
C~"~| ~ APRIL 1 3 - 1 8 ,]996

Pavlov: Programming By Stimulus-Response Demonstration

D a v i d W o l b e r

D e p a r t m e n t o f C o m p u t e r Sc ience , Un ive r s i t y o f San F r a n c i s c o

2 1 3 0 F u l t o n St., San F ranc i sco , CA. , 9 4 1 1 7 - 1 0 8 0

(415) 6 6 6 - 6 4 5 1

w o l b e r @ u s f c a . e d u

ABSTRACT
Pavlov is a Programming By Demonstration (PBD) system
that allows animated interfaces to be created without
progrmnming. Using a drawing editor and a clock,
designers specify the behavior of a target interface by
demonstrating stimuli (end-user actions or time) and the
(time-stamped) graphical transformations that should be
executed in response. This stimulus-response model "allows
interaction and animation to be defined in a uniform
manner, and it allows for the demonstration of interactive
animation, i.e., game-like behaviors in which the end-user
(player) controls the speed and direction of object
movement.

K E Y W O R D S

End User Programming, UIMS, Programming
Demonstration, Programming By Example, Animation

By

INTRODUCTION
A visitor to our planet might deduce that most computer
users have the necessary skills to quickly and easily
graphical user interfaces (GUIs). First, computer users
know what they want: any user of today's popular
applications is now quite capable of delivering a detailed
(and passionate!) discussion on the strengths and flaws of
computer interfaces. Second, most computer users have the
mechanical skills required to demonstrate the appearance
and behavior of an interface: anyone that has used a
drawing editor knows how to draw objects with a
computer, click on them, and transform them.

But today's development tools have yet to fully tap the
potential of the computer user. Though interface builders
like Visual Basic have significantly decreased the time and
expertise necessary to build standard interfaces, the
development of more graphical, animated interfaces is still
mostly performed by skilled programmers. This time-
consuming and costly development is particularly un-

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
gwen that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or t~e.
CHI 96 Vancouver, BC Canada
© 1996 ACM 0-89791-777-4/96/04..$3.50

fortunate given the exploding demand for computer games,
interactive entertainment, and animation in even
"standard" interfaces, and the recognized importance of
more end-user participation in designing interfaces. There
has been some progress: an entire txx)k has been
published describing research systems that allow
interfaces to be created or extended by demonstration
rather than progrmnming [2] ; commercially, tools like
Macrolnedia's Director allow non-progrmnmers to develop
animation and some interaction.

But none of these systems cohesively combine interactive
techniques for specifying end-user interaction, graphical
transformation, and timing, the three primary ingredients
of an animated interface. DirecWr is powerful for
specifying transformation and timing, but designing
simple interaction requires some progrmnming, and more
complex interaction requires an expert. The Programming
By Demonstration (PBD) systems in [2] present powerful
techniques for specifying transformation and some
interaction, but do not provide the timing mechanisms
necessary for animation.

This paper presents Pavlov, a GUI development system
based on the stimulus-response model. Stimulus-response
provides a cohesive model for demonstrating interaction,
transformation, and timing. The model seeks to minimize
the cognitive dissonance between concept and design by
allowing designers to demonstrate the behavior of an
interface exactly as they think of it: "When I do A, B
occurs", or "two seconds after the start of the program, this
animation begins." Beginning with a blank target
interlace, tabula rasa if you will, the designer uses a
drawing tool to draw the interface, then uses the same tool
and a clock to demonstrate stimulus-response pairs. In
essence, the designer teaches the system in a way that is
intuitive to humans:

The basic physiological function of the cerebral
hemisphere throughout the subsequent individual life
consists in a constant addition of numberless signaling
conditioned sthnuli to the limited number of in-born
unconditional stimuli, in other words, in constantly
supplementing the unconditioned reflexes by conditioned
ones.

