entire ToonTalk computation is a city. Most of
the action in ToonTalk takes places in houses. Com-
munication among houses is accomplished by homing
pigeon-like birds. Birds accept things, fly to their nests,
leave them there, and fly back. Typically houses con-
tain robots that have been trained to accomplish some
small task. A robot is trained by the user entering into
its “thought bubble” and showing it what to do. The
robot remembers the actions in a manner that can eas-
ily be abstracted to apply in other contexts.

54 August 1996/Vol. 39, No. 8 COMMUNICATIONS OF THE ACM

1

2

3

COMMUNICATIONS OF THE ACM August 1996/Vol. 39, No. 8 55

Robots working in different houses are the source
of concurrency in ToonTalk. Synchronization is
accomplished in ToonTalk by giving robots boxes
with nests where they expect an item. Such robots will
wait until a bird flies in and covers a nest by an item
before trying to proceed. If a robot expects to be
given a particular kind of box (e.g., one that contains
the number zero) and another item is in the box
(e.g., the number one), then it will give the box to
the robot behind it in line.

The behavior of a robot is exactly what it was
trained to do by the programmer. This training cor-
responds in traditional terms to defining the body of
a method or clause. Possible actions for ToonTalk
robots include:

• sending a message by giving a box or pad to a bird,
• spawning a new agent by dropping a box and a team
of robots into a truck (which drives off to build a new
house),
• performing simple primitive operations such as
addition or multiplication by building a stack of num-
bers (which are combined by a small mouse with a big
hammer),
• copying an item by using a magician’s wand,
• terminating an agent by setting off a bomb,
• changing a tuple by taking items out of compart-
ments of a box and dropping in new ones.

THESE actions correspond to the permissible
actions of a concurrent logic programming
agent or an actor [1, 9]. The last action may
appear to introduce mutable data structures

into the language, which are known to introduce
much complexity to parallel programs. Since boxes,
however, are copied, not shared, this is not the case.
An apparently destructive operation on a private copy
is semantically equivalent to constructing the result-
ing state from scratch. But the destructive operation
is often more convenient. In situations where copying
is inappropriate, a house can be built to hold a single
copy and multiple references can be accomplished by
copying birds that deliver requests to a shared nest in
that house.

When users control the robot to perform these
actions, they are acting upon concrete values. This
has much in common with keyboard macro program-
ming and programming by example [18]. (See the
article “Intelligent Graphics” in this section for a
more thorough discussion of learning from examples
[15].) The hard problem for programming by exam-
ple systems is how to abstract the example to intro-
duce variables for generality. ToonTalk does no
induction or learning. Instead the user explicitly
abstracts a program fragment by removing details
from the thought bubble. The preconditions are thus
relaxed. The actions in the body are general since
they have been recorded with respect to which com-
partment of the box was acted upon, not what items
happened to occupy the box.

One can understand ToonTalk completely in its
own terms. For example, a bird, when given some-
thing, flies to its nest, leaves the item there and
returns. This is how children typically understand it.
Computer scientists, however, might like to under-
stand the relationship between computation and

Figure 5. Sequence of snapshots showing the creation

of a ToonTalk program to swap two items

Figure 6. Swapping two items in C

temp = x;
x = y;
y = temp;

4

5

these ToonTalk objects and activities. The mapping
between computational abstractions and ToonTalk’s
computational concretizations is shown in Table 1.

A problem with an animated syntax is the difficul-
ty of presenting programs on paper. For example,
Figure 8 shows snapshots from the construction of a
program fragment that implements a simple concur-
rently accessible bank account. In the example, a
robot is trained to accept a request to deposit and
sends back an acknowledgment after the request is

processed. The robot adds the amount of the deposit
to the current balance, acknowledges the request by
responding with a copy of the new balance, and then
is ready to process the next request. ToonTalk is
capable of describing what a robot does in full detail,
but as shown in Figure 7, the text is difficult to follow.
The difficulty is only partially due to the simplicity of
ToonTalk’s text generator. Narratives of sequences of
these kinds of actions are just hard to follow. In con-
trast, an animation of the same sequence is easy for
even a small child to understand.