Ivan Peu'ovich Pavlov

252

APRIL 13-18, t996 ~ ' ~

L " ~ ~ j ' .-,~. DevelepmeraMode

\ \ f . J i ii!iiiiiiiiii!igliiiiiiiiii
" - - / ~f~.:~::::~i!ii::~i!~iiiiiiiiiiiii::::ii::

 iiii!iiiiiiiiii ii i::i iiiiiiiiiiiiiil

Figure 1. Pavlov Development of a Driving Simulator

This stimulus-response model was first used in the
author's DEMO system [13] to demonstrate non-animated
interface behaviors. The model has been extended in
Pavlov so that an interface can be taught about time,
periodic activity, and the inherent direction of some
objects. These extensions allow animation as well as
interaction to be designed within the stimulus-response
framework. It is this intersection between animation and
interaction, not animation per se, that distinguishes Pavlov
from other PBD systems. Because of it, designers can
demonstrate most behaviors that combine interaction and
animation, including game-like behaviors in which the
end-user (player) controls the speed and direction of object
movement.

A DRIVING SIMULATOR EXAMPLE
In the driving simulator, the top car begins moving when
the program begins, follows a pre-defined path around the
track, then stops near its starting point. The bottom car
begins moving only when the driver rotates the
"accelerator". Its speed and direction is controlled by the
driver (the end-user) manipulating the accelerator and the
steering wheel.

Figure 1 shows the Pavlov environment during
development of the driving simulator (also see the Video
Figure in the CHI 96 Video Program). The basic tools are
the drawing editor in the top-right comer, the clock
(middle-right), and the Development Mode Palette (lower-
right). The designer uses the development modes to inform
the system as to whether s/he is just drawing the interface
(Draw mode), demonstrating an end-user or time stimulus
(Stimulus mode), demonstrating how the system Should
respond to a stimulus (Response or Real-Time Response
mode), or testing an interface (Test mode). The designer
uses the clock to demonstrate when an operation should be
executed (using the top At: box), or if an operation should
be executed periodically (the middle Every: box). The
lower button on the clock, labeled Record Time Stimulus,

allows the designer to specify that the tollowing responses
should be triggered by time.

Another important part of the environment is the editor,
shown in Figure 2. This editor displays a textual
description of the interface being designed. It serves to
provide feedback to a designer as demonstrations are
performed, and it allows the designer to modify the
behaviors "learned" by the system when necessary. Details
of this editor are provided later in the paper.

The first task in creating the Drawing Simulator is to draw
the two cars, the road, the accelerator, and the steering
wheel. To do so, the designer selects Draw mode from the
Development Mode Palette, and makes use of the graphic
primitives and grouping mechanisms available in the
drawing palette. He also provides names to the drawn
objects for later reference.

Next, the designer begins specifying the behavior of the
interface. Because s/he wants the two objects shaped like
cars to move as cars do, s/he selects each, chooses Object I
Set Direction from the menu and enters an angle that
defines the direction attribute of the particular car. In the
simulator, both cars initially face straight ahead on the x-
axis, so the designer sets the angle to 0. A vector
emanating from its center appears on each car to signify
that the car will only move forward and backward in
relation to its direction, and must be rotated to change
direction. The vector does not appear during execution of
the target interface.

The designer is now ready to demonstrate the stimulus-
response behavior of the top car. In this case, the stimulus
is time: at time 0 (the beginning of execution) the car
should begin moving. To demonstrate, the designer selects
Stimulus mode, sets the clock At: box to 0, and clicks on
the Record Time Stimulus button. The system reports that
a time stimulus has been recorded, and automatically

Figure 2. The Paviov Editor

iiiiiiii~

253

, i ~

switches to Response mode. For this behavior, the designer
wants to demonstrate a special kind of response, a real-
time response, so that mode is selected. The designer then
selects the move icon in the drawing palette and drags the
car around the track. As s/he drags the car, it doesn't ever
move diagonally, but instead moves forward towards its
nose, and rotates its base (turns) in order to follow the
mouse around the track. After the designer releases the
mouse button, s/he sees from the editor that the system has
recorded a series of discrete, dine-stamped responses,
made up of alternating MoveForward and Rotate
commands.

Next, the designer enters Test mode to visually test the
demonstrated behavior. Immediately, the top car begins
moving and follows the path that was demonstrated. The
designer knows s/he could edit the recorded responses in
the editor to modify the path, but for now s/he is satisfied
with the behavior of the top car.

The designer then turns his attention to the bottom car.
The bottom car's behavior is not triggered by time, but by
an end-user action. Thus, instead of demonstrating a time
stimulus, the designer plays the role of the end-user and
demonstrates an action. After entering Stimulus mode,
s/he selects the Rotate icon in the drawing palette, presses
the left-mouse button on the rectangle denoting the
accelerator, and rotates it clockwise some amount, say
-0.36 radians. The system reports that a stimulus was
recorded and automatically switches the development
mode to Response. The system also records an implicit
stimulus-response descriptor mapping the physical action
used to the higher-level operation:

(1) On Accelerator.LeftDrag --> Accelerator.Rotate

At this point, the designer needs to demonstrate that the
rotation of the accelerator should cause a response of
accelerating the movement of the bottom car. First, s/he
enters 1 in the Every: box of the clock. S/he knows that
this will cause the upcoming demonstrated response to be
executed periodically every time frame in the target
interface. Next, s/he moves the car some amount, say 17
units. Because the car is a "directed" object, the car's
movement is restricted: it can only be moved on the vector
defined by its direction arrow (note that in Real-Time
Response mode this vector is allowed to change). This
restriction is as the designer desired: in response to the
rotation of the accelerator, s/he wants the car to move
forward, not change direction. The system reports the
recorded stimulus-response descriptor containing a
proportional constant (-47.22 = 17/-.36)

(2) On Accelerator.Rotate(sl)-->
BottomCar.MoveForward(-47.22*sl) At 0 Every 1

C~'~| 9 6 APRIL 1 3 - 1 8 , 1996

Next, the designer enters Test mode to check his work.
The top car immediately begins its path. The designer,
playing the role of the end-user, rotates the accelerator.
The bottom car begins moving, and continues to move
even after the designer releases the mouse from the
accelerator. As the car leaves the right side of the screen, it
reappears on the left. The designer again experhnents with
rotating the accelerator and notices that rotating it
clockwise speeds up the ear, while rotating it counter-
clockwise slows it down.

The designer is nearly satisfied but thinks the accelerator is
a little sensitive. He enters the editor (see Figure 2) and
selects "Accelerator" as the stimulus object. The stimulus
"Rotate(sl)" appears in the box labeled stimulus, and a
single response appears in the first cell of the score row
labeled BottomCar. The response box below the score
contains the response "MoveForward". Its parameter, as in
descriptor (2) above, is -47.22 's l . The period box contains
'T ' . To reduce how much the car speeds up in response to
the rotate, the designer changes the proportional factor
from -47 to -30.0. (alternatively, the period could have
been increased). When s/he re-enters Test mode, s/he is
satisfied to see that the accelerator is indeed less sensitive.

The next task is to specify the behavior of the steering
wheel so the end-user can control the direction of the
bottom car. The designer enters Stimulus mode and rotates
the steering wheel. Then, in Response mode, s/he sets the
Every: box in the clock to 1, and rotates the bottom car.
The following descriptor is recorded:

(3) On Wheel.Rotate(s 1)- ->
BottomCar.Rotate(0.25*sl) At 0 Every 1

To test this new behavior, the designer once again enters
Test mode. The top car immediately begins its path. The
designer rotates the accelerator to get the bottom car
moving, then releases the accelerator and rotates the
steering wheel to control its direction. He is pleased to note
that s/he was correct to set the Every: box before
demonstrating the rotation of the bottom car: just like a
real one, the car continues to turn if the steering wheel
remains rotated from its original setting.

The designer continues to test the interface, and soon
realizes that if s/he rotates the accelerator counter-
clockwise past its origin, the car begins moving backward.
To alleviate this problem, s/he uses the editor to delete the
previously recorded accelerator behavior, and then re-
demonstrates it. First, in Draw mode, s/he sets the top-left
point of the accelerator on the left edge of the enclosing
rectangle and chooses Conditions I Generate from the
menu. Then s/he demonstrates the stimulus of rotating the
accelerator. A dialog appears listing a set of graphical

254

A P R I L 1 3 - 1 8 , 1996 C~"'~| 9 6 ,,,t

conditions relating the stimulus object to other objects in
the interface. The designer selects the condition
"Accelerator.Within(EnclosingRectangle)", and the system
records a modified version of the originally recorded
stimulus-response descriptor (1).