The Programming Language Syntax “Customer”
A popular corporate fad is to be “customer-driven”
and to constantly ask of every activity “who is the cus-
tomer?”. In this spirit we ask “who is the customer of
syntax?”. It is generally believed that a professional
programmer requires a very different syntax than
someone just learning to program. For example, the
Logo programming language for children borrowed
heavily from Lisp but completely redesigned the syn-
tax to be easier to learn and read. But there are note-
worthy examples of syntaxes used by beginners and
professional alike. Basic, for example, was designed
for novices and is now used by millions of profession-
als (who use Visual Basic, LotusScript, Word Basic,
etc.). And many people learn C as their first pro-
gramming language despite its complex syntax.

Can the radical syntaxes presented in this article
also have a broad range of “customers” or are they
primarily for children and beginners? To answer this
question one needs to look case-by-case and consider
whether design compromises were made between
ease of use and ease of learning. Pictorial Janus, for
example, is relatively difficult to learn but is very flex-
ible. The syntax of ToonTalk is so easy to learn that
six-year-old children master it quickly. Not only is it
easy to learn, but it is perhaps unique in that it is fun

56 August 1996/Vol. 39, No. 8 COMMUNICATIONS OF THE ACM

This is a robot who wants a box with 4 holes
whose hole labeled with “Request” contains a box
with 3 holes whose first hole contains a pad with
the text “deposit” on it and whose hole labeled
with “Amount” contains any number and whose
hole labeled with “Ack” contains a bird and whose
hole labeled with “Balance” contains any number
and whose hole labeled with “Owner” contains a
text pad with anything on it and whose hole
labeled with “Number” contains any number. If
given a box like that he will pick up what is in the
first hole of the box he’s working on. And drop it.
And pick up what is in the second hole of the first
thing he made or found. And drop it on the sec-
ond hole of the box he is working on. And grab a
magic wand. And use the magic wand on the sec-
ond hole of the box he is working on. And give
what he just copied to the bird in the third hole of
the first thing he made or found. And release the
magic wand. And grab a copy of Dusty. And use
Dusty to vacuum the first thing he made or found.
And release Dusty.

Figure 7. Description generated by ToonTalk of the

robot handling bank deposit requests

Computational ToonTalk
computation city
agent (or actor or process or object) house
methods (or clauses or program fragments) robots (with thought bubbles)
method preconditions contents of thought bubble
method actions actions taught to robot inside thought bubble
tuples (or arrays or vectors or messages) boxes
comparison tests scales
agent spawning loaded trucks
agent termination bombs
constants number pads, text pads, pictures
channel transmit capabilities birds
channel receive capabilities nest
program storage nest

Table 1. Mapping between computational abstractions and ToonTalk’s computational concretizations

COMMUNICATIONS OF THE ACM August 1996/Vol. 39, No. 8 57

Figure 9. Snapshots of a ToonTalk robot being trained to handle bank account deposit requests

1. Giving robot box to work on 4. Giving copy of balance to bird (training)

2. Taking out the current request (training) 5. Removing the current request (training)

3. Adding deposit to balance (training) 6. Addition being performed during test

to learn and use. Some children play with ToonTalk
but construct nonsense programs because it is fun to
train robots, use magic wands, give birds things and
so on. Many think that anything that is fun cannot
also be an appropriate tool for professionals. It is
hard to imagine system programmers in the future
programming by loading up trucks, using hand-held
vacuums and bike pumps, and the like. If this is the
only reason an animated video-game syntax is inap-
propriate for professional use, one can make a bland
variant of ToonTalk.

ANOTHER “customer” of a syntax is a person
with mental or physical disabilities. For
example, a programmer unable to control
his or her body could construct ToonTalk

programs with an eye tracker or head tracker for
input. Or a dyslexic programmer could draw pro-
grams or construct them in a video-game world in
which reading is not essential. ToonTalk was
designed to be usable with just a game controller—a
keyboard is unnecessary. This makes it suitable for
users with very limited ability to move.

Another consideration is how long it takes to con-
struct programs. For example, a good typist can enter
a program to append two lists together in a function-
al or logic programming language in about 60 sec-
onds. Someone familiar with Pictorial Janus can draw
on paper the equivalent program in the same amount
of time. With an illustration program it can take 2 or
3 times longer. With a Pictorial Janus editor the time
can be significantly less. In ToonTalk the equivalent
program can be constructed in about 3 minutes.
However, in ToonTalk the process of constructing a
program includes constructing test data and testing
program fragments as they are built. (All these times
are for someone who already knows very well how to
append two lists.) Anecdotal evidence suggests that
when one is less sure what one is doing that ToonTalk
can be faster than other alternatives since most peo-
ple can reason more easily with concrete sample data
rather than abstract variables. Also, one sees immedi-
ately the result of actions and many bugs are caught
as soon as they are created.

Yet another consideration is how easy it is to man-
age and modify large programs. Here text currently
has a large advantage. Nearly all text-based program
editors support some kind of search and replace.
Tools like grep are available for searches across many
files. Similar tools for illustrations and diagrams are
more difficult to build and have not evolved beyond
the research prototype phase [13]. ToonTalk cur-
rently has no editor at all. If a robot was trained
incorrectly, then a new robot must be trained to
replace the bad robot. A syntax that relies exclusive-
ly upon physical objects results in programs that are

very hard to search. Editing on a slot machine is so
simple that four-year-old children mastered it easily
[17], but it is slow and tedious to make certain
changes like inserting an instruction. Using hybrid
syntaxes and putting electronics and behaviors into
the objects can alleviate many of these shortcomings.
The important question, however, is not what tools
currently exist, but whether there are fundamental
obstacles to building tools that are competitive with
text-based tools. One can imagine, for example, a
ToonTalk robot editor that shows the actions the
robot takes as a story board. Story boards could be
edited with cut, copy, and paste operations. How far
such tools can advance is an open question requiring
much more research.

A related question is how effectively a particular
syntax uses screen real estate. This is a common criti-
cism of visual programming systems. Due to Pictorial
Janus’ reliance upon topology, the size of a program
fragment is not constrained. In particular, the zoom
feature of most illustration programs means that pro-
grams can be smaller than a pixel at the standard
zoom factor. If one compares equivalent textual and
Pictorial Janus programs constrained to be easy to
read then they use about the same area on the screen.
In ToonTalk programs exist in time, not space, so the
question is not applicable. Physical objects that are
easy for humans to manipulate need to be relatively
big. “Desk real estate” may be a real constraint. It is
interesting to note, however, that AlgoBlocks could
have been designed to be much smaller, but the
designers were concerned that that would interfere
with collaborative programming.

A programming language syntax is usually thought
of as a description of the form of a program and not
of the state of a computation. The slot machine, Pic-
torial Janus and ToonTalk all provide a means of see-
ing the state of an entire computation in the same
visual terms or syntax as the programs being execut-
ed. The state can be seen in the slot machine lights,
the Pictorial Janus configurations of agents, and the
ToonTalk city alive with trucks driving, birds flying,
and houses being constructed and destroyed. The lat-
ter two show the state of a computation as a large
space which can be navigated.

Since syntax is used for communication of pro-
grams to computers, another “customer” is the com-
puter itself. From this viewpoint, a syntax should be
precise, unambiguous, and quick to parse. Formaliz-
ing radical syntaxes is a challenge (e.g., [14] and
[5]). Except for Pictorial Janus, this isn’t a practical
problem since in other visual programming systems
and in ToonTalk, programs can only be constructed
using a specialized piece of software. This has the
unfortunate consequence that programs printed on
paper can be ambiguous.

58 August 1996/Vol. 39, No. 8 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM August 1996/Vol. 39, No. 8 59

The Future of Programming Language Syntax
The purpose of this article is to describe the incredi-
ble breadth of ways that programs can be expressed,
ranging from sketches on paper to video-game ani-
mation to manipulation of physical objects. This
space has barely been explored. Programs could be
constructed from inside virtual reality, for example.
Actions in virtual reality could be interpreted in
much the same manner as actions in ToonTalk. Or a
programmer could make gestures in front of a cam-
era connected to a computer. Software could inter-
pret these gestures as program instructions.

Audio can play a large role in action-oriented syn-
taxes and in program animation. ToonTalk, for
example, has nearly 50 different sound effects that
are associated with different actions and events.
Speech output could be used to provide feedback
that actions or gestures of the programmer are being
interpreted correctly. Speech input could be used to
accelerate the drawing of Pictorial Janus programs or
the control of ToonTalk objects and tools. Maybe
even music could be useful.

We foresee a future where programmers will use a
combination of media and other devices for con-
structing, running, testing, and debugging their pro-
grams. Text won’t be obsolete, but will be joined by
sketches, animation, sound effects, speech, tactile
feedback devices, gestures, virtual reality, cinema-
graphic techniques, and electronic gadgets to help a
wide range of people build, test, and debug comput-
er programs.