(4) On Accelerator.LeftDrag --> Accelerator.Rotate
When Accelerator.Within(EnclosingRectangle)

designer's demonstration (this is the primary challenge of
all PBD systems). Pavlov uses an explanation-based
learning approach: from a single demonstration of a
stimulus-response pair, the system uses domain knowledge
and the infommtion provided by the demonstration to
record as reasonable a stimulus-response descriptor as
possiblc. If necessary, the designer can then use Pavlov's
powerful editing facilities to modify the descriptor.

The designer proceeds to demonstrate the response of
moving the car forward, as s/he did in the first iteration.
Afterwards, s/he re-enters Test mode, and is satisfied to see
that s/he (playing the role of the end-user) is restricted
from rotating the accelerator outside its enclosing
rectangle. Since the top-left point of the accelerator begins
on the left edge of the enclosing rectangle, there is no way
to rotate it counter-clockwise past its origin, so the car
cannot move backward.

TIlE STIMULUS-RESPONSE MODEL
The driving simulator example illustrates many features of
the stimulus-response model, including the extensions that
allow interactive animation to be defined. This section
describes the model in more general terms in order to 1)
explain the inferences made by the system in the example,
and 2) bridge the gap between the specific and the general,
i.e., persuade the reader that Pavlov is useful for designing
all kinds of interfaces, not just driving simulators.

An interface is viewed as a stimulus-response machine.
Stimuli are either physical actions (e.g., drag the mouse
while pressing the left-button), higher level operations, or
time. The interface responds to stimuli by executing a set
of time-stainped operations. Operations either create,
transform, or delete objects. The set of operations includes
the primitives found in most drawing editors and one
additional primitive, move forward. This additional
primitive allows an object to be moved while constrained
to the vector defined by its direction attribute. Together,
the operations offer the base functionality necessary to
demonstrate nearly all animated interface behaviors.

This simplistic strategy differs from other systems that
allow a designer to refine behavior descriptions through
multiple demonstrations. Such an empirical-based
learning approach allows more complex behavior to be
specified, but complicates the semantics of the sygtem.

The Semantics of a Stimulus Demonstrat ion
In Stimulus mode, the designer demonstrates the
operations the end-user can perform in the target interface.
When the designer performs an operation in this mode,
Pavlov records 1) a stimulus-response pair mapping the
physical action used to the operation that was executed,
and 2) the first part of a second stimulus-response pair that
will eventually map the operation to one or more
operations demonstrated as the response.

Mapping the physical action to the operation is important
because the drawing palette used during development to
demonstrate operations does not appear when the target
interface is executed (Test mode). In Test mode, the end-
user can only use the operations that the designer has
explicitly demonstrated as stimuli, and can only access
those operations using the physical action (mouse button,
auxiliary key) used in the demonstration. For example, in
the driving simulator the end-user can only rotate the
accelerator by dragging the mouse with the left-mouse
button down, because that is how it was demonstrated. The
designer cannot manipulate the car directly in any manner,
because no such stimulus was demonstrated. This positive
example method of specifying the functionality of the
system is in contrast to the scheme of [9] in which the
designer "freezes" the objects that cannot be manipulated.

The Semantics of Stimulus-Response
The challenge of a stimulus-response development system
is to provide clear syntax and semantics for how the
designer uses the set of physical actions and operations to
demonstrate the behavior of the target interface. The
"syntax" of Pavlov is straight forward: the designer
changes develolament modes to inform the system whether
his intent is to draw, demonstrate a stimulus or response,
or test the interface.

Providing clear semantics is a more challenging problem:
the goal is for the system to always record a stimulus-
response descriptor that perfectly matches the intent of the

The second recording made from a Stimulus
demonstration records the high-level operation
demonstrated as a stimulus (e.g., Accelerator.Rotate). It is
the execution of this high-level stimulus that will trigger
the execution of the responses demonstrated in Response
mode.

The only complication to the semantics of a stimulus
demonstration is that a designer may demonstrate a
stimulus on a representative object. At run-time, the same
stimulus applied to any member of the set represented will
trigger the demonstrated response. Dynamically allocated
objects, which can be specified by creating an object in

255

~ " H 9 ~ APRIL 1 3 - 1 8 . 1996

stimulus or response mode (see [13]), are by default
marked as representative objects. Pavlov also allows the
designer to designate behavior groups, and marks each
element as representative of the group (a similar approach
is used in [12]).

signified as important, relationships found concerning it
and the response object are shown at the top of the list of
found conditions. When necessary, the designer can use
the editor to specify a condition not identified by the
system.

The Semantics of a Response Demonstration
When the designer demonstrates an operation R on object
O in response mode, the system connects a response of the
form "O.R (rl,r2,._) when C" to the previously
demonstrated stimulus, where each r~ is a funcdon of zero
or more stimulus parameters, and C is an optional context
for when R should be executed.

The simplest semantic rule is to execute the demonstrated
response each time the demonstrated stimulus occurs in the
target interface. However, such a simple rule would
preclude the designer from demonstrating the context for
when an operation should be executed; semantics such as
"execute R is response to stimulus S only when the
environment is in state s" could not be demonstrated.

By setting a toggle, the Pavlov designer explicitly states if
context should be taken into account. If it is, the designer
configures the interface into the desired context (or the
negation of the desired contex0 prior to a response
demonstration. After the demonstration, the system runs a
set of tests to identify graphical conditions describing the
state of the interface. The designer is allowed to select one
or more of these conditions and combine them with logical
operators to define the context for when a response should
be executed.

In the driving simulator, a context was defined on the
description mapping the physical stimulus
"Accelerator.LeftDrag" and the response
"Accelerator.Rotate". A context could also be demonstrated
so that the bottom car doesn't run into the top one: the
designer demonstrates the stimulus of rotating the
accelerator, tells the system to identify context, then
demonstrates a response of moving the bottom car so that
it intersects the top car. When the system identifies
BottomCar.Intersects(TopCar) amongst other conditions,
the designer selects it and negates it, and the following
behavior is recorded:

A second complication to the response semantics is similar
to that discussed in the stimulus section: if the
demonstrated response object is representative of a set, the
response is applied to the entire set during execution (or a
subset, as defined by a context conditional [13]).

A third complication to the response semantics concerns
determining the response parameters. The simplest
solution is, of course, to execute R during execution with
the same parameters as in the demonstration. This is the
best solution when the corresponding stimulus has no
parameters (e.g., the stimulus is a button click and the
response is a move(x=5,y=7)). However, for stimuli that do
have parameters, it is often the case that the reaction is
proportional, i.e., the response parameter(s) are
proportional to the parameters of the stimulus. For
instance, the car in the Driving Simulator is rotated an
amount proportional to the amount the steering wheel is
rotated. Thus, when such a stimulus-response is
demonstrated, Pavlov infers proportional constants Ci =
rJsi that relate each of the stimulus and response
parameters. When the stimulus S(sl,s2,...) occurs during
execution, the response R(Sl.C1, s2* C2) is executed.

The formula for R illustrates that the system infers the first
parameter of the stimulus to be related to the first
parameter of the response, the second to the second, and so
on. The basis of this inference is that most interface
operations either have a single parameter or they have two
parameters denoting x and y coordinates, so in practice the
corresponding stimulus and response are often related. As
with conditionals, the editor can be used to modify the
response formulas recorded.

EXTENSIONS FOR ANIMATION
Systems for demonstrating animation have existed for over
twenty-five years [1]. Pavlov's contribution is the
integration of animation demonstration with the stimulus-
response model for defining interaction.

(5) On Accelerator.Rotate(s1)->
BottomCar.MoveForward(47.22*sl) At 0 Every 1

When Not (BottomCar.Intersects(TopCar))

In general, there are many true conditions concerning the
state of the interface. To reduce the number of conditions
listed for the designer, the system only identifies those
conditions relating the response object and all other objects
in the interface. Because the stimulus object has also been

An animation path can be demonstrated with a real-time
response demonstration, with a series of time-stamped
response demonstrations (the editor can be used for in-
betweening), or with a periodic response. Like any other
response, an animation path can be triggered by any kind
of end-user or time stimulus.

When a designer demonstrates the transformation of an
object in real-time response mode, the system records a

256

, i i i i i , I , , i

APRIL 1 3 - 1 8 , 1996 CH~ 9 6

series of time-stamped operations. Because operations are
recorded instead of picture frames (as in Director), the
recorded path is not constrained to a particular starting
point or object. Thus, reuse is facilitated. The mechanism
is also slightly more general than in systems such as
Director because any operation, not just move, can be
demonstrated in real-time.