How to Obtain the Software Discussed
Pictorial Janus software is available for non-commer-
cial purposes from ftp://ftp.parc.xerox.com/pub/Pic-
torialJanus and http://www.cadlab.de/~wolfgang
/wm.visual.html. ToonTalk is currently in beta testing.
Visit http://www.toontalk.com or send email to
KenKahn@ToonTalk.com if you wish to learn more
about ToonTalk or to obtain a beta copy. A software
program that very closely resembles Perlman’s slot
machine [17] is contained in “Thinkin’ Things Collec-
tion 3” by Edmark Corporation.

Acknowledgments
I wish to thank Mary Dalrymple, Ted Selker, and
Henry Lieberman for their insightful comments on
earlier versions of this article.

References
1. Agha, G. Actors: A Model for Concurrent Computation in Distributed

Systems. The MIT Press, Cambridge, Mass., 1987.
2. Brown, M. Algorithm Animation. The MIT Press, Cambridge,

Mass., 1987.
3. Green, T.R.G. and Petre, M. When visual programs are harder

to read than textual programs. In Proceedings of the Sixth Euro-
pean Conference on Cognitive Ergonomics (1992).

4. Green, T.R.G. and Petre, M. Usability analysis of visual pro-

gramming environments: A cognitive dimensions framework. J.
Visual Languages and Computing 7, 2 (June 1996).

5. Haarslev, V. A fully formalized theory for describing visual nota-
tions. In Proceedings of the IEEE Visual Language Conference (1995).

6. Kahn, K. Concurrent constraint programs to parse and ani-
mate pictures of concurrent constraint programs. In Proceedings
of the Fifth Generation Computer Systems Conference (Tokyo, Japan,
June 1992).

7. Kahn, K. ToonTalk™—An animated programming environ-
ment for children. J. Visual Languages and Computing 7, 2 (June
1996).

8. Kahn, K. and Saraswat, V. Complete visualizations of concur-
rent programs and their executions. In Proceedings of the IEEE
Workshop on Visual Languages, (Skokie, Ill., Oct. 1990).

9. Kahn, K. and Saraswat, V. Actors as a special case of concurrent
constraint programming. In Proceedings of the Joint Conference on
Object-Oriented Programming: Systems, Languages, and Applications
and the European Conference on Object-Oriented Programming (Oct.
1990). ACM Press, NY.

10. Kahn, K.M. and Saraswat, V.A. Complete visualizations of con-
current programs and their executions. In Proceedings of the
IEEE Visual Language Workshop (Oct. 1990).

11. Kay, A. Computer software. Scientific American 251, 3 (Sept.
1984), 41–47,

12. Knuth, D. Literate Programming. Center for the Study of Lan-
guage and Information, Stanford University, 1992.

13. Kurlander, D. Graphical Editing by Example. Ph.D. Dissertation,
Computer Science Department, Columbia University, July
1993.

14. Lehrenfeld, G. and Müller, W. Defining the Relational Grammar
of PJ—A Case Study. Tech. Rep. CR-07-94, Cadlab, Paderborn
University, Germany, 1994.

15. Lieberman, H. Intelligent graphics. Commun. ACM 39, 8 (Aug.
1996).

16. Myers, B. Taxonomies of visual programming and program
visualizations. J. Visual Languages and Computing 1 (1990),
97–123.

17. Perlman, R. Using computer technology to provide a creative learning
environment for preschool children. MIT AI Lab Memo 360. Logo
Memo 24. May 1976.

18. Smith, D. Pygmalion: A Creative Programming Environment. Stan-
ford University Computer Science Tech. Rep. No. STAN-CS-75-
499, June 1975.

19. Smith, D., Cypher, A., and Spohrer, J. KidSim: Programming
agents without a programming language. Commun. ACM 37, 7
(July 1994).

20. W. Sutherland. On-line Graphical Specification of Computer Proce-
dures. Ph.D. dissertation, MIT, 1966.

21. Suzuki, H. and Kato, H. Interaction-level support for collabo-
rative learning: AlgoBlock—An open programming language.
In Proceedings of CSCL’95 (Oct. 1995).

About the Author:
KEN KAHN is the founder and president of Animated Programs,
whose mission is to make computer programming child’s play. He
has focused on the development of ToonTalk since he left Xerox
PARC in 1992. Author’s Present Address: 1748 Monticello Road,
San Mateo, CA 94402. email: kahn@csli.stanford.edu

ToonTalkTM is a trademark of Animated Programs, Inc. The technology
underlying ToonTalk is protected by U.S. Patent No. 5,517,663. LEGO is a
trademark of the LEGO Group of companies, which does not sponsor,
authorize, or endorse ToonTalk.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0800 $3.50

C