A Notion of Direction
An important contribution of Pavlov is that a designer can
demonstrate animation in which the end-user not only
initiates movement, but accelerates it and changes its
direction. Though such behavior is the primary activity in
many game-like applications, there has been little research
in this area, and commercial systems such as Director
require extensive programming to develop this part of an
application.

From struggling with how to allow game-like behavior to
be demonstrated, the following observations were made: In
many games, one input control (e.g., steering wheel) is
used to control direction, and a different control
(accelerator) to control speed. Also, many objects do not
move in an arbitrary manner, but are restricted to moving
forward and backward, and must rotate their base to turn.
From these observations it became clear that the standard
Move(x,y) operation in Pavlov's drawing editor is not
sufficient for the demonstration of movement because it
specifies both a distance and an absolute direction.

To solve the problem, a notion of direction was added to
the stimulus-response model. Designers can set a current
direction attribute for an object that is displayed during
development. The direction attribute makes it possible for
the designer to demonstrate a MoveForward(d) operation.
This operation causes an object to move forward (or
backward, if d<0) in the direcdou it is facing. Thus, it is
much better suited for the demonstration of acceleration
than Move(x,y).

Periodic Responses
The notion of a periodic response is also useful in
demonstrating acceleration. In the driving simulator, when
the end-user rotates the accelerator, the car should begin
moving and continue to move, even after the end-user
releases the mouse. In Pavlov, the designer explicitly
specifies continuous movement by setting the Every: box
on the clock before the demonstration of a forward
movement. In essence, when a "MoveForward (d) Every t"
is demonstrated, the system infers that the object should
move forward at a speed of d/t.

The following run-time rule follows from these semantics:
the execution of successive periodic MoveForward
operations on the same object results not in two alternating

and possibly opposite actions, but in a single action
combining the magnitudes of the operations. For example,
in the driving simulator, when the car is already moving
at 4 units/frame and the end-user rotates the accelerator
again, say back towards the origin, it causes a response of
MoveForward (-1) units/frame. This second operation is
combined with the existing one so that the car slows clown
to 4-1=3 units/frame, instead of alternating between
moving forward 4 units, and backward 1 unit.

The system only uses these semantics for periodic Move-
Forward operations. For other operations, successive
periodic responses will execute in tandem. Thus, using two
periodic, regular Move demonstrations, the designer can
demonstrate that an object move back and forth, such as in
an animated move icon.

An alternative method of demonstrating acceleration has
also been added to the Pavlov environment. After
demonstrating a stimulus that should cause the
acceleration, the designer enters real-time response mode
and moves an object forward at the desired speed.
Generally, a real-time response is used to demonstrate a
fixed animation path as a response to a simple button-click
or time. When a real-time Move Forward is demonstrated
as a response to a transformational stimulus (one with
parameters), the system does not record a series of discrete
time-stamped operations as usual, but instead records a
single periodic operation. The distance parameter is
computed by dividing the total distance of the
demonstrated movement by the time of the movement (d/0,
and the period is set to 1 (ms).

The advantage of this scheme is that the designer truly
demonstrates the speed of the movement; the disadvantage
is it complicates the semantics of the system. A more
thorough analysis will be provided after more feedback is
gathered from users.

THE PAVLOV EDITOR
An important aspect of a PBD system is how a designer
edits the behaviors inferred by the system. Pavlov's editor
borrows from Director by providing a time-line view of
activity (a score). However, because interaction is
emphasized, Pavlov provides multiple timelines: one for
the events that occur without an end-user stimulus, and
one for the events triggered by each end-user stimulus that
was demonstrated. This method of organizing events by
stimulus significantly eases the editing task compared to
the single score editors found in most animation systems.

Pavlov's editor, shown in Figure 2, can be viewed
simultaneously with the main development window. In
order to view the operations that occur in response to a
particular stimulus, the designer selects an object and a

257

C H | 9 6 A P R I L 1 3 - 1 8 , 1996

particular stimulus in the top-left list boxes. To view the
operations that occur without an end-user stimulus, the
designer selects the "Time Stimulus" check box to the
right of the stimulus list.

The objects that respond to the listed stimulus are shown in
the rows of the score. The designer can select a particular
response in a cell, and the inferred response parameters
appear in the edit boxes labeled R1 and R2. Any
expression consisting of constants, stimuli parameters, and
system-supplied object attribute functions may be entered
as a response parameter. In essence, editing behavior
formulas is very similar to entering a formula in a
spreadsheet.

IMPLEMENTATION
At the beginning of execution (Test mode), the time
stimulated operations defined in the target interface are
placed in the execution list with their respective time
stamps. For each end-user stimulus that occurs, the sr
processor traverses the selected object's stimulus-response
list to find the response operations associated with the
stimulus. These responses are copied into the execution list
with a time-stamp of t + t~ , where t is the time the
stimulus occurred (the current time), and tr is the recorded
time-stamp of the response (which is relative to the
stimulus). When the system is not processing end-user
stimuli in this manner, the execution list is traversed and
all operations whose time-stamp is less than the current
time are executed. A non-periodic operation is removed
from the execution list immediately after execution; a
periodic operation is left in the list, with its time-stamp
incremented by the size of its periodic interval. In either
case, the executed operation is sent as a stimulus to the sr
processor, so a chaining of events can occur.

Though the scheme does not guarantee that operations will
be executed before or on their time-stamp, in practice it
provides visually acceptable performance even for
interfaces with lots of interaction and concurrent
animation (Pavlov runs on a 486 PC).

RELATED RESEARCH
Rehearsal World [5] and Peridot [7] were early PBD
systems that inspired the stimulus-response framework.
The first systems to allow direct graphical demonstration
of a full range of stimuli and responses were DEMO [13]
and Marquise [8]. DEMO introduced the stimulus-
response model and a technique for demonstrating
dynamically created objects, while Marquise focused on
the demonstration of graphical editors, including those
with palettes and modes.

DEMO H [3] and [4] are stimulus-response systems that
allow the designer to perform multiple demonstrations of

the same behavior to refine the system's inferences. [4]
uses multiple examples to make sophisticated inferences
concerning response parameters-- inferred formulas may
depend on attributes of arbitrary objects as well as
stimulus parameter values. DEMO H uses multiple
examples to refine inferences concerning the context for
when a response should be executed.

Pavlov is the first stimulus-response system to focus on
animation, though there are a few PBD systems not based
on stimulus-response that allow some animation to be
demonstrated: KidSim [12] and Agent Sheets [10] use
graphical rewrite rules to allow designers to demonstrate
the context for when an operation should be executed. The
systems are powerful for creating non-interactive
simulations, but the rewrite-rule method of defining
context is not integrated with a method of specifying end-
user stimuli, so interactive simulations cannot be designed
without coding; Dance [11] allows the demonstration of
animation for the purpose of program visualization.
Chimera [6] and LEMMING [9] allow interface behavior
to be specified with multiple demonstrations of
constraints, but do not cover time-based animation or
acceleration.

Director is representative of the commercial animation
systems that provide facilities for both animation and
interaction design. These systems allow animation to be
designed quickly and easily using a combination of frame-
by-frame animation, in-betweening, and real-time
recording. These systems also allow sound and video to be
linked into presentations, and provide a range of features
for creating special effects such as slow-in~slow-out,
motion blur, and squash and stretch.

Though powerful for defining animation, these systems do
not provide a PBD method of defining interaction. The
systems all allow button-click triggered animation to be
defined in a relatively simple manner. However, more
complex stimulus-response behaviors, such as the steering-
wheel and accelerator controlled animation in the driving
simulator, require expert-level programming.

A second difficulty in defining interaction with animation
systems is that they are based on a single-score editor: all
the animation sequences of an application are shown on a
single time-line. Though such a score is sufficient for non-
interactive animation (which was its original purpose), it is
too unstructured for applications with interactive as well as
time-stimulated animation. Like the programs written
before the advent of structured programming (sub-
procedures), the designer is forced to program control, i.e.,
where one animation ends and another begins, using goto
statements. For complex applications with lots of
movement and interaction, the result is a spaghetti score.

258

A P R I L] 3 -] 8 , 1996 CN~ ~ 6

The multiple score scheme in the Pavlov editor alleviates
this problem, and allows the designer to edit the different
interactive behaviors and animation sequences separately.

LIMITATIONS
The major practical limitation of Pavlov is that interfaces
created with it cannot be connected to application code. In
the next version, designers will be able to make this
connection by 1) demonstrating a function call as a
stimulus or response, and 2) calling an application
function within a response or conditional formula.
Pavlov's single demonstration scheme might also be
considered a limitation: more behaviors could be inferred
if a multiple demonstration inference engine, such as [4],
was integrated. Before doing so, however, we want to study
whether the additional inferred operations justify the
additional complexity that would be added to the
environment. A third limitation is that acceleration can be
demonstrated for an object that has no pre-defined path,
but cannot be demonstrated for an object that must stay on
a fixed path. In lhis regard, we are exploring both the use
of parametric functions to model some animation paths,
and the use of "conductor" objects with special properties
[10].

SUMMARY
Pavlov contributes a cohesive model for demonstrating
animation and interaction, and innovative techniques for
demonstrating interfaces in which the end-user controls
both the speed and direction of animation paths. Using
these techniques, interfaces like the driving simulator can
be created in less than fifteen minutes.

Development is by no means restricted to driving
simulators or similar applications. A number of other
interfaces have also been developed, including a wide
variety of games, a diagram editor with animated icons,
and an educational solar system program. We attribute
the general usefulness of Pavlov to the generality of the
stimulus-response model, and its powerful multiple-score-
based editing facility.

the formal tests were completed (though we could get
none to salivate!).

REFERENCES
1. Baecker, R., Picture-Driven Animation, Proceedings

of the Spring Joint Computer Conf., AFIPS Press,
1969, pp. 273-288.

2. Cypher, A., ed., Watch What I Do: Programming By
Demonstration, MIT Press, Cambridge, Mass., 1993.

. Fisher, G., Busse, D.,and Wolber, D.,"Adding Rule
Based Reasoning to a Demonstrational Interface
B uilder,Proceedings of UIST'92,Nov. 1992, pp.89-97.

. Frank, M. and Foley, J., "A Pure Reasoning Engine
for Programming B y Demonstration", Proceedings
of UIST '94, Nov. 1994, pp. 95-102.

5. Gould, L. and Finzer, W., "Programming By
Rehearsal", Byte, v. 9, no. 6., 1984.

. Kurlander, D. and Feiner, S., "Inferring Constraints
from Multiple Snapshots", A CM Transcations on
Graphics, May, 1991.

7. Myers, B., Creating User Interfaces By
Demonstration, Academic Press, San Diego, 1988.

.

.

10.

Myers, B., McDaniel,R.,Kosbie, D.,"Marquise:
Creating Complete User Interfaces By
Demonstration, Proceedings of INTERCHI '93,
Amsterdam, April,1993, pp.293-300.

Olsen, D., Ahlstrom, B., Kohlert, D., ,"Building
Geometry- based Widgets by Example", Proceedings
of CHI '95, May, 1995, pp.35-42.

Repenning, A., "Agent Sheets: A Medium for
Creating Domain-Oriented Visual Languages",
Computer, V.28, 1995, pp. 17-25.

Besides increasing the range of PBD, the stimulus-
response model provides a very intuitive method for
defining interfaces. A usability test was performed with a
number of non-technical designers. Subjects were given a
manual describing the stimulus-response model, and then
were asked to design two interfaces equal in complexity to
the driving simulator. Seven of ten were able to create the
interfaces within an hour; the three others completed the
tasks after asking a few questions (specific questions
concerning how to complete the tasks were not allowed).
We were extremely encouraged by the results, as well as
the enthusiasm the subjects expressed for exploring once

11.

12.

13.

Stasko, J., "Using Direct Manipulation To Build
Algorithm Animations By Demonstration",
Proceedings of CHI '91, 1991, pp. 307-314.

Smith, D.C., Cypher A., "KidSim: End-User
Programming of Simulations", ProCeedings of CHI
'95,May 1995, pp.27-34.

Wolber, D., and Fisher, Gene, "A Demonstrational
Technique for Developing Interfaces with
Dynamically Created Objects." Proc. of UIST '91,
1991, pp. 221-230.

!~ ! i ~

i~ ~i~, ~
i ~ ili

,'~ !i!

i~ i; ii!~,i~121

ii i!i;~i~i~ '

i Qili,!ii
i~i!iiiiil

ii! i!i! i!!il
~iiiiii!i!iil

2 5 9

